Hydraulic fracturing is among the varied oilfield operations used to produce petroleum products from underground formations. In hydraulic fracturing, a fluid is pumped down a wellbore at a flow rate and pressure sufficient to fracture a subterranean formation. After the fracture is created or, optionally, in conjunction with the creation of the fracture, proppants may be injected into the wellbore and into the fracture. The proppant is a particulate material added to the pumped fluid to produce a slurry. The proppant within the fracturing fluid forms a proppant pack to prevent the fracture from closing when pressure is released, providing improved flow of recoverable fluids, i.e. oil, gas, or water. The success of hydraulic fracturing treatment is related to the fracture conductivity which is the ability of fluids to flow from the formation through the proppant pack. In other words, the proppant pack or matrix may have a high permeability relative to the formation for fluid to flow with low resistance to the wellbore. Permeability of the proppant matrix may be increased through distribution of proppant and non-proppant materials within the fracture to increase porosity within the fracture.
Some approaches to hydraulic fracturing conductivity have constructed proppant clusters in the fracture, as opposed to constructing a continuous proppant pack. These methods may alternate stages of proppant-laden and proppant free fracturing fluids to create proppant clusters in the fracture and open channels between them for formation fluids to flow. Thus, the fracturing treatments result in a heterogeneous proppant placement (HPP) and a “room and pillar” configuration in the fracture, rather than a homogeneous proppant placement and consolidated proppant pack. The amount of proppant deposited in the fracture during each HPP stage is modulated by varying the fluid transport characteristics, such as viscosity and elasticity; the proppant densities, diameters, and concentrations; and the fracturing fluid injection rate.
Pumping this slurry at the appropriate flow rate and pressure to create and maintain the fracture of rock strata is a severe pump duty. In fracturing operations each fracturing pump may pump up to twenty barrels per minute at pressures up to 20,000 psi. The fracturing pumps for this application are quite large and are frequently moved to the oilfield on semi-trailer trucks or the like.
In large fracturing operations, it is common to have a common manifold, called a missile, missile trailer or manifold trailer, connected to multiple fracturing pumps. The manifold trailer distributes the fracturing fluid at low pressure from a blender to the fracturing pumps. The fracturing pumps pressurize the slurry, which is collected by the manifold trailer from the fracturing pumps to deliver downhole into a wellbore. Valves on the manifold trailer connected to the fracturing pumps are completely manual in current fracturing operations. In current operations the fracturing pumps are manually connected to the manifold trailer and pairs of fracturing pumps and valves are manually identified prior to pumping.
The fracturing pumps are independent units plumbed to the manifold trailer at a job site of a fracturing operation. A particular pump will likely be hooked up differently to the manifold trailer at different job sites. A sufficient number of pumps are connected to the manifold trailer to produce a desired volume and pressure output. For example, some fracturing jobs have up to 36 pumps, each of which may be connected to distinct valves on the manifold trailer.
The manual connection between each pump and manifold inlet/outlet of the valves may result in miscommunication between a pump operator and an outside supervisor who opens and closes the valves on the manifold trailer. The miscommunication of the association of the valve to the pump may cause the wrong valves to be opened and closed. Opening the wrong valve causes the pump to pump against a closed valve and over pressurize the line causing service quality, health, safety, and environmental risks and financial loss as well as downtime for the fracturing operation. Currently, no known method exists to automatically pair pumps to manifold trailer valves to avoid potential miscommunication and opening or closing of unintended valves.
This summary is provided to introduce a selection of concepts that are further described in the detailed description. This summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used as an aid in limiting the scope of the claimed subject matter.
In one embodiment, a non-transitory computer readable medium is described. The non-transitory computer readable medium stores processor executable code that when executed by a processor causes the processor to receive identification data indicative of a first low pressure valve and a second low pressure valve, receive identification data indicative of a first high pressure valve and a second high pressure valve, and receive identification data indicative of a plurality of pumps. The first and second low pressure valves are each connected to a low pressure manifold of a manifold trailer. The first pressure valve is connected to a high pressure manifold of the manifold trailer at a first high pressure station and the second high pressure valve is connected to the high pressure manifold of the manifold trailer at a second high pressure station. The processor determines a first association indicative of a first fluid connection between the first low pressure valve and a selected pump of the plurality of pumps and a second association indicative of a second fluid connection between the selected pump and a selected high pressure valve. The selected high pressure valve is selected from the first and second high pressure valves. The processor populates a non-transitory computer readable medium (e.g., Random Access Memory (RAM) with information indicative of the first fluid connection and the second fluid connection. In another embodiment, the processor populates the non-transitory computer readable medium with information indicative of the first association indicative of the first fluid connection and the second association indicative of the second fluid connection.
