System and method of controlling wrapping flow in a fluid working apparatus

Information

  • Patent Grant
  • 9297387
  • Patent Number
    9,297,387
  • Date Filed
    Tuesday, April 9, 2013
    11 years ago
  • Date Issued
    Tuesday, March 29, 2016
    8 years ago
Abstract
A fluid working apparatus (100) having an inlet side and an outlet side with the at least one rotor (114) having a plurality of blades (115) positioned in the housing. A circumferential inlet area is defined on the inlet side of the rotor (114) and a circumferential outlet area is defined on the outlet side of the rotor (116). At least one return assembly (140, 142) is configured to return fluid flow from the outlet side of the rotor (114) to a circumferentially offset portion of the circumferential inlet area on the inlet side of the rotor (114) whereby a working fluid workingly engages a second subset of the rotor blades (115) before exiting the housing outlet (133). A method of working a fluid is also provided.
Description
BACKGROUND OF THE INVENTION

1. Statement of the Technical Field


The invention concerns fluid working, and more particularly systems and methods for wrapping fluid flow in a fluid working apparatus, for example an expander or compressor, which results in an increased capacity to perform work by the fluid or on the fluid.


2. Description of the Related Art


A turbo-expander is a machine which continuously converts kinetic energy into mechanical energy by harnessing the pressure and heat of pressurized fluid to rotate a shaft. FIGS. 1 and 2 show an exemplary axial turbo-expander 10. Each stage of the expander 10 includes a rotatable rotor 12 and a stationary stator 14. Inlet vanes 16 and outlet vanes (not shown) may be provided to help guide the path of the flowing fluid and the vanes may serve as the stator for one or more of the stages. The rotors 12, stators 14 and vanes are supported in a housing 18. To ensure proper flow and rotation, each of the rotors 12 must be manufactured within tight tolerances relative to the housing 18. As illustrated by the arrows, the fluid passes through each stage a single time, interacting with the rotor 12 and stator 14 for only the period of time it takes for the fluid to pass through the stage. As the fluid passes through a given stage, the fluid expands and exerts a force to rotate the rotor 12, which in turn rotates the shaft (not shown).


Turbo-expanders are utilized in various applications, for example, a compressor-drive, power generator, brake drive, or cooling system. In the first three examples, the power transmitted to the shaft is used to drive a compressor, drive an electrical generator or is dissipated through an oil brake or air brake, respectively. In a cooling or refrigeration system, the gas exiting the expander, which is colder and lower-pressure than it was when it went in, is directed to a heat exchanger. Expanders and compressors may comprise or take on many different physical configurations, all of which are easily found in literature. The axial flow example shown provides the most useful architecture for the purpose of contrasting the difference. These applications are for illustrative purposes only and are not intended to be limiting.


An axial compressor works just like the turbo expander but in reverse. Power is supplied to the shaft which in turn rotates the rotors. The rotors accelerate the fluid and the stators diffuse the flow to obtain a pressure increase. That is, the diffusion in the stator converts the velocity increase gained in the rotor to a pressure increase. As with the expander, the fluid passes through each stage a single time, interacting with the rotor and stator for only the period of time it takes for the fluid to pass through the stage.


SUMMARY OF THE INVENTION

Embodiments of the invention concern a fluid working apparatus. In at least one embodiment, the fluid working apparatus includes a housing structure with a housing inlet and a housing outlet. A working assembly is positioned in the housing with a rotor thereof rotatably supported in the housing structure. The working assembly has an inlet side and an opposite outlet side with the at least one rotor having a plurality of blades positioned between the inlet and outlet sides. At least one return assembly is configured to return fluid flow from the outlet side of the working assembly to the inlet side of the working assembly whereby a working fluid passes through the housing inlet, then from the inlet side of the working assembly to the outlet side thereof while workingly engaging a first subset of the rotor blades, then through the at least one return assembly, then from the inlet side of the working assembly to the outlet side thereof while workingly engaging a second subset of the rotor blades, and thereafter out of the housing outlet.


Embodiments of the invention concern a method of re-circulating a working fluid. The method includes passing the fluid from an inlet side of a working assembly to an outlet side thereof, the working assembly including at least one rotor having a plurality of blades positioned between the inlet and outlet sides, whereby the fluid while workingly engages a first subset of the rotor blades; passing the fluid through a return assembly whereby the fluid flows from the outlet side of the working assembly to the inlet side of the working assembly; and passing the fluid from the inlet side of the working assembly to the outlet side thereof while workingly engaging a second subset of the rotor blades.


The present invention provides multi-pass recirculation of the working fluid that is unique relative to the current art.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments will be described with reference to the following drawing figures, in which like numerals represent like items throughout the figures, and in which:



FIG. 1 is a front isometric view of an exemplary prior art axial turbo-expander.



FIG. 2 is a rear isometric view of the axial turbo-expander of FIG. 1 in partial cutaway.



FIG. 3 is an isometric view of a fluid working apparatus in accordance with an exemplary embodiment of the present invention.



FIG. 4 is an exploded view of the fluid working apparatus of FIG. 3.



FIG. 5 is a cross-sectional view along the line 5-5 in FIG. 3.



FIG. 6 is an isometric view of an exemplary fluid working apparatus with the outer housing shown transparently.



FIG. 7 is a front elevation view of the fluid working apparatus of FIG. 3 with the outer housing omitted.



FIG. 8 is an isometric view of the fluid working apparatus of FIG. 3 with the outer housing omitted.



FIG. 9 is an isometric view of the fluid working apparatus of FIG. 6 with the outer housing omitted.



FIG. 10 is a top plan view of the fluid working apparatus of FIG. 6 with the outer housing shown transparently.



FIG. 10 A is an expanded view of a portion of the fluid working apparatus of FIG. 10.



FIG. 11 is an isometric view of an exemplary rotor illustrating an exemplary flow path of a fluid working apparatus in accordance with the invention.



FIGS. 12-14 are drawings that are useful for understanding flow paths of the fluid in accordance with one or more embodiments of the invention.



FIGS. 15-16 are drawings that are useful for understanding alternative flow paths of the fluid in accordance with one or more embodiments of the invention.



FIGS. 17A and 17B illustrate the inlet area of an exemplary fluid working apparatus of the present invention relative to the inlet area of a prior art axial turbo-expander.



FIG. 18 is a drawing that is useful for understanding the flow volume and work output of an exemplary fluid working apparatus of the present invention relative to that of a prior art axial turbo-expander.



FIG. 19 is a drawing that is useful for understanding the flow path of an exemplary fluid working apparatus of the present invention relative to that of a prior art axial turbo-expander.



