The invention relates to a discharge system and a method for discharging a plurality of flexible containers from a tubular storage assembly, wherein each of the containers comprises a dispensing spout and wherein the storage assembly comprises a plurality of elongated guiding elements onto which a plurality of rows of dispensing spouts can be carried, wherein the guiding elements are configured to be maintained in a substantially tubular arrangement while the containers extend in a generally helical trajectory in the interior formed by the tubular arrangement.
Flexible containers for keeping fluid or dry products, such as a liquid, granular material, powder or the like, are known in the art. One example of a flexible container is a flexible container, for instance comprising a laminate composed of sheets of plastic or the like. For instance, a container may be made of a front and back wall comprising one or more flexible film, facing one another and joined, for example welded, along their edges. The container has an opening means to access the contents of the container. The opening means may be a spout sealed to the upper part of the flexible container, between the front and back wall. The opening can be sealed off, for instance by a removable screw cap, and may even provide for resealing the container after it has been opened. Examples of such flexible containers are described in US 2009 308023 A1.
Flexible containers may be manufactured at a location that differs from the location at which the containers are filled with products, for instance foodstuff. For instance, the containers may be manufactured at a first location, packed and then transported to a second location where they are unpacked. In order to transport the packed containers, they are loaded into a truck or other transport vehicle and at its destination (i.e. at the second location) the truck needs to be unloaded again. At the second location, for instance the location wherein the foodstuff is available, the unloaded and unpacked containers are filled with content and then transported further.
In order to transport the containers, they are arranged in elongated guiding elements or rails by sliding the spouts of the containers along the rail to form a row of containers. One or more of these rails provided with containers are packed, for instance using liners and carton boxes, and then transported by trucks to the second location. At the second location, the packaging material needs to be removed and the individual rails (guiding elements) each of which has a row of containers, is arranged in a filling machine which is configured to fill the individual containers.
This way of handling the containers has a number of disadvantages. First of all, the guiding elements (rails) with containers need to be packaged using packaging material like liner and cardboard boxes. This material needs to be removed again once the containers have arrived at the second location. This is labour extensive, requires a relatively large amount of packaging material and produces waste in the form of used packaging material. Furthermore, under specific circumstances, for instance when the spouts are to be handled in so-called clean rooms or clean environment, with a low level of environmental pollutants such as dust, airborne microbes, aerosol particles, and chemical vapours. Under these circumstances it is not always allowable to employ specific types of packaging materials, like cardboard or similar materials. Furthermore, the containers arranged in the guiding elements occupy a relatively large volume and therefore the cost for temporarily storing the packaged containers and transporting them are relatively high.
In order to address the above disadvantages a tubular storage assembly has been developed wherein the spouted containers can be stored. The spouted containers are loaded in a number of elongated guiding elements that are maintained in a substantially tubular arrangement. The containers are stored in the interior of this tubular arrangement and the guiding elements protect the containers from external influences.
While the tubular storage assembly thus created enables an easy storage and/or transport of the containers, the loading (charging) of the storage assembly and the unloading (discharging) thereof is still a complex and time consuming operation. The containers need to be loaded into and unloaded from the storage assembly one by one. Furthermore the containers are loaded in such a manner that they extend along a generally helical trajectory inside the interior storage space of the tubular storage assembly. Similarly, unloading the spouted containers from the storage assembly requires removing the containers one by one from the respective guiding elements and when unloading the containers the order in which the containers have been loaded into the guiding elements needs to be followed again.
It is an object to provide a system and method for discharging containers from such tubular storage assembly. It is also an object to provide a system and method for discharging containers in a fast, reliable and/or efficient manner from one or more tubular storage assemblies. It is a further object to provide a discharge system and method for discharging a plurality of flexible containers from a tubular storage assembly that enable a fully automatic unloading of the containers.
According to a first aspect at least one of the objects and/or other objects is at least partially achieved in a discharge system as defined in the preamble, the discharge system comprising:
The tubular storage assembly may take an essentially cylindrical shape, for instance with a constant or varying circular, oval or polygonal cross-section. Furthermore the tubular storage assembly has at least one open end (for instance, a first end and a second end, opposite the first end). At the open end(s) the containers are accessible by the discharge device so that the containers may be removed from the tubular storage assembly. When the gripper unit of the discharge device is arranged to face an open end it may be able to grip the containers one at a time and in the order in which the containers have been positioned (i.e. in a helical pattern, during loading of the assembly) so that the containers may be removed from the tubular storage assembly in a fast and efficient manner.