In one embodiment, the processor determines the first fluid connection and the second fluid connection by pressurizing the low pressure manifold, opening the first low pressure valve, detecting a pressure increase on the selected pump via a first pressure sensor and closing the first low pressure valve retaining pressure between the first low pressure valve and the selected pump. The processor then associates the first low pressure valve with the selected pump. The processor selectively opens and closes, individually, the first or second high pressure valves, and detects a pressure decrease on the selected pump via a second pressure sensor for a selected high pressure valve. The selected high pressure valve is selected from the first and second high pressure valves. The processor then associates the selected high pressure valve with the selected pump within the non-transitory computer readable medium.
In another version, a computerized method is presented for pairing low pressure valves and high pressure valves on a manifold trailer with pumps. The method is performed by pressurizing a low pressure manifold having a first low pressure valve and a second low pressure valve. The manifold trailer is also provided with a first high pressure valve and a second high pressure valve connected to a high pressure manifold. The low pressure manifold and the high pressure manifold are in fluid communication with a plurality of pumps. A selected one of the first and second low pressure valves is opened. A pressure increase is detected on a selected pump of a plurality of pumps by a first pressure sensor. The selected low pressure valve is closed, retaining the pressure between the selected low pressure valve and the selected pump and then the selected low pressure valve is associated with the selected pump and information indicative of the association is stored in a non-transitory computer readable medium. The first and second high pressure valves are individually opened and closed and a pressure decrease is detected on the selected pump, corresponding to the opening of a selected high pressure valve of the first and second high pressure valves. The pressure decrease is detected via a second pressure sensor. The selected high pressure valve is then associated with the selected pump. In one embodiment, the first pressure sensor and the second pressure sensor are the same sensor.
In another embodiment, the present disclosure describes a manifold trailer. The manifold trailer is provided with a low pressure manifold having a first low pressure valve and a second low pressure valve, a high pressure manifold having a first high pressure valve and a second high pressure valve, a plurality of actuators, and a computer system. The plurality of actuators are provided with a first actuator connected to the first low pressure valve, a second actuator connected to the second low pressure valve, a third actuator connected to the first high pressure valve, and a fourth actuator connected to the second high pressure valve. The computer system has a processor and processor executable code which causes the processor to transmit signals to the first, second, third, and fourth actuators to selectively open and close the first and second low pressure valves and the first and second high pressure valves.
To form associations between the plurality of actuators and particular pumps, the processor of the computer system opens the first low pressure valve, detecting a pressure increase on a selected pump via a first pressure sensor and closing the first low pressure valve retaining pressure between the first low pressure valve and the selected pump. The processor then associates the first low pressure valve with the selected pump and stores information indicative of the association within the non-transitory computer readable medium. The processor selectively opens and closes, individually, the first and second high pressure valves, and detects a pressure decrease on the selected pump via a second pressure sensor for a selected high pressure valve of the first and second high pressure valves. The processor then stores information indicative of an association s of the selected high pressure valve with the selected pump within the non-transitory computer readable medium.
Certain embodiments of the present inventive concepts will hereafter be described with reference to the accompanying drawings, wherein like reference numerals denote like elements, and:
Specific embodiments of the present disclosure will now be described in detail with reference to the accompanying drawings. Further, in the following detailed description of embodiments of the present disclosure, numerous specific details are set forth in order to provide a more thorough understanding of the disclosure. However, it will be apparent to one of ordinary skill in the art that the embodiments disclosed herein may be practiced without these specific details. In other instances, well-known features have not been described in detail to avoid unnecessarily complicating the description.
Unless expressly stated to the contrary, “or” refers to an inclusive or and not to an exclusive or. For example, a condition A or B is satisfied by anyone of the following: A is true (or present) and B is false (or not present), A is false (or not present) and B is true (or present), and both A and B are true (or present).