FIG. 20 is a drawing that is useful for understanding the time for expansion of an exemplary fluid working apparatus of the present invention relative to that of a prior art axial turbo-expander.



FIGS. 21A and 21B present a table showing measurements from an exemplary single rotor, five zone fluid working apparatus of the present invention.



FIGS. 22 shows an exemplary prior art, single rotor axial turbo-expander and FIG. 23 is a table showing exemplary measurements therefore.



FIG. 24 shows an exemplary prior art, five rotor axial turbo-expander.



FIGS. 25A and 25B present a table showing measurements from a prior art, five rotor axial turbo-expander as illustrated in FIG. 24.



FIG. 26 is a drawing representing the data from the various tables from FIGS. 21A, 21B, 23, 25A and 25B.



FIG. 27 is an isometric view of a working assembly of an alternative exemplary embodiment of the present invention.



FIG. 28 is an isometric view of a working assembly of an alternative exemplary embodiment of the present invention.



FIG. 29 is a drawing illustrating multiple fluid working apparatuses connected in series.



FIG. 30 is an isometric view of a generator device incorporating an exemplary fluid working apparatus of the present invention.



FIG. 31 is a cross-sectional view along the line 31-31 in FIG. 30.



FIG. 32 is a cross-sectional view of an exemplary housing in accordance with an embodiment of the invention.



FIG. 33 is a cross-sectional view of another exemplary housing in accordance with an embodiment of the invention.



FIG. 34 is a drawing illustrating fluid flow through the housing of the exemplary fluid working apparatus of FIG. 35.



FIG. 35 is a schematic illustration showing an exemplary fluid working apparatus.



FIG. 36 is a drawing illustrating fluid flow through the housing of the exemplary fluid working apparatus of FIG. 37.



FIG. 37 is a schematic illustration showing an exemplary fluid working apparatus.



FIGS. 38-41 are drawings illustrating fluid flow through other exemplary housings.



FIG. 42 is a front elevation view of a fluid working apparatus in accordance with an exemplary embodiment of the present invention.



FIG. 43 is a rear elevation view of the fluid working apparatus of FIG. 42.



FIG. 44 is a front elevation similar to FIG. 42 with a portion of the outer housing omitted.



FIG. 45 is a drawing illustrating fluid flow through the fluid working apparatus of FIG. 42.



FIG. 46 is a front elevation similar to FIG. 44 illustrating another exemplary embodiment of the present invention representing a compressor configuration.



FIG. 47 is an isometric view of the fluid working apparatus of FIG. 46.



FIGS. 48 and 49 are drawings that are useful for understanding different flow options through the exemplary fluid working apparatus of the present invention.



FIGS. 50A and 50B are top and elevation views, respectively, illustrating an exemplary stage offset configuration in accordance with an embodiment of the invention.



FIGS. 51-53 are drawings that are useful for understanding different stage transitions through the exemplary fluid working apparatus of at least one embodiment of the present invention.



FIG. 54 is a graph illustrating exemplary angular displacement of flow across a five zone fluid working apparatus of at least on embodiment of the present invention.





DETAILED DESCRIPTION

The invention is described with reference to the attached figures. The figures are not drawn to scale and they are provided merely to illustrate the instant invention. Several aspects of the invention are described below with reference to example applications for illustration. It should be understood that numerous specific details, relationships, and methods are set forth to provide a full understanding of the invention. One having ordinary skill in the relevant art, however, will readily recognize that the invention can be practiced without one or more of the specific details or with other methods. In other instances, well-known structures or operation are not shown in detail to avoid obscuring the invention. The invention is not limited by the illustrated ordering of acts or events, as some acts may occur in different orders and/or concurrently with other acts or events. Furthermore, not all illustrated acts or events are required to implement a methodology in accordance with the invention.


Referring to FIGS. 3-14, fluid working apparatuses 100, 100′ in accordance with exemplary embodiments of the present invention will be described. As used herein, the term fluid working apparatus refers to an apparatus with a rotatable rotor which works on a working fluid or is worked on by a working fluid. Examples include expanders and compressors, but are not limited to such.


Each fluid working apparatus 100, 100′ includes a working assembly 110 supported within a housing 130. The working assembly 110 includes a shaft 112 which supports at least one rotor 114 with a plurality of blades 115. In the present embodiments, the working assembly 110 includes a pair of rotors 114 with a stator 116 positioned therebetween. As shown in FIG. 10A, inlet vanes 118 and outlet vanes 120 may be provided to guide fluid flow across the rotors 114 and stator 116. The invention does not require 2 rotors, it could be accomplished with 1,3,4 or more depending on the specifics of the design application.


The housing 130, shown in FIG. 5, includes an outer housing member 134 and an inner housing member 138. The outer housing member 134 includes a hollow tubular portion 135 with side walls 136 extending within the center of the tubular portion 135. The side walls 136 support the shaft 112 with the rotors 114, stator 116 and the inlet and outlet vanes 118, 120 positioned therebetween. The stator 116 may be rotationally fixed through connection to the inner housing member 138 or otherwise. The rotors 114 and stator 116 extend radially into the tubular portion 135 of the outer housing member 134. A housing inlet 132 extends through one side of the outer housing member 134 aligned with the blades 115 of the rotors 114. As illustrated in FIGS. 4 and 6, the housing inlet 132 extends only a portion of the housing 130 circumference. A housing outlet 133 extends through the opposite side of the outer housing member 134 in alignment with the rotor blades 115. Similarly, the housing outlet 133 extends only a portion of the housing 130 circumference. As will be described hereinafter, the housing inlet 132 and outlet 133 may have the same or different circumferential widths. The surface of the working assembly 110 adjacent the inlet 132 may be referred to the inlet surface and the surface of the working assembly 110 adjacent the outlet 133 may be referred to as the outlet surface.


The inner housing member 138 is positioned within the tubular portion 135 of the outer housing 134 and has a tubular outer surface 139 spaced from the inside surface of the outer housing 134 such that a return chamber 140 is defined between the inner housing 138 and the outer housing 134. The inner housing member 138 is illustrated as a solid structure, but may instead be completely or partially hollow. The inner housing member 138 is maintained in position relative to the outer housing member 134 by a plurality of boundary vanes 142, alone or in conjunction with guide vanes 143, extending between the inner surface of the tubular portion 135 and the outer surface 139 of the inner housing member 138.


