The present invention relates generally to packaging of canned or bottled beverages. More specifically, the present invention relates to applying resilient bands to couple together two cartons or “twelve-packs” into a preferred “case” or 24-can or bottle unit.
Beverage wholesalers prefer two 12-count can or bottle packs (commonly called “twelve-packs”) joined together into a 24-container unit (commonly called a “case”). Wholesaler delivery and inventory systems are created to handle twelve-packs as a dual unit. An earlier effort by breweries to produce and deliver loose twelve-packs was strongly resisted by the wholesalers. The breweries themselves have added difficulty in palletizing the loose twelve-packs due to higher speeds to increase throughput. To solve this problem, the twelve-packs are often arranged in pairs on a corrugated paper or cardboard tray.
Alternatively, beverage suppliers either run twelve-packs loose, or join them by using adhesive tape or hot-melt adhesive. Adhesive tape was commonly used early during the advent of the “fridge” style soft drink packs (2×6 can arrangement). Perforations built in to the tape were intended to allow delivery drivers to break-apart the packs for retail. If the perforations worked, the tape remained on the packaging, and if the perforations did not, there was fiber tearing on the packaging. In either case, the result was undesirable marred graphics on the packaging.
A newer alternative to the above methods is to use a time-sensitive hot-melt adhesive to join two twelve-packs. Liberal amounts of hot glue would be applied between the two joined packs to hold the packs through the packaging and delivery processes. Over time, this glue would crystallize, allowing the packs to be broken apart without creating fiber tear. One drawback with this method is that the glue remains on the packs, creating unsightly blemishes.
In addition, it is common in the packaging industry to wrap polypropylene straps around certain items, such as shipping boxes, goods that have been placed on pallets, and hay bales. For example, a pallet may be stacked with goods then the goods and the pallet are wrapped with straps such that the ends of the straps overlap. The ends are then joined to each other, and the tension created in the strap ensures that the items remain on the pallet for shipping.
It is a general object of the present disclosure to provide an improved method of packaging for beverage containers. This and other objects of the present disclosure are achieved by providing a package for beverages employing a pair of conventional 12-can or bottle packages, the package comprising: a pair of conventional 12-container packages abutted along their edges. At least one band of resilient polymeric material in the form of a complete loop is stretched and released over the two 12-container packages to secure them together.
According to an exemplary embodiment of the disclosure, a pair of resilient bands secures the two 12-container packages together.
According to an exemplary embodiment of the disclosure, each 12-container package has a long edge and a short edge and the long edges of the 12-container packages are abutted against one another.
In another aspect of the disclosure, a method of packaging for beverages in aluminum can or glass bottle containers employs a pair of conventional 12-container packages, and comprises the steps of: packaging the containers in the conventional 12-containers packages in a cartoner machine; orienting the 12-container packages relative to one another; abutting a pair of the oriented 12-container packages against one another; stretching and releasing to apply at least one resilient band around the pair of abutted 12-container packages to secure the 12-container packages together in a 24-container unit.
Other objects, features, and advantages of the invention will become apparent with reference to the detailed description, which follows.
For a more complete understanding of the present invention and the advantages thereof, reference is now made to the following brief description, taken in connection with the accompanying drawings and detailed description, wherein like reference numerals represent like parts, in which:
Reference is made to
The cartons 12 may each be packed with twelve individual beverage containers, for example cans of beer. The carton 12 may be rectangular in cross section with one side being the length of about three twelve-ounce cans and the adjacent side being about the length of four twelve-ounce cans. In certain embodiments, the longer four-can length edge surfaces of the two cartons may abut each other to form the abutted packs 16. In other embodiments, the shorter three-can length edge surfaces abut each other to form the abutted packs 16. In addition, more than two abutted packs may have the resilient bands applied according to the teaching of the present disclosure.
The resilient bands are fed to the banding machine 10 from rolls 18 of the resilient bands. In the embodiment shown in
Each resilient band 22 is stretched to elastically increase its length such that it can be placed over the abutted packs 16. It should be noted that a resilient band 22 in a relaxed state does not have sufficient length/circumference to fit over the abutted packs 16. Thus, stretching a resilient band 22 and holding it in a stretched state, then releasing the band 22 causes the resilient band 22 to apply a force to urge the abutted packs 16 together and is sufficient to couple the packs, particularly when a band 22 is applied to each side of the abutted packs 16, as shown in
The conveyor 14 and drums 30 move continuously such that the resilient bands 22 may be stretched over the abutted packs 16 and released without stopping the motion of the conveyor 14 or the abutted packs 16. The motion of the jaws 32 corresponds to the motion of the conveyor 14 to allow the jaws 32 to apply the resilient bands 22 without having to stop the abutted packs 16. In certain embodiments, the banding machine 10 applies resilient bands 22 to twelve-packs that enter the banding machine 10 at approximately 200 twelve-packs per minute.