In addition, use of the “a” or “an” are employed to describe elements and components of the embodiments herein. This is done merely for convenience and to give a general sense of the inventive concept. This description should be read to include one or at least one and the singular also includes the plural unless otherwise stated.
The terminology and phraseology used herein is for descriptive purposes and should not be construed as limiting in scope. Language such as “including,” “comprising,” “having,” “containing,” or “involving,” and variations thereof, is intended to be broad and encompass the subject matter listed thereafter, equivalents, and additional subject matter not recited.
Finally, as used herein any references to “one embodiment” or “an embodiment” means that a particular element, feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. The appearances of the phrase “in one embodiment” in various places in the specification are not necessarily referring to the same embodiment.
Referring now to the figures, shown in
The fracturing fluid is then pumped at low pressure (for example, around 50 to 80 psi) from the blender 22 to a common manifold 26, also referred to herein as a manifold trailer or missile, as shown by solid line 28. The manifold 26 may then distribute the low pressure slurry to a plurality of plunger pumps 30, also called fracturing pumps, fracturing pumps, or pumps, as shown by solid lines 32. Each fracturing pump 30 receives the fracturing fluid at a low pressure and discharges it to the manifold 26 at a high pressure as shown by dashed lines 34. The manifold 26 then directs the fracturing fluid from the pumps 30 to the well bore 16 as shown by solid line 36. A plurality of valves on the manifold 26, which will be described in further detail below, may be connected to the fracturing pumps 30. Programs within the computerized control system 25, described in more detail below, may be used to automate the valves and automatically pair the valves with the pumps 30 accurately to create an interlock between the pumps 30 and the manifold 26.
As will be explained below in further detail, the computerized control system 25 may first identify valves which have hoses connected between the valves and the fracturing pumps 30, and may pressurize a low pressure manifold common to the valves using the blender 22, the valves common to the low pressure manifold being a subset of the valves on the manifold trailer 26. The control system 25 may open the valves that are connected by the hoses to the pumps 30, while ignoring those valves without hose connections. The valves may be individually opened causing one of the fracturing pumps 30 to register a pressure on a suction pressure sensor within the pump 30. The fracturing pump 30 may then be paired with the valve that was opened to cause the pressure and the pairing may be recorded. The same low pressure valve may be closed leaving the pressure trapped in a line of the fracturing pump 30. Sequentially, high pressure valves that are unassigned, a subset of the valves connected to the manifold 26 may be individually opened. If one of the high pressure valves is opened and pressure is not bled from the pump, the pairing of the fracturing pump 30 and the high pressure valve is discarded. If the high pressure valve is opened and the fracturing pump 30 loses pressure, the pairing of the fracturing pump 30 and the high pressure valve is recorded. The high pressure valve may then be closed and the process repeated for a subsequent low pressure valve, a subsequent pump, and a subsequent high pressure valve. If one of the fracturing pumps 30 goes offline, the pairings involving that fracturing pump 30 may be discarded. Embodiments of the pairing operations of the computerized control system 25 are explained in further detail below with regards to
The fracturing pumps 30 may be independent units which are plumbed to the manifold trailer 26 at a site of the oilfield operations for each oilfield operation in which they are used. A particular fracturing pump 30 may be connected differently to the manifold trailer 26 on different jobs. The fracturing pumps 30 may be provided in the form of a pump mounted to a standard trailer for ease of transportation by a tractor. The pump 30 may include a prime mover that drives a crankshaft through a transmission and a drive shaft. The crankshaft, in turn, may drive one or more plungers toward and away from a chamber in the pump fluid end in order to create pressure oscillations of high and low pressure in the chamber. These pressure oscillations allow the pump to receive a fluid at a low pressure and discharge it at a high pressure via one way valves (also called check valves). Also connected to the prime mover may be a radiator for cooling the prime mover. In addition, the plunger pump fluid end may include an intake pipe for receiving fluid at a low pressure and a discharge pipe for discharging fluid at a high pressure.