The boundary vanes 142 extend helically and divide the return chamber 140 into distinct return zones 140a, 140b, 140c, 140d as illustrated in FIGS. 7-9. For example, the boundary vanes 142a and 142b define the return zone 140a, vanes 142b and 142c define the return zone 140b, vanes 142c and 142d define the return zone 140c, and vanes 142d and 142e define the return zone 140d. The vanes 142, and thereby the return zones 140a-140d, extend from the outlet surface of the working assembly 110 to the inlet surface of the working assembly 110. Each return zone 140a-140d represents a return assembly. As illustrated in FIGS. 6 and 9, one or more guide vanes 143 may be positioned between the boundary vanes 142. The guide vanes 143 do not define a given return zone 140a-140d, but instead assist in guiding fluid as it travels through the given zone, for example by reducing turbulence.


The working fluid enters through the housing inlet 132 and passes through a first working zone 1 of the rotor blades 115. The working fluid acts on the rotors 114 as it passes through and then exits the rear of the working assembly 110 as shown in FIGS. 10 and 10A. Upon exiting, the working fluid is directed through the return zone 140a and back to the inlet surface of the working assembly 110 whereafter it passes through a second zone 2 of the rotor blades 115. The working fluid again acts on the rotors 114 as it passes through and then exits the rear of the working assembly 110. Upon exiting, the working fluid is directed through the return zone 140b and back to the inlet surface of the working assembly 110 whereafter it passes through a third zone 3 of the rotor blades 115. The working fluid again acts on the rotors 114 as it passes through and then exits the rear of the working assembly 110. Upon exiting, the working fluid is directed through the return zone 140c and back to the inlet surface of the working assembly 110 whereafter it passes through a fourth zone 4 of the rotor blades 115. The working fluid once again acts on the rotors 114 as it passes through and then exits the rear of the working assembly 110. Upon exiting, the working fluid is directed through the return zone 140d and back to the inlet surface of the working assembly 110 whereafter it passes through a fifth zone 5 of the rotor blades 115. The working fluid once again acts on the rotors 114 as it passes through and then exits the rear of the working assembly 110. The working fluid, after acting on the rotors 114 five times, then exits through the housing outlet 133. Each pass of the working fluid across a rotor 114 may be referenced as a stage. In the presently described embodiment, the working fluid passes across two rotors 114 five times, thereby achieving ten stages of potential work on the blades.



FIG. 11 illustrates an exemplary path 102 of the working fluid as it enters through the housing inlet 132 and passes the rotor blades 115 multiple times before exiting through the housing outlet 133. FIGS. 12-14 provide further simplified illustrations of the exemplary fluid flow. The return zones 140a or return assemblies are illustrated as independent tubular members, which is conceivable, however, the zones are preferably defined by the housing 130 and vanes 142 as described above. The flow in for a given blade zone passes the rotor 114 and then is returned through the return zone 140a. The entrance to the return zone 140a is circumferentially offset from the exit from the return zone 140a such that the flow out of the working fluid is delivered to the next zone of blades 115.


As illustrated in FIG. 14, the number of return zones 140a-140n is not limited to five as in the previously illustrated embodiments, but may be any number of return zones one or more such that the fluid passes across the working assembly 110 at least twice. Furthermore, as illustrated in FIGS. 15 and 16, the fluid working apparatus 100″, 100′″ may have more than one housing inlet 132 and corresponding housing outlet 133. In the embodiment illustrated in FIG. 15, the fluid working apparatus 100″ includes two housing inlets 132, with each housing inlet providing a flow path through six return zones 140a-140f such that the fluid working traveling each path passes the working assembly 110 seven times. In the embodiment illustrated in FIG. 16, the fluid working apparatus 100′″ includes three housing inlets 132, with each housing inlet providing a flow path through four return zones 140a-140d such that the fluid working traveling each path passes the working assembly 110 five times. The number of inlets as well as the number of return zones for each flow path may be varied as desired.


Having described the general configuration of exemplary embodiments of the fluid working apparatus 100, a comparison relative to an axial flow device will be provided with reference to FIGS. 17A-26. Referring to FIGS. 17A and 17B, an exemplary fluid working apparatus 100 is show with a prior art axial turbo-expander 10 with an equivalent flow rate. The fluid working apparatus 100 has an inlet 132 which extends over a partial circumference while the turbo-expander 10 has an inlet 20 extending about the complete circumference. As such, if the inlet areas A1 and A2 are to be equal, the apparatus 100 has a larger radius R and larger blade height than the radius r and blade height of the turbo-expander 10. The larger rotor diameter can be tuned to provide increased torque output in the fluid working apparatus 100.



FIG. 18 illustrates the effective work performed by the fluid working apparatus 100 compared to that of the turbo-expander 10 with equivalent flow rates V1 and V2. As illustrated here, the apparatus 100 has five return zones R1-R5 such that work is performed on the rotor blades 115 six times as shown 1-6. In this example, the apparatus 100 has twenty four larger blades relative to the turbo-expander 10 having a single stage with twenty-four smaller blades, each addressing the same initial working fluid flow conditions. Due to the larger radius R, the rotor blades 115 are three times the size as the rotor blades of the turbo-expander 10. In relative and simplistic terms, the performance of the device may be viewed as W=F*B*S*N*P wherein F is the work flow, B is the number of blades, S is the relative size of the blade, N is the number of passes and P is the available drive pressure ratio. For a work flow of 100, the apparatus 100 work W=100*4*1*6*½=1200 while the turbo-expander 10 work W=100*24*⅓*1*1=800. In this example, the fluid working apparatus 100 achieves fifty percent more work than the turbo-expander 100 with an equivalent work flow. This is a simplified comparison for illustration purposes only. It is recognized that a broad range of complex equations are used to calculate turbine performance. It is known generally that for low pressure, slower speed flows it is desirable to have a larger blade area to interface with the working fluid. The exemplary apparatus 100 provides this feature.



FIGS. 19 and 20 illustrate the respective flow paths 102, and associated time of expansion, as the working fluid flows through the axial turbo-expander 10 and an exemplary fluid working apparatus 100 of the present invention. As shown in FIG. 19, the flow 102 through the turbo-expander 10 is a single axial flow across the single stage. As illustrated in FIG. 20, this flow provides a minimal amount of time for expansion of fluid passing through the turbo-expander 10. Even in a five stage axial turbo-expander 10′, the time for expansion is relatively minimal. In the illustrated fluid working apparatus 100, the flow travels through four return zones 140a-140d such that five working stages 1-5 are utilized, as illustrated in FIG. 19. With the multiple passes of the working fluid along with the time of travel through the return zones 140a-140d, the time for expansion through the apparatus 100 is substantially greater than even the five stage turbo-expander 10′. The fluid working apparatus 100 of the present invention provides a simpler construction, which is easier and less costly to produce, which achieves higher performance.