In some embodiments the storage assembly support is configured to support the tubular storage assembly in a stationary position. The drive may be configured to rotate the gripper unit relative to the (stationary) tubular storage assembly. This has the advantage that the relatively heavy tubular storage assembly (in loaded condition the mass of the storage assembly may be as high as 10 kg or more) does not need to be accelerated or decelerated at the start and end of the discharge operation. However, in other embodiments the gripper unit is stationary and the drive is configured to rotate the tubular storage assembly relative to the gripper unit. In still further embodiments both the tubular storage assembly and the gripper unit are rotated.
In embodiments with a rotatable drive gripper unit the unit may comprise:
The gripper unit, more specifically the gripper thereof, is arranged to face an open end of the tubular storage assembly, from which open end the containers are directly accessible. The gripper may comprise a hook member to guide the spouts of the containers in the slot in the slotted gripper. The hook member may be attached to the gripper in such a manner that it is positioned in a radially inward position relative to the containers in the tubular storage assembly so that the hook member can engage the container at a lower portion of the spout (for instance a portion below its lowest side flange, as will be explained later).
In other embodiments the hook member is positioned to engage the container at an upper portion of the spout. In order to create space at the upper portion of the spout to allow engaging by the hook member (which space is not always available due to the specific shape of the guiding elements from which the containers suspend), an intermediate tubular unit may be placed between the gripper unit and the open end of the tubular storage assembly. The intermediate tubular unit comprises a plurality of further elongated guiding elements onto which a plurality of rows of dispensing spouts can be carried, wherein the further guiding elements are configured to be maintained in a substantially tubular arrangement corresponding to guiding elements of the tubular storage assembly.
The intermediate tubular unit may be shaped so that the gripper unit can grip a dispensing spout at a radially outer position relative to the tubular arrangement of further guiding elements, preferably also at a radially inner position.
The further elongated guiding elements are connected to one or more support rings, herein also referred to as support bridges. These support rings maintain the further guiding element in a tubular arrangement while providing the gripper unit (for instance the hook member) access to the upper portions of the containers carried by the guiding elements of the tubular storage assembly.
In order to help releasing a container from neighboring containers in the tubular storage assembly the slot of the slotted gripper may be shaped so as to control rotation of the dispensing spout and associated container relative to the gripper. For instance, the slot may be shaped so as to force rotation of the dispensing spout and associated container in a first rotational direction to arrange the container from a first position extending essentially perpendicular to the axial direction to a second position extending obliquely relative to the axial direction and subsequently force the dispensing spout and associated container to rotate in a second direction, opposite the first direction. Practice has shown the dispensing spout and associated container has a preference to turn into one direction, while being taken by the gripper unit and releasing from neighboring containers. This turning is not preferred to happen, since it is leading to wrong orientation of the dispensing spout and associated container for further guidance. Since this turning cannot be prohibited, it seems preferable to reverse-turn the dispensing spout and associated container in order to compensate for this. This gives a more reliable, stable process to further guide the dispensing spout and associated container, in a controlled manner.
In specific embodiments the slot of the slotted gripper comprises:
The discharge device further comprise a discharge unit configured to move the containers in the slot of the slotted gripper from the discharge device, for instance to an outfeed lane of similar device for further handling of the containers. In an embodiment the discharge unit comprises a sweeper arm. The sweeper arm is configured to sweep the collected dispensing spouts out of the gripper unit, for instance when the rotation of the gripper unit and/or the tubular storage assembly is temporarily halted.
As mentioned above, the discharge device comprises a drive configured to rotate the gripper unit relative to the tubular storage assembly. The drive may comprise a drive shaft connected to the rotatable gripper support, the drive shaft being arranged essentially coaxially with the tubular storage assembly. In this embodiment it may be advantageous to provide the gripper with an essentially curved shape so as to allow the gripper to be rotated in a trajectory around the drive shaft. This provides a compact construction of the discharge device.