Referring now to
The low pressure manifold 38 may be provided with one or more pipes 42, a plurality of connections 44 for fluid communication between the pipes 42 and the blender 22 or the pipes 42 and the fracturing pumps 30, a blender station 45 for controlling fluid communication between the low pressure manifold 38 and the blender 22, and one or more low pressure stations 46 for controlling the fluid communication between the fracturing pumps 30 and the low pressure manifold 38. As shown in
The low pressure stations 46, as shown in one embodiment in
The high pressure manifold 40 may be provided with one or more pipes 56, a plurality of connections 58 for fluid communication between the fracturing pumps 30 and the well bore 16, one or more high pressure stations 60 for controlling fluid communication between the fracturing pumps 30 and the high pressure manifold 40, and a well bore station 62 for controlling fluid communication between the high pressure manifold 40 and the well bore 16. As shown in
The high pressure stations 60, as shown in one embodiment in
In one embodiment, the low pressure manifold 38 may be provided as two low pressure manifolds 38, along with the high pressure manifold 40. The two low pressure manifolds 38 may be used for split stream operations such as described in U.S. Pat. No. 7,845,413 which is hereby incorporated by reference.
Referring now to
Referring now to
Referring now to
The processor 90 may be implemented as a single processor or multiple processors working together or independently to execute the processor executable code 94 described herein. Embodiments of the processor 90 may include a digital signal processor (DSP), a central processing unit (CPU), a microprocessor, a multi-core processor, and combinations thereof. The processor 90 is coupled to the non-transitory computer readable medium 92. The non-transitory computer readable medium 92 can be implemented as RAM, ROM, flash memory or the like, and may take the form of a magnetic device, optical device or the like. The non-transitory computer readable medium 92 can be a single non-transitory computer readable medium, or multiple non-transitory computer readable mediums functioning logically together or independently.
The processor 90 is coupled to and configured to communicate with the non-transitory computer readable medium 92 via a path 96 which can be implemented as a data bus, for example. The processor 90 may be capable of communicating with an input device 98 and an output device 100 via paths 102 and 104, respectively. Paths 102 and 104 may be implemented similarly to, or differently from path 96. For example, paths 102 and 104 may have a same or different number of wires and may or may not include a multidrop topology, a daisy chain topology, or one or more switched hubs. The paths 96, 102 and 104 can be a serial topology, a parallel topology, a proprietary topology, or combination thereof. The processor 90 is further capable of interfacing and/or communicating with one or more network 106, via a communications device 108 and a communications link 110 such as by exchanging electronic, digital and/or optical signals via the communications device 108 using a network protocol such as TCP/IP. The communications device 108 may be a wireless modem, digital subscriber line modem, cable modem, network bridge, Ethernet switch, direct wired connection or any other suitable communications device capable of communicating between the processor 90 and the network 106.
It is to be understood that in certain embodiments using more than one processor 90, the processors 90 may be located remotely from one another, located in the same location, or comprising a unitary multicore processor (not shown). The processor 90 is capable of reading and/or executing the processor executable code 94 and/or creating, manipulating, altering, and storing computer data structures into the non-transitory computer readable medium 92.
The non-transitory computer readable medium 92 stores processor executable code 94 and may be implemented as random access memory (RAM), a hard drive, a hard drive array, a solid state drive, a flash drive, a memory card, a CD-ROM, a DVD-ROM, a BLU-RAY, a floppy disk, an optical drive, and combinations thereof. When more than one non-transitory computer readable medium 92 is used, one of the non-transitory computer readable mediums 92 may be located in the same physical location as the processor 90, and another one of the non-transitory computer readable mediums 92 may be located in a location remote from the processor 90. The physical location of the non-transitory computer readable mediums 92 may be varied and the non-transitory computer readable medium 92 may be implemented as a “cloud memory,” i.e. non-transitory computer readable medium 92 which is partially or completely based on or accessed using the network 106. In one embodiment, the non-transitory computer readable medium 92 stores a database accessible by the computer system 70.
The input device 98 transmits data to the processor 90, and can be implemented as a keyboard, a mouse, a touch-screen, a camera, a cellular phone, a tablet, a smart phone, a PDA, a microphone, a network adapter, a camera, a scanner, and combinations thereof. The input device 98 may be located in the same location as the processor 90, or may be remotely located and/or partially or completely network-based. The input device 98 communicates with the processor 90 via path 102.