FIGS. 21A, 21B, 23, 25A and 25B provide tables illustrating exemplary data of a fluid working apparatus 100 and axial turbo-expanders 10, 10′ based on computer models. The five stage configurations are based on common inlet nozzle, with pressure drop of 20 psi from a starting Temp of 235 F and pressure of 65 psi. All configurations use a mixed working fluid comprising 6 lbm/s flow of methanol and 5 lbm/s nitrogen. For the five stage configurations, the average flow velocity is equilibrated at 351 MPH. All comparisons start with an initial enthalpy energy of 4,053 kW.



FIGS. 21A and 21B illustrate the projected data of a single rotor fluid working apparatus 100 with five working zones defined about its circumference to achieve five stages. With a blade diameter of 14.2″ ID and 19″ OD and an inlet flow velocity of 349 mph, the apparatus 100 achieves a power output=343 kW.


In comparison, FIGS. 23 and 25A and 25B illustrate projected data for a single stage axial turbo-expander 10 similar to that illustrated in FIG. 22 and a five stage axial flow expander 10′ similar to that illustrated in FIG. 24, respectively. These comparisons are relative performance profiles without regard to design specifics, e.g. drag losses in the flow channels or the like. The turbo-expander 10 has a blade diameter of 5.0″ ID×6.6″ OD, and turbo expander 10′ has a blade diameter of 6.6″ ID×8″ OD (growing progressively to 10″OD in the last stage). As shown in FIG. 23, with an inlet flow velocity=811 mph, the turbo-expander 10 achieves a power output=243 kW. As shown in FIGS. 25A and 25B, with an average flow velocity=351 mph, the five stage turbo-expander 10′ achieves a power output=287 kW.



FIG. 26 summarizes the exemplary data of FIGS. 21A, 21B, 23, 25A and 25B. As shown, the single rotor fluid working apparatus 100 provides a 23% increase over the five stage turbo-expander 10′ and an 18% increase over the single stage turbo-expander 10. It is noted that the constructs of the present invention provide the opportunity to convert power from lower pressure flows. This is achieved do to the larger blade area and slower rotational speeds for an equivalent volume of flow.


Referring to FIGS. 27 and 28, additional exemplary working assemblies 110′ and 110″ are illustrated. In the embodiment of FIG. 27, the working assembly 110′ has a shaft 112 with three rotors 114 and two stators 116. The working assemblies of the present invention may have any desired number of rotors and stators. In the illustrated embodiment, the flow path 102 is such that the flow 102 is returned three times and thereby passes across all three rotors 114 four times between the inlet 132 and outlet 133. As such, the working assembly 110′ provides twelve working stages.


The working assembly 110″ of FIG. 28 illustrates a multi-part shaft 112′. The inner shaft 113A is associated with the rotor 114A and the outer shaft 113B is associated with the rotor 114B. In the illustrated embodiment, the rotors 114A and 114B have opposite configurations such that the fluid flow causes the inner shaft 113A to rotate counter-clockwise while the outer shaft 113B rotates clockwise. Alternatively, the shafts 113A and 113B may rotate in the same direction and may be selectively coupled or decoupled to one another. Any desired shaft configuration is within the scope of the present invention.



FIG. 29 illustrates multiple fluid working apparatuses 100A-110C connected to one another in series. Fluid passes into the first apparatus 100A via inlet 132A, loops through multiple stages and exits through outlet 133A. Fluid from outlet 133A then travels into the second apparatus 100B via inlet 132B, loops through multiple stages and exits through outlet 133B. Fluid from outlet 133B then travels into the third apparatus 100C via inlet 132C, loops through multiple stages and exits through outlet 133C. Fluid couplings, not shown, are provided between each outlet and the next inlet The apparatuses 100A-100C may have different configurations to facilitate different conditions, for example, high pressure fluid entering inlet 132A while progressively lower pressure fluid enters inlets 132B and 132C. The apparatuses 100A-100C may share a common shaft 112 as illustrated or may have separate shafts. In all other aspects, the fluid working apparatuses 100A-100C operate in accordance with the various embodiments described herein.


Referring to FIGS. 30 and 31, a generator or motor device 200 incorporating a fluid working device 100 in accordance with the invention is illustrated. The fluid working device 100 is substantially as described above and includes a working assembly 110 positioned within a housing 130. The generator device 200 further includes a generating or motor unit 210 supported by the housing 130. The unit 210 includes a housing 212 which is positioned within the center of the tubular outer housing member 134. Preferably the housing 112 encapsulates one end of the shaft 112 and is fluidly sealed relative to the housing 130. The opposite end of the shaft 112 may be sealed relative to the housing 130 such that the generator device 200 is a sealed unit, similar to a refrigeration compressor.


An embodiment of such a device configuration may include one or more fixed magnets 214 supported within the housing 212 adjacent to one of the rotors 114. The magnets 214 are aligned with corresponding magnets 224 mounted on the rotor 114 such that the magnets 224 rotate therewith. The configuration would allow the outer housing 134 and the housing 212 to provide a complete enclosure isolated from the generator or motor unit. In a generator configuration, conversion unit 216 within the housing 212 converts the mechanical energy generated by the rotating rotors 114 to electrical energy in a known manner. The electrical energy is then transferred by an electrical outlet 218, for example, an electrical wire, to a desired circuit. Inversely, if used as a motor driven compressor or the like, electrical energy is received in the conversion unit and it is then converted and the interaction between the magnets 214 and 224 cause the rotor 114 to rotate.


Various modifications may be made to the components of the fluid working apparatus 100 to achieve a desire output based on variable conditions. The performance of the overall apparatus 100 is dictated by many artifacts of the fluids being used to drive the device including but not limited to: the inlet fluid pressure, exit fluid pressure, the density, the velocity of the flow, the overall configuration of the housing that defines the loops, and the physical properties that make up the working fluid. These properties can include temperature, and available heat that affect the density and therefore volume of the flow. In general terms, the ability for the apparatus to transmit the energy within the working fluid to the rotors relies on a plurality of relationships between the housing, inlet guide vanes, the blades, the stators if used and the exit guide vanes. In addition, the working fluid expansion chambers, created by the housing, provides a better opportunity for the thermal energy in the working fluid to be converted to kinetic energy in the flow. Specifically, the longer distance from outlet to inlet of a stage enables a longer acceleration period. Slower acceleration rates to achieve the equivalent fluid velocity at the next inlet requires less energy to produce, and this can be equated to requiring less drive pressure between the stages.