The storage assembly support may comprise one or more positioning arms configured to be moved between an open position wherein the tubular storage assembly can be removed or loaded and a closed position wherein the positioning arms form an essentially annular gripping space. Preferably the diameter of the gripping space is smaller than the outer diameter of the tubular storage assembly, so that an accurate and reliable positioning of the guiding elements of the tubular storage assembly is secured.
In certain embodiments the storage assembly support is configured to support the tubular storage assembly in a substantially upright position. For instance, the tubular storage assembly may be supported to extend in an upright position (vertical position or oblique position) so as to cause the containers to move due to the gravitational force in an axial, downward direction towards the discharge device. No further mechanical means are needed to provide this movement, although the movement of the containers may be assisted by a pusher and/or a vibration unit, as will be explained hereafter.
In other embodiments the storage assembly support is configured to support the tubular storage assembly in a substantially lying position. For instance, the tubular storage assembly may be supported to extend in a horizontal position). In order to ensure movement of the containers towards an open end of the tubular storage assembly in these embodiments (or to assist the movement of the containers in the earlier mentioned embodiments wherein the tubular storage assembly is arranged in an upright position), the discharge system may comprise a pusher. The pusher may be configured to engage one or more containers arranged at a first end of the tubular storage assembly and configured to push the containers arranged in the tubular storage assembly in axial direction towards a second end, opposite the first end. The storage assembly support may be configured to support the tubular storage assembly in an essentially horizontal orientation. In this case the pusher is needed to push the containers out of the storage assembly. In other embodiments the storage assembly support may be configured to support the tubular storage assembly in an essentially upright (for instance, a vertical or oblique) orientation. Also in this case a pusher may be provided to push the containers out of the bottom end (or even the upper end) of the storage assembly. However, in some cases a pusher can be dispensed with and the containers may be moved to towards the discharge device under the influence of gravity.
In order to further ensure a proper positioning of the tubular storage assembly (with or without the intermediate tubular unit) relative to the discharge device the pusher may further be configured to engage the first end of the tubular storage assembly so as to position the second end of the tubular storage assembly relative to the gripper unit. In an embodiment the pusher comprises a support ring having axial projections configured to be coupled to the individual guiding elements so as to position the guiding elements relative to each other. An advantage is to keep the individual guiding elements in (tubular) position once the containers are moving out of the arrangement. In case the ring with its axial projection would not be present, the tubular arrangement/the guiding elements would collapse. Furthermore, the pusher may be configured to bias the dispensing spouts of the containers at the second end of the tubular storage assembly against the gripper unit.
In an embodiment the pusher comprises a pusher element configured to engage the containers at axially staggered positions along a helical trajectory. In this manner each of the containers engaged by the pusher is exposed to the same pushing force. This even distribution of pushing forces has a positive effect on the manner the containers are moved towards the discharge end of the tubular storage assembly.
Preferably the pusher is configured to engage the one or more containers at their respective dispensing spouts. The containers can be moved more smoothly because of a pushing force that can be aligned more easily with the longitudinal direction of the guiding elements.
Optionally the discharge system comprises a vibration section configured to vibrate the tubular storage assembly when the tubular storage assembly is on the tubular storage assembly support. This vibration section is especially (but not exclusively) suitable for assisting the containers to be discharged from the bottom of the storage assembly when the assembly is supported in an upright position.
According to another aspect a method of discharging a plurality of flexible containers from a tubular storage assembly is provided. The method comprises:
The above mentioned short distance may be in the range between 1 mm and 10 mm, but a smaller or larger distance is also possible.
The method may comprise supporting the tubular storage assembly in a stationary position and/or rotating the gripper unit relative to the tubular storage assembly.
The method may further comprise:
In embodiments of the present method the dispensing spouts may be guided through a slot in the slotted gripper thereby controlling rotation of the dispensing spout and associated container. More generally, the method may comprise:
rotating the dispensing spout and associated container in a first rotational direction to arrange the container from a first position extending essentially perpendicular to the axial direction to a second position extending obliquely relative to the axial direction; and subsequently
rotating the dispensing spout and associated container in a second direction, opposite the first direction.
The method may involve intermittently rotating the tubular storage assembly and/or the gripper unit relative to each other. This means that the rotation is periodically halted, for instance to allow the collected spouts (containers) to be removed, for instance by sweeping the spouts out of the slot of the slotted gripper.