After the jaws 32 release the resilient band 22, the conveyor 14 moves the banded pack 34 in position where the flashing 24 may be cut by a cutter 36. The cutter 36 is a wheel style cutter. In certain embodiments, the individual bands 22 may be separated from the rest of the roll 18 before being placed on the abutted packs 16. After the flashing 24 is cut, the conveyor 14 continues to move the banded packs 34 down the line for further processing. It should be noted that further processing will not include placing the banded packs 34 into a corrugated container, as the resilient bands 22 serve the function of joining the two twelve-packs for palletizing and shipping purposes.
As illustrated in
In the embodiment illustrated in
The material of the sheet of resilient bands 20 is any suitable polymeric material. For example, the resilient bands 22 may be formed from any suitable resilient polymeric material, such as a thermoplastic polymer. In a preferred embodiment, the resilient bands 22 may be formed of low density polyethylene. In addition, the polymeric material of the resilient bands 22 may be recyclable. In certain embodiments, the resilient bands 22 are approximately ½ inch wide, but in other embodiments, the resilient bands 22 may be narrower or wider. For example, the resilient bands 22 may range between ⅜ inch and two inches in width. Each resilient band may be slightly shorter than the perimeter of a pair of 12-packs abutted at their respective longer ends, which is approximately 41 inches. The resilient band 22 may be stretched to approximately 2 inches or about 5% to allow for placement over the abutted packs 16 by four application fingers. In other embodiments, the resilient bands 22 may be any suitable length to accommodate the size of the cartons 12 abutted at their longer or shorter edges.
From the full speed upstream conveyor 44 throughput is reduced by approximately half as each carton 12 is diverted to one of two reduced speed upstream conveyors 46. Thus, in the embodiment illustrated, the throughput of the reduced speed upstream conveyor 46 is approximately 100 cartons per minute or half of the throughput of the full speed upstream conveyor 44. Each reduced speed upstream conveyor 46 feeds three indexing conveyors 48. Similarly, the throughput of the indexing conveyors 48, and thus the throughput of the individual banding machines 42 is approximately 33 cartons per minute and approximately 16 cases or banded packs 34 per minute.
Similar to the embodiment shown in
The throughput of the banded packs 34 is ramped up by conveying the banded packs 34 to an increased speed downstream conveyor 50. A single increased speed downstream conveyor 50 receives banded packs 34 from three banding machines 42 such that the throughput of the increased speed downstream conveyors 50 is approximately fifty abutted packs or cases 34 per minute. The increased speed downstream conveyors 50 feed the abutted packs 34 to a merging apparatus 52, which directs abutted packs 34 from each conveyor 50 to a full speed downstream conveyor 54, which runs at a throughput of about 100 abutted packs or cases 34 per minute to transport the abutted packs 34 for further processing. Similar to the embodiment of
The throughput values of the two reduced speed upstream conveyors 46 is about half of the throughput of the full speed upstream conveyor 44. Similarly, the throughput of the indexing conveyors 48 is approximately one-third of the reduced speed conveyors 46. The ramping back up of the throughput of the banded packs 34 corresponds to the reduction of throughput upstream. That is, the increased speed downstream conveyors 50 are three times the throughput of the indexing conveyors 48, and the full speed downstream conveyor 54 is twice that of the increased speed conveyors 50. In this manner, the multiple separate banding machine system 42 can be incorporated into existing beverage can production and packaging lines and maintain the throughput achieved when the two twelve-packs are arranged on a cardboard tray, which is about 100 cases (two twelve-packs) per minute. The throughput values provided herein are example throughput values. It should be understood that the multiple separate banding machine system 40 may be run at any desired throughput.
The banded packs will stay together during case conveying, palletizing, shipment, and wholesaler handling—which will include loading onto existing two-wheeled dollies.
The foregoing machinery and banding material are exemplary only. Other materials may necessitate different machinery. Using stretch banding instead of corrugated trays saves 14,500 tons of corrugated material per year. Twelve-packs are delivered joined as 24-count cases as preferred by beverage wholesalers. The method and apparatus using stretch banding eliminates the potential for package marring or damage that occurs with other joining methods.
This application claims priority from U.S. Provisional Patent Application No. 61/678,924, filed on Aug. 2, 2012, and entitled Tray-Less 2-12 Pack with Stretch Wrap or Tape Bands, the disclosure of which is hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
61678924 | Aug 2012 | US |