For the same inlet area and working fluid flows it is possible to reconfigure the physical architecture of the housing to provide unique (different) shaft output properties. Referring to FIGS. 32 and 33, two exemplary housings 130′, 130″ are illustrated. Both housings 130′, 130″ include an outer housing member 134′, 134″ with an inner housing member 138′, 138″ positioned within the tubular portion 135′, 135″ thereof. In each case, a working flow chamber 141 having a height h is defined between the radially inward portions of the housing members 134′, 134″ and 138′, 138″ and a return chamber 140 having a height H is defined between the radially outward portions of the housing members 134′, 134″ and 138′, 138″. In these illustrated embodiments, the heights h and H are substantially the same. The difference between the housings 130′ and 130″ is that housing 130′ has a smaller radius R′ than the radius R″ of the housing 130″, each with correspondingly sized rotors 114′, 114″. Assuming a constant (or the same) working fluid flow rate for both, with the same gross inlet area 132′ and 132″, an apparatus with the housing 130′ with the smaller radius R′ would operate at a higher rotational speed with less torque. Conversely, an apparatus with the housing 130″ with the larger radius R″ would operate at a slower turbine rotational velocity, providing a higher torque to the shaft.


Referring to FIGS. 34-39, other exemplary housing configurations are illustrated. The embodiment of FIGS. 34 and 35 are similar to that of FIG. 32 and show the housing 130′ having a working flow chamber 141 having a height h that is substantially the same as the maximum height H of the return chamber 140. This configuration of FIG. 34 provides a constant or near constant cross sectional flow area.


In the housing 130′″ of FIGS. 36 and 37, the outer housing member 134′″ and the inner housing member 138′″ are configured such that the working flow chamber 141′″ has a height h that is substantially smaller than the maximum height H of the return chamber 140′″. As a result, the return chamber 140′″ defines a diffuser portion 127 and a nozzle portion 129. The diffuser portion 127 will slow the flow and allow the fluid a longer period to exchange thermal energy to motive energy (expansion) which is desirable for creating drive motive force later in the nozzle of the next pass through the blades 115. This is accomplished by enabling the flow a brief period of expansion (and therefore cooling) which results in an increased volumetric flow rate at a lower pressure. The nozzle portion 129 affords the opportunity to speed the flow up. Speed in the flow is desirable for transferring the fluid motive force into motion of the blades by means of transferring inertia from the flow to rotors.



FIG. 38 illustrates a housing 130″″ similar to the housing 130′″ in that the outer housing member 134″′ and the inner housing member 138″″ are configured such that the working flow chamber 141″′ has a height h that is substantially smaller than the maximum height H of the return chamber 140″″. In the present embodiment, the outer surface 139 of the inner housing member 138″″ includes a recessed portion 137 such that a chamber 135 is defined adjacent the diffuser portion 127. The chamber 135 may be configured to facilitate greater mixing of the working fluid as it travels through the return chamber 140″″. Other profiles of the chambers or configurations of the housing members may be utilized to create turbulence or swirling that may be beneficial in certain applications. It is important to note that both the outer housing profile and the inner housing profile can be changed to create the desired working flow chamber. Further they do not need to be the same profile from zone to zone. It is therefore possible to have the chamber of the first zone look similar to FIG. 34 and the chamber of the last zone could look like FIG. 36.



FIG. 39 illustrates a housing 130v similar to the housing 130′″ in that the outer housing member 134v and the inner housing member 138v are configured such that the working flow chamber 141v has a height h that is substantially smaller than the maximum height H of the return chamber 140v. In the present embodiment, the maximum height H, and thereby the diffuser portion 127, is radially offset such that the flow experiences a more rapid expansion followed by a longer nozzle 129. The housing configurations are not limited to those illustrated and it is understood that various other housing configurations may be utilized to control flow through the housing.



FIG. 40 illustrates a housing 130vi similar to the housing 130′″ in that the outer housing member 134vi and the inner housing member 138vi are configured such that the maximum height H of the return chamber 140vi is greater than the height h1, h2 of the working flow chamber 141vi. In the present embodiment, the height h1 of the leading portion of the working flow chamber 141vi is smaller than the height h2 of the trailing portion of the working flow chamber 141vi. Such configuration of the housing 130vi facilitates a structure wherein the blades have a varying configuration with a smaller leading edge 115a and a larger trailing edge 115b. The mass flow rate through a turbine may be assumed constant and as the velocity of the flow changes, as it passes over the blade, the flow cross sectional area is allowed to change as well. In this exemplary embodiment, with the change in blade width and flow cross sectional area going from smaller to larger, the flow velocity will slow down.



FIG. 41 illustrates a housing 130vii is similar to the housing 130vi in that the outer housing member 134vii and the inner housing member 138vii are configured such that the maximum height H of the return chamber 140vii is greater than the height h1, h2 of the working flow chamber 141vii. In the present embodiment, the height h1 of the leading portion of the working flow chamber 141vii is larger than the height h2 of the trailing portion of the working flow chamber 141vii. Such configuration of the housing 130vii facilitates a structure wherein the blades have a varying configuration with a larger leading edge 115a and a smaller trailing edge 115b. In this exemplary embodiment, with the change in blade width and flow cross sectional area going from larger to smaller, the flow velocity will speed up.


The housing configurations are not limited to those illustrated and it is understood that various other housing configurations may be utilized to control flow through the housing.


Referring to FIGS. 42-45, an alternative method of controlling flow through the fluid working apparatus 100vi. In the present embodiment, the circumferential spacing of the boundary vanes 142a-142e is varied such that the circumferential width of the working zones 1-5 correspondingly varies. Referring to FIG. 42, the vanes 142a and 142b are spaced such that the working zone 1 has a circumferential width encompassing nine rotor blades 115. The vanes 142b and 142c are spaced such that the working zone 2 has a circumferential width encompassing eleven rotor blades 115. The vanes 142c and 142d are spaced such that the working zone 3 has a circumferential width encompassing sixteen rotor blades 115. The vanes 142d and 142e are spaced such that the working zone 4 has a circumferential width encompassing twenty rotor blades 115. The vanes 142e and 142a are spaced such that the working zone 5 has a circumferential width encompassing twenty-five rotor blades 115. FIG. 45 illustrates how the volume of the flow 102 increases as it passes through the stages of the present embodiment. As shown in FIGS. 42 and 43, the housing inlet 132vi has a width w corresponding to the width of the first working zone 1 and the housing outlet 133vi has a width W corresponding to the width of the last working zone 5, in this case growing in width from zone to zone (or chamber to chamber).