In order to properly align the guiding elements of the tubular storage assembly relative to the discharge device, the method may comprise:
moving the one or more positioning arms between an open position wherein a the tubular storage assembly can be removed or loaded and a closed position wherein the positioning arms form an essentially annular gripping space, wherein the diameter of the gripping space is smaller than the outer diameter of the tubular storage assembly.
To help the containers to be moved in the direction of the discharge end the tubular storage assembly may be vibrated temporarily. Alternatively or additionally the method may comprise actively pushing the containers towards the discharge end. Furthermore, the method may also involve engaging (for instance pushing) the first end of the tubular storage assembly so as to position the second end of the tubular storage assembly relative to the gripper unit.
In order to prevent the tubular storage device from collapsing, especially when the containers are pushed towards the discharge end, the method may comprise coupling a support ring having axial projections to individual guiding elements so as to position the guiding elements relative to each other. The coupling ring prevents the tubular storage assembly from collapsing.
Furthermore, the method may comprise pushing the containers in such a way that each container receives essentially the same pushing force. This may be accomplished by engaging the spouts of the containers at axially different positions. Other ways of providing a similar pushing force on each of the containers at the proximal end of the tubular storage assembly also fall within the scope of the present teaching.
Further characteristics of the present invention will be elucidated in the accompanying description of various preferred embodiments thereof. In the description reference is made to the annexed figures.
In the following description, for the purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, that the present invention may be practiced without these specific details. In other instances, well-known structures and devices are not described in exhaustive detail, in order to avoid unnecessarily obscuring the present invention.
As will be apparent to those of skill in the art upon reading this disclosure, each of the individual embodiments described and illustrated herein has discrete components and features which may be readily separated from or combined with the features of any of the other several embodiments without departing from the scope of the present invention. Any recited method can be carried out in the order of events recited or in any other order which is logically possible
It is noted that, as used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise. It is further noted that the claims may be drafted to exclude any optional element. As such, this statement is intended to serve as antecedent basis for use of such exclusive terminology as “solely,” “only” and the like in connection with the recitation of claim elements, or use of a “negative” limitation.
As herein the tubular storage assembly is an assembly of guiding elements placed in such arrangement that they define the shape of a tube. Herein the tubular storage assembly may therefore also be denoted by the term “tubular arrangement”. Each of the guiding elements of the tubular storage assembly is configured to allow guiding of one or more containers so that the containers may be stored inside the interior formed by the combination of guiding elements.
Several examples of a tubular storage assembly are described hereafter that may be unloaded by embodiments of the present discharge system.
Guiding rail or guiding element 17 is an elongated section comprising an upper section part 28, a first section side part 29 and a second section side part 30, both section side parts 29, 30 extending roughly orthogonally with respect to the upper section part 28. At the free ends of the section side parts 29,30 a slotted carrier part for carrying the spout 20 of a spouted container 16 is provided. The carrier part comprises inwardly extending section flanges 35,36 forming a slot between the free ends of the flanges. The distance (d1) between the section flange 35 of the first section side part 29 and section flange 36 of the second section side part 30 is slightly larger than the distance between upright walls 38,39 of the spout 20 and smaller than the width of the upper flange part 26 and lower flange part 25 of the spout 20. Furthermore the section flanges 35,36 are provided at their respective outer ends with longitudinal ridges 41,42 along which the upper flange part 26 of the dispensing element (spout 20) of the container 16 can be slid. The distance between the upper flange part 26 and the lower flange part 25 of the spout 20, i.e. the width of the channel 31 defined in the guiding element 17, is slightly larger than the distance d2 between the top and bottom of a longitudinal ridge 41,42 and such that the longitudinal ridges 41,42 are properly maintained between the upper flange part 26 and lower flange part 25. Therefore the container 16 can be moved easily into the guiding element 17 by sliding the spout 20 smoothly (in direction P1) to be stably maintained within the guiding element 17 by the both flange parts 25,26 of the spout 20 and the section flanges 35,36 of the guiding element 17. The number of containers 16 that can be arranged in the guiding element 17 depends amongst others on the length of the guiding element 17 and the dimensions of the respective spouts 20 of the containers 10. As a not limiting example a typical guiding element may carry between 50 and 60 containers.