The output device 100 transmits information from the processor 90 to a user, such that the information can be perceived by the user. For example, the output device 100 may be implemented as a server, a computer monitor, a cell phone, a tablet, a speaker, a website, a PDA, a fax, a printer, a projector, a laptop monitor, and combinations thereof. The output device 100 communicates with the processor 90 via the path 104.
The network 106 may permit bi-directional communication of information and/or data between the processor 90, the network 106, and the manifold trailer 26. The network 106 may interface with the processor 90 in a variety of ways, such as by optical and/or electronic interfaces, and may use a plurality of network topographies and protocols, such as Ethernet, TCP/IP, circuit switched paths, file transfer protocol, packet switched wide area networks, and combinations thereof. For example, the one or more network 106 may be implemented as the Internet, a LAN, a wide area network (WAN), a metropolitan network, a wireless network, a cellular network, a GSM-network, a CDMA network, a 3G network, a 4G network, a satellite network, a radio network, an optical network, a cable network, a public switched telephone network, an Ethernet network, and combinations thereof. The network 106 may use a variety of network protocols to permit bi-directional interface and communication of data and/or information between the processor 90, the network 106, and the manifold trailer 26. The communications between the processor 90 and the manifold trailer 26, facilitated by the network 106, may be indicative of communications between the processor 90, the position sensors 66, 74, and 78, and the actuator 68, 76, and 80. The communications between the processor 90 and the manifold trailer 26 may be additionally facilitated by a controller which may interface with position sensors 66, 74, and 78 and actuators 68, 76, and 80 as well as the computer system 70. In one embodiment, the controller may be implemented as a controller on the manifold trailer 26. In another embodiment, the controller may be implemented as a part of the computer system 70 in the computerized control system 25. The controller may be implemented as a programmable logic controller (PLC), a programmable automation controller (PAC), distributed control unit (DCU) and may include input/output (I/O) interfaces such as 4-20 mA signals, voltage signals, frequency signals, and pulse signals which may interface with the position sensors 66, 74, 78 and the actuators 68, 76, and 80.
In one embodiment, the processor 90, the non-transitory computer readable medium 92, the input device 98, the output device 100, and the communications device 108 may be implemented together as a smartphone, a PDA, a tablet device, such as an iPad, a netbook, a laptop computer, a desktop computer, or any other computing device.
The non-transitory computer readable medium 92 may store the processor executable code 94, which may comprise a pairing program 94-1. The non-transitory computer readable medium 92 may also store other processor executable code 94-2 such as an operating system and application programs such as a word processor or spreadsheet program, for example. The processor executable code for the pairing program 94-1 and the other processor executable code 94-2 may be written in any suitable programming language, such as C++, C#, or Java, for example.
Referring now to
As shown in
After receiving the identification data 134, 136, 140, 142, and 146, the pairing program 94-1 may cause the processor 90 to determine a first fluid connection 150-1 between the first low pressure valve 126-1 and a selected pump 130 of the plurality of pumps 130, as shown in
After determining the first fluid connection 150-1 and the second fluid connection 150-2, the pairing program 94-1 may cause the processor 90 to populate a non-transitory computer readable medium 92 with a first association 154-1 indicative of the first fluid connection 150-1, and a second association 154-2 indicative of the second fluid connection 150-2, at block 156. Although presented as first and second associations 154-1 and 154-2, the processor 90 may populate the non-transitory computer readable medium 92 with a single association 154 indicative of the first fluid connection 150-1 and the second fluid connection 150-2.
The first association 154-1 and the second association 154-2 may be created in a number of ways as will be described below. As shown in
The first and second transceivers 158 and 160 are configured to communicate via any suitable medium, such as electrical signals, optical signals, pressure signals, or acoustic signals. In any event, once the association is formed, either the first transceiver 158 or the second transceiver 160 passes a signal to the processor 90 to store the association in the non-transitory computer readable.