While the widths in the current embodiment progressively increase, the invention is not limited to such and the position of the vanes 142 may be varied in any desired manner. For example, the width of the zones may increase every other zone, with the width of the intermediate zone remaining constant. FIGS. 46 and 47 show a fluid working apparatus 100vii wherein the circumferential width decreases from the first working zone 1 to the last working zone 5. Such a configuration may be utilized when the fluid working apparatus 100vii is utilized as a compressor. Other combinations of increasing or decreasing widths may be utilized to achieve desired flow patterns. Furthermore, it is noted that in certain applications, the working fluid may be a non-expansive or compressive working fluid and the flow chambers will have a constant or near constant cross section.


Referring to FIGS. 48 and 49, another manner of controlling the flow through the apparatus 100 is to configure the helical nature of the boundary vanes 142 such that the return flow is either pro-grade or retro-grade. FIG. 48 shows a pro-grade return flow wherein the inlet of the next working zone is circumferentially offset from the outlet of the previous working zone in the same direction as the rotors 114 rotate. FIG. 49 shows a retro-grade return flow wherein the inlet of the next working zone is circumferentially offset from the outlet of the previous working zone in a direction opposite the direction the rotors 114 rotate. In some applications, pro-grade architecture is preferred as it may offer a shorter flow path, however, in some applications the retro-grade configuration may advantageously provide a longer flow path between looping stages where the fluids interact with the rotor blades.


The flow may be further controlled or optimized by altering the configuration of the inlet and outlet vanes 118, 120. FIGS. 50A and 50B illustrate an exemplary embodiment wherein the outlet vanes 120a-120n for a given working zone are circumferentially offset from the inlet vanes 118a-118n of that working zone. More specifically, the inlet guide vanes 118 for a given zone extend a width 160 between the first inlet vane 118a of the zone and the last inlet vane 118n of the zone (the intermediate vanes are not shown). Similarly, the outlet guide vanes 120 for a that zone extend a width 162 between the first outlet vane 120a of the zone and the last outlet vane 120n of the zone (the intermediate vanes are not shown). The widths 160 and 162 may be equal as illustrated in FIGS. 50A and 50B or may be different as illustrated in FIGS. 51 and 52. Furthermore, the widths 160 or 162 between zones 1-5 may be different as illustrated in FIG. 52. As shown in FIGS. 51 and 52, the different spacing may be addressed by closing or sealing portions 166 defined between the inlet vane zones 1-5. The closing or sealing portions 166 may be defined by portions of the housing 130 or may be separate components.


The first outlet vane 120a is circumferentially offset a distance 164a from the first inlet vane 118a and the last outlet vane 120n is circumferentially offset a distance 164n from the last inlet vane 118n. In the embodiment of FIGS. 50A and 50B, the distances 164a and 164n are equal, however, FIG. 51 illustrates that the distances 164a and 164n may be different. Furthermore, as shown in FIG. 52, the difference between distances 164a and 164n may vary between working zones 1-5.



FIG. 53 illustrates an embodiment wherein the inlet and outlet vanes 118 and 120 are not circumferentially offset, but instead are generally coaxial. For each working zone 1-5, the distance 160 between the first inlet vane 118a and the last inlet vane 118n is less than the distance 162 between the first outlet vane 118a and the last outlet vane 118n. In this way, the outlet vanes 120a-120n circumferentially overlap the inlet vanes 118a-118n in both circumferential directions and a diffuser configuration is defined from the inlet vanes 118 to the outlet vanes 120. Again, a closing or sealing portion 166 may be provided between the inlet vanes 118 of adjacent working zones 1-5. As well, the above overlap approach may be accomplished while incorporating some offset.


It is noted that flow through adjacent working zones 1-5 will be at different flow rates. The difference in fluid speed between adjacent zones will typically self seal along the pressure lines, similar to an air shield or air knife. That is, the high velocity flow of fluid prevents or minimizes fluid in one zone from transitioning to another. Under ideal operating conditions, the fluid flow will not spill over from one zone to another zone. However, the apparatus 100 typically remains operational even if the flow spills over between zones.



FIG. 54 illustrates the angular displacement of flow across five stages or zones of the apparatus 100. The figure shows the cumulative effects of the flow of the working fluid as the blade speed becomes disproportionate to the design speed (flow channel prescription). The solid center line shows the nominal flow of the working fluid as it would be contained dominantly within the flow channels when the blade speed is best matched to the housing configuration for a particular application of working fluid flow conditions. The upper dashed line represents the shifting position of the flow as the blade speed becomes faster than the design speed. This might occur when load is removed from the shaft, and the rotors would therefore likely speed up, until the working fluid flows were cut back. As noted, if the flow goes above a boundary level, the flow may spill over into the forward zone. The spilled over flow may then simply provide work within the next zone until the fluid flow is corrected and/or re-balanced.


Likewise, the lower dashed line represents the condition where the rotor speed is slower than the proposed housing configuration nominal. This condition would likely occur when load (or additional load) is applied to the shaft, and the load increase causes slowing of the working assembly, until such a point when the operating parameters are adjusted to bring operation back to nominal. If the flow goes below a boundary level, the flow may spill over and reenter the same stage. Again, the design is tolerant of this condition as the spillover will be useful as it has the potential to perform work in the next successive pass until the fluid flow is corrected.


Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and not be interpreted in an idealized or overly formal sense unless expressly so defined herein.


All of the apparatus, methods and algorithms disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure. While the invention has been described in terms of preferred embodiments, it will be apparent to those of skill in the art that variations may be applied to the apparatus, methods and sequence of steps of the method without departing from the concept, spirit and scope of the invention. More specifically, it will be apparent that certain components may be added to, combined with, or substituted for the components described herein while the same or similar results would be achieved. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope and content of the invention as defined.