Referring now to
Referring now to
Referring now to
Referring now to
Also shown in
As will be discussed in more detail below, the pairing program 94-1 may comprise an automated process for determining fluid connections between any of the plurality of low pressure valves 206 with any of the plurality of fracturing pumps 210 and any of the plurality of high pressure valves 208. Although shown in
Referring now to
The processor 90, in one embodiment, may determine whether each of the low pressure valves 206 are in fluid communication with the plurality of fracturing pumps 210 using a sensor 253 with a spring return capability, as shown connected to the fourth low pressure valve 206-4 in
In another embodiment, the sensor 253 may be replaced by installation of caps (not shown) on unused low pressure valves 206, where the caps may prevent unintentional fluid discharge and be used to identify whether the hose is connected. If the low pressure valve 206, with the cap installed, is opened, no pressure increase may be detected at the plurality of fracturing pumps 210, thereby allowing a user to identify the low pressure valve 206 with the cap as not connected to a hose or fracturing pump 210.
The pairing program 94-1 may cause the processor 90 to determine a status of the first low pressure valve 206-1 and the plurality of high pressure valves 208, at block 254. In one embodiment, the processor 90 also determines the status of the plurality of plug valves 72. The status may indicate whether the first low pressure valve 206-1 and the plurality of high pressure valves 208 are open, closed, or in an intermediate status between open and closed. The processor 90 may determine the status of the first low pressure valve 206-1 and the plurality of high pressure valves 208 using the position sensors 66 and 78, respectively, connected to the first low pressure valve 206-1 and the plurality of high pressure valves 208, as previously discussed. At block 254, if the processor 90 determines the first low pressure valve 206-1 or one or more of the plurality of high pressure valves 208 are open or in the intermediate status, the processor 90 may cause the actuators 68 and 80, respectively, connected to the first low pressure valve 206-1 or the plurality of high pressure valves 208 to close the respective valves to which the actuators 68 and 80 are connected.
After determining the status of the first low pressure valve 206-1 and the high pressure valves 208, the processor 90 may pressurize the low pressure manifold 202 of the manifold trailer 200, at block 256. The processor 90 may pressurize the low pressure manifold 202 by opening one or more connections between the low pressure manifold 202 and the blender 22, such as the connections 44 of the blender station 45, discussed above in reference to
At block 258, the pairing program 94-1 may cause the processor 90 to initiate the actuator 68 connected to the first low pressure valve 206-1 to open the low pressure valve 206-1. It will be understood by one skilled in the art that the pairing program 94-1 may select any of the plurality of low pressure valves 206-1 as the first low pressure valve to be opened. Opening the first low pressure valve 206-1 may cause a first fluid connection 260-1 to be pressurized. The processor 90 may receive a signal 259 from the first pressure sensor 212 of the first pump 210-1 indicative of a pressure increase on the first pump 210-1 and the first fluid connection 260-1 to the first low pressure valve 206-1. The processor 90 may then close the first low pressure valve 206-1 by initiating the actuator 68 connected to the first low pressure valve 206-1, thereby retaining pressure between the low pressure valve 206-1 and the first pump 210-1 within the first fluid connection 260-1, at block 262.
The processor 90 may then form and store information indicative of an association 263 between the first low pressure valve 206-1 with the first pump 210-1 at block 264, within the one or more non-transitory computer readable medium 92. For example, the processor 90 may store the association 263 of the first low pressure valve 206-1 and the first pump 210-1 in a data structure 265, such as a database of associations, a spread sheet, or any other suitable data storage such that the association may be viewed, edited, modified, or recalled by a user and such that the user may positively identify the association of the first low pressure valve 206-1 and the first pump 210-1.
The processor 90 may then selectively open and close, individually, the plurality of high pressure valves 208, at block 266. The processor 90 may also detect a pressure decrease on the first pump 210-1 via a signal 267 from the second pressure sensor 214 for a selected high pressure valve 208, at block 268. As shown in
Once the processor 90 has detected the decrease in pressure via the signal 267 communicated by the second pressure sensor 214, the processor 90 may form an association 269 between the selected high pressure valve 208 and the first pump 210-1, at block 270. In one embodiment, the processor 90 may associate the first high pressure valve 208-1 with the first pump 210-1 by storing the association 269 within the one or more non-transitory computer readable medium 92. For example, the processor 90 may store the association of the first high pressure valve 208-1 and the first pump 210-1 in the data structure 265 such that the user may positively identify the association of the first high pressure valve 208-1 and the first pump 210-1 along in the same data structure 265 as the association of the first low pressure valve 206-1 and the first pump 210-1. In one embodiment, the processor 90 may additionally form an association 272 between the first low pressure valve 206-1, the first pump 210-1, and the first high pressure valve 208-1, similar to the associations 263 and 269, such that a first fluid connection 260-1 and a second fluid connection 260-2 between the first low pressure valve 206-1 and the first high pressure valve 208-1 may be identified.