Claims
  • 1. A fluid working apparatus, comprising: a housing structure with a housing inlet and a housing outlet;a working assembly having an inlet side and an opposite outlet side with at least one rotor having a plurality of blades directly coupled to a hub so as to be positioned between the inlet and outlet sides, the working assembly positioned in the housing such that the rotor is rotatably supported therein;a circumferential inlet area defined between the housing structure and the inlet side of the working assembly;a circumferential outlet area defined between the housing structure and the outlet side of the working assembly; andat least one single return chamber configured to return fluid flow from the outlet side of the working assembly to the inlet side of the working assembly,whereby all of a working fluid flows through (a) the housing inlet in a direction towards a first circumferential portion of the circumferential inlet area,(b) the first circumferential portion of the circumferential inlet area in a direction towards the outlet side of the working assembly while workingly engaging a first subset of the plurality of rotor blades,(c) a first circumferential portion of the circumferential outlet area,(d) the single return chamber in a direction towards a second circumferential portion of the circumferential inlet area,(e) the second circumferential portion of the circumferential inlet area in a direction towards the outlet side of the working assembly while exclusively workingly engaging a second subset of the plurality of rotor blades which is different than the first subset of the plurality of rotor blades,(f) a second circumferential portion of the circumferential outlet area, and(g) the housing outlet.
  • 2. The fluid working apparatus according to claim 1, wherein the housing structure includes an inner housing member and an outer housing member, andthe at least one return assembly is defined by boundary vanes extending radially between the inner and outer housing members, with adjacent pairs of boundary vanes defining each circumferential portion of the circumferential inlet area and each circumferential portion of the circumferential outlet area.
  • 3. The fluid working apparatus according to claim 1, wherein a plurality of inlet vanes are positioned in the circumferential inlet area,a plurality of outlet vanes are positioned in the circumferential outlet area, andthe configurations of the inlet vanes, rotor blades and outlet vanes are designed as a function of the working fluid properties, flow velocity of the working fluid and the rotation speed of the at least one rotor as the working fluid travels from the housing inlet to the housing outlet.
  • 4. The fluid working apparatus according to claim 1, wherein the working assembly further includes at least one stator having a plurality of blades positioned adjacent to the at least one rotor, andthe configuration of the stator blades is designed as a function of the working fluid flow to optimize velocity of the working fluid relative to the rotation speed of the at least one rotor as the working fluid travels from the housing inlet to the housing outlet.
  • 5. The fluid working apparatus according to claim 1, wherein a given circumferential portion of the circumferential inlet area, the first or second subset of rotor blades associated therewith and the circumferential portion of the circumferential outlet area associated therewith for a given pass of working fluid is defined as a working zone.
  • 6. The fluid working apparatus according to claim 5, wherein the circumferential portion of the circumferential inlet area of a given working zone is generally coaxial with the circumferential portion of the circumferential outlet area of that working zone.
  • 7. The fluid working apparatus according to claim 5, wherein the circumferential portion of the circumferential inlet area of a given working zone is circumferentially offset from the circumferential portion of the circumferential outlet area of that working zone.
  • 8. The fluid working apparatus according to claim 5, wherein the circumferential width of the circumferential portion of the circumferential inlet area of a given working zone is equal to the circumferential width of the circumferential portion of the circumferential outlet area of that working zone.
  • 9. The fluid working apparatus according to claim 5, wherein the circumferential width of the circumferential portion of the circumferential inlet area of a given working zone is less than the circumferential width of the circumferential portion of the circumferential outlet area of that working zone.
  • 10. The fluid working apparatus according to claim 9, wherein vanes define each of the circumferential portions of the circumferential inlet area and a sealing member is provided between the vanes of adjacent working zones.
  • 11. The fluid working apparatus according to claim 5, wherein the circumferential width of the circumferential portion of the circumferential inlet area of a given working zone is greater than the circumferential width of the circumferential portion of the circumferential outlet area of that working zone.
  • 12. The fluid working apparatus according to claim 11, wherein vanes define each of the circumferential portions of the circumferential outlet area and a sealing member is provided between the vanes of adjacent working zones.
  • 13. The fluid working apparatus according to claim 5, further comprising 1 to N working zones, wherein N is an integer equal to 2 or more, and the circumferential width of the circumferential portion of the circumferential inlet area in each working zone is equal.
  • 14. The fluid working apparatus according to claim 5, further comprising 1 to N working zones, wherein N is an integer equal to 2 or more, and the circumferential width of the circumferential portion of the circumferential inlet area in at least one of the working zones is different than the circumferential width of the circumferential portion of the circumferential inlet area in at least one other of the working zones.
  • 15. The fluid working apparatus according to claim 14, wherein the circumferential width of the circumferential portion of the circumferential inlet area progressively increases from the first working zone to the Nth working zone.
  • 16. The fluid working apparatus according to claim 15, wherein vanes define each of the circumferential portions of the circumferential inlet area,a sealing member is provided between the vanes of adjacent working zones, andthe circumferential width of the sealing member progressively decreases from the first working zone to the Nth working zone.
  • 17. The fluid working apparatus according to claim 5, further comprising 1 to N working zones, wherein N is an integer equal to 2 or more, and the circumferential width of the circumferential portion of the circumferential outlet area in each working zone is equal.
  • 18. The fluid working apparatus according to claim 5, further comprising 1 to N working zones, wherein N is an integer equal to 2 or more, and the circumferential width of the circumferential portion of the circumferential outlet area in at least one of the working zones is different than the circumferential width of the circumferential portion of the circumferential outlet area in at least one other of the working zones.
  • 19. The fluid working apparatus according to claim 5, wherein the flow velocity changes from one working zone to the next.
  • 20. The fluid working apparatus according to claim 19, wherein the difference in flow velocity between adjacent working zones creates a substantially self-sealing pressure line between adjacent working zones.
  • 21. The fluid working apparatus according to claim 5, wherein when the at least one rotor rotates faster than a speed for which it was designed, working fluid spills over into a forward working zone.
  • 22. The fluid working apparatus according to claim 5, wherein when the at least one rotor rotates slower than a speed for which it was designed, working fluid spills back into the inlet of the same working zone.
  • 23. The fluid working apparatus according to claim 1, wherein the housing structures has more than one housing inlet and each housing inlet is in fluid communication with a different circumferential portion of the circumferential inlet area.
  • 24. The fluid working apparatus according to claim 23, wherein the housing structure includes a number of housing outlets equal in number to the number of housing inlets with each housing outlet fluidly associated with a respective housing inlet.
  • 25. A method of working a fluid comprising the steps of: passing all of the fluid through a first circumferential portion of a circumferential inlet area in a direction towards an outlet side of a working assembly while workingly engaging a first subset of a plurality of rotor blades, the plurality of rotor blades directly coupled to a hub so as to be positioned between an inlet side and an outlet side of the working assembly;passing all of the fluid through a first circumferential portion of a circumferential outlet area;passing all of the fluid through a single return assembly in a direction towards a second circumferential portion of the circumferential inlet area;passing all of the fluid through the second circumferential portion of the circumferential inlet area in a direction towards the outlet side of the working assembly while exclusively workingly engaging a second subset of the plurality of rotor blades which is different than the first subset of the plurality of rotor blades; andpassing al of the fluid through a second circumferential portion of the circumferential outlet area.
  • 26. The method according to claim 25, wherein adjacent pairs of boundary vanes define each circumferential portion of the circumferential inlet area and each circumferential portion of the circumferential outlet area, andconfigurations of the vanes and rotor blades are designed as a function of the flow velocity of the working fluid and the rotation speed of the at least one rotor.
US Referenced Citations (73)
Number Name Date Kind
945742 Boeckel et al. Jan 1910 A
3007306 Martin et al. Nov 1961 A
3070348 Stewart Dec 1962 A
3070349 Warner Dec 1962 A
3636706 Minto Jan 1972 A
3704570 Gardenier Dec 1972 A
3834133 Bow Sep 1974 A
3935710 Dickinson Feb 1976 A
3973865 Mugele Aug 1976 A
4009587 Robinson, Jr. et al. Mar 1977 A
4027993 Wolff Jun 1977 A
4106294 Czaja Aug 1978 A
4122680 Isshiki et al. Oct 1978 A
4196594 Abom Apr 1980 A
4252543 Giles Feb 1981 A
4258551 Ritzi Mar 1981 A
4283211 Ehrlich et al. Aug 1981 A
4287138 Buckner Sep 1981 A
4291538 Husain et al. Sep 1981 A
4366675 Nishioka Jan 1983 A
4372124 Newton et al. Feb 1983 A
4372759 Sederquist et al. Feb 1983 A
4448030 Moss May 1984 A
4484446 Goldsberry Nov 1984 A
4548043 Kalina Oct 1985 A
4569207 James Feb 1986 A
4660511 Anderson Apr 1987 A
4905481 Scaringe et al. Mar 1990 A
4926643 Johnston May 1990 A
4935221 Bronfenbrenner et al. Jun 1990 A
5137681 Dougherty Aug 1992 A
5269148 Ludwig Dec 1993 A
5444981 Kakovitch Aug 1995 A
5476525 Bekedam Dec 1995 A
5577881 Hablanian Nov 1996 A
5622055 Mei et al. Apr 1997 A
5644911 Huber Jul 1997 A
5727393 Mahmoudzadeh Mar 1998 A
5832728 Buck Nov 1998 A
6032467 Oshita et al. Mar 2000 A
6141955 Akiyama et al. Nov 2000 A
6145295 Donovan et al. Nov 2000 A
6250105 Kimble Jun 2001 B1
6413484 Koch Jul 2002 B1
6490865 Pauly Dec 2002 B2
6769256 Kalina Aug 2004 B1
6884021 Saito Apr 2005 B2
7010920 Saranchuk et al. Mar 2006 B2
7096665 Stinger et al. Aug 2006 B2
7600961 Abdallah Oct 2009 B2
7806649 Ishikawa Oct 2010 B2
7935180 Weber May 2011 B2
8176724 Smith May 2012 B2
8262339 Chien Sep 2012 B2
8631658 Macadam et al. Jan 2014 B2
8726635 Dale May 2014 B1
20020162330 Shimizu et al. Nov 2002 A1
20040123609 Gottlieb Jul 2004 A1
20040182082 Saranchuk et al. Sep 2004 A1
20050132713 Neary Jun 2005 A1
20090241860 Monacelli et al. Oct 2009 A1
20100043433 Kelly Feb 2010 A1
20100051441 Vane et al. Mar 2010 A1
20100055010 Froderberg et al. Mar 2010 A1
20100071368 Kaplan et al. Mar 2010 A1
20100077752 Papile Apr 2010 A1
20100242476 Ast et al. Sep 2010 A1
20110000205 Hauer et al. Jan 2011 A1
20110209474 Leibowitz Sep 2011 A1
20110239700 Hasse et al. Oct 2011 A1
20120139470 Huff et al. Jun 2012 A1
20120151950 Jagusztyn Jun 2012 A1
20120255304 Li et al. Oct 2012 A1
Foreign Referenced Citations (13)
Number Date Country
3327838 Dec 1983 DE
198 04 845 Aug 1999 DE
10227709 Feb 2003 DE
2000282810 Oct 2000 JP
2001-108201 Apr 2001 JP
101045802 Jul 2011 KR
02073007 Sep 2002 WO
2004033859 Apr 2004 WO
2006028444 Mar 2006 WO
2006105815 Oct 2006 WO
2012076902 Jun 2012 WO
2012151055 Nov 2012 WO
2013043999 Mar 2013 WO
Non-Patent Literature Citations (19)
Entry
Information about Related Patents and Patent Applications, see section 6 of the accompanying Information Disclosure Statement Letter, which concerns Related Patents and Patent Applications.
International Preliminary Report on Patenability mailed Apr. 3, 2014, in application Serial No. PCT/US2012/056524 in the name of Harris Corporation.
Reference to U.S. Appl. No. 13/098,603, filed May 2, 2011.
Reference to U.S. Appl. No. 14/138,903, filed Dec. 23, 2013.
Reference to U.S. Appl. No. 13/859,106, filed Apr. 9, 2013.
Reference to U.S. Appl. No. 14/139,094, filed Dec. 23, 2013.
Reference to U.S. Appl. No. 13/859,409, filed Apr. 9, 2013.
Reference to U.S. Appl. No. 13/533,497, filed Jun. 26, 2012.
Reference to U.S. Appl. No. 13/239,674, filed Sep. 22, 2011.
Reference to U.S. Appl. No. 13/477,394, filed May 22, 2012.
Reference to U.S. Appl. No. 13/556,387, filed Jul. 24, 2012.
International Search Report and Written Opinion mailed Nov. 16, 2012; Application No. PCT/US2012/034199 in the name of Harris Corporation.
International Search Report and Written Opinion issued on Oct. 9, 2013 in PCT/US2012/056524 to Harris Corporation (11 pages).
International Search Report and Written Opinion mailed Oct. 10, 2013 for International Patent Appln. No. PCT/US2013/0141506 to Harris Corporation (13 pages).
International Search Report and Written Opinion mailed Oct. 9, 2013 for International Patent Appln. No. PCT/US2013/051857 (11 pages).
International Search Report and Written Opinion mailed Oct. 9, 2013 in International Application No. PCT/US2013/047750 (11 pages).
International Preliminary Report on Patentability mailed Dec. 4, 2014 for International Patent Appln. No. PCT/US2013/0141506 to Harris Corporation.
International Preliminary Report on Patentability mailed Jan. 8, 2015 for International Patent Appln. No. PCT/US2013/047750 to Harris Corporation.
International Preliminary Report on Patentability mailed Feb. 5, 2015 for International Patent Appln. No. PCT/US2013/051857 to Harris Corporation.
Related Publications (1)
Number Date Country
20140301821 A1 Oct 2014 US