After the processor 90 has formed the associations 263 and 269 for the first low pressure valve 206-1, the first pump 210-1, and the first high pressure valve 208-1, this process may be repeated using any suitable predetermined or random pattern to selectively open and close each of the plurality of low pressure valves 206, individually, detecting a pressure increase on a selected pump of the plurality of pumps 210, corresponding to opening a selected low pressure valve 208, and associating the selected low pressure valve 208 with the selected pump 210. The processor 90 may also repeat the process to selectively open and close, individually, the plurality of high pressure valves 208, detecting a pressure decrease on the selected pump 210, corresponding to opening a selected high pressure valve 208, corresponding to opening a selected high pressure valve 208, and associating the selected high pressure valve 208 with the selected pump 210. The processor 90 may repeat the process until each of the plurality of low pressure valves 206 is associated with one of the plurality of pumps 210, and until each of the plurality of high pressure valves 208 is associated with one of the plurality of pumps 210.
Although a few embodiments of the present disclosure have been described in detail above, those of ordinary skill in the art will readily appreciate that many modifications are possible without materially departing from the teachings of the present disclosure. Accordingly, such modifications are intended to be included within the scope of the present disclosure as defined in the claims.
Number | Name | Date | Kind |
---|---|---|---|
4845981 | Pearson | Jul 1989 | A |
5107441 | Decker | Apr 1992 | A |
5382411 | Allen | Jan 1995 | A |
5426137 | Allen | Jun 1995 | A |
5799688 | Yie | Sep 1998 | A |
5964985 | Wootten | Oct 1999 | A |
7627397 | Parraga | Dec 2009 | B2 |
7845413 | Shampine | Dec 2010 | B2 |
8151885 | Bull et al. | Apr 2012 | B2 |
9328575 | Feasey | May 2016 | B2 |
20030168258 | Koederitz | Sep 2003 | A1 |
20050042151 | Alward | Feb 2005 | A1 |
20060014999 | Heilman | Jan 2006 | A1 |
20060081378 | Howard | Apr 2006 | A1 |
20060171860 | Ross | Aug 2006 | A1 |
20080060846 | Belcher | Mar 2008 | A1 |
20080262737 | Thigpen | Oct 2008 | A1 |
20090120635 | Neal | May 2009 | A1 |
20090236144 | Todd | Sep 2009 | A1 |
20090283259 | Poitzsch | Nov 2009 | A1 |
20090283261 | Poitzsch | Nov 2009 | A1 |
20100086414 | Tai | Apr 2010 | A1 |
20100101785 | Khvoshchev | Apr 2010 | A1 |
20100288507 | Duhe | Nov 2010 | A1 |
20110214920 | Vail, III | Sep 2011 | A1 |
20110272158 | Neal | Nov 2011 | A1 |
20120073670 | Lymberopoulos | Mar 2012 | A1 |
20120090807 | Stewart | Apr 2012 | A1 |
20120235829 | Adnan | Sep 2012 | A1 |
20130073174 | Worden | Mar 2013 | A1 |
20130098632 | Wetzel | Apr 2013 | A1 |
20130192841 | Feasey | Aug 2013 | A1 |
20130199792 | Backes | Aug 2013 | A1 |
20130204922 | El-Bakry | Aug 2013 | A1 |
20130213647 | Roddy | Aug 2013 | A1 |
20130223979 | Locke | Aug 2013 | A1 |
20130233542 | Shampine | Sep 2013 | A1 |
20130299240 | Leuchtenberg | Nov 2013 | A1 |
20140044508 | Luharuka | Feb 2014 | A1 |
20140048331 | Boutalbi | Feb 2014 | A1 |
20140262338 | Shen | Sep 2014 | A1 |
20150129210 | Chong | May 2015 | A1 |
20150166260 | Pham | Jun 2015 | A1 |
Number | Date | Country | |
---|---|---|---|
20140277772 A1 | Sep 2014 | US |