Referring to
The guiding elements 17 arranged in the tubular arrangement of
Referring to
The number of guiding elements of the tubular arrangement may vary. Generally the number of guiding elements is n, wherein n=1, 2, 3, 4 . . . . Furthermore, not all guiding elements need to be filled with containers. In embodiments of the invention only a subset of the guiding elements is selectively filled, for instance six or twelve of a total number of 24 guiding elements, depending on the shape and/or size of the containers, for instance with a view to provide for a compact storage.
In a typical (but non-limiting) example 24 containers per rotation (revolution) can be accommodated in the tubular arrangement. Depending on the length of the guiding elements and the dimensions of the containers about 53 rotations can be accommodated in the tubular arrangement. This means that the storage capacity of one tubular storage assembly can be as high as 1272 containers.
In case the storage assembly 2 comprises a number of guiding elements 17 made of more or less flexible material, the individual guiding elements 17 may be slightly movable relative to each other so that an accurate positioning of the guiding elements 17 with respect to the discharge device 14 is difficult to achieve. However, it is important to provide an accurate positioning of the guiding elements 17 and therefore an accurate alignment of the guiding elements 17 with respect to the discharge device 14 in order to guarantee a reliable and fast operation of the discharge device 14.
In order to solve this issue the storage assembly support 12 of the discharge system 1 comprises a stationary support frame 8 having curved sections on which a tubular storage assembly 2 can be placed. The storage assembly support 12 also comprises two movable positioning arms 9 and 10. These arms 9, 10 are curved (for instance, semi-circular) and can be pivoted between an open position as shown in
In
Referring to
Referring to
To this end the pusher 13 may comprise a frame consisting of at least a first frame part 60 and a second frame part 61. A linear actuator 62 is connected between these frame parts 60, 61. This linear actuator 62 is configured to push a rod 63 in axial direction (direction Pp). At the distal end of this rod 63 a container pusher element 64 is arranged. The container pusher element 64 is comprised of a generally cylindrical block at the circumference thereof a number of pins 65 are mounted. Pins 65 extend in a generally axial direction and function to engage respective containers (more specifically, the spouts of these containers) in the tubular storage assembly 2 through the interior space 51 (cf.
As shown in
Optionally, the pusher 13 may be configured to engage the proximal end 3 of the tubular storage assembly 2, for instance the end faces of the guiding elements 17, in order to position the tubular storage assembly 2 in an accurate manner with respect to the discharge device 14.
To this end a number of linear actuators 74 is provided. In the shown embodiment three linear actuators 74 have been provided, in other embodiments this number may be lower or higher. Each of the linear actuators 74 is connected to the frame part 60. Each linear actuator 74 is provided with a movable rod 75 that can be moved in axial direction (direction Pp) through a corresponding opening in the frame part so that its end part 73 can push against the circumferential edge of a support ring 70 connected to the outer ends of the guiding elements 17. Support ring 70 is shown in more detail in
In this section embodiments of the discharge device 14 will be described in more detail referring to
The rotatable gripper support 83 forms a support for the earlier mentioned slotted gripper 93. The slotted gripper 93 comprises one or more plates 94 extending in a general axial direction. The one or more plates 94 are provided with an elongated, curved opening or slot 95 dimensioned to carry a row of spouts 20 of discharged containers 16. A hook member 96 is mounted at the bottom side of the plates 94 and forms an extension of the slot 95 extending obliquely with respect to the remaining part of the slot 95 (cf.
In
As mentioned above, the shape and dimensions of the slot 95, more specifically the proximal slot portion 110 and intermediate slot portion 111, are selected to cause the containers to undergo a controlled rotation. Referring to
As mentioned earlier, the hook 96 of the slotted gripper 93 is positioned at a slightly lower radial position than the plate 94 of the slotted gripper 93 so that the edge 99 of the hook 96 extends slightly below the lower flange part 25 of the spout 20. In this embodiment the hook 96 of the slotted gripper 93 is able to engage the spout 20 at its neck portion 100 (see
Unfortunately, this way of gripping the container 16 and moving it outward of the storage assembly 2 is only possible in embodiments wherein the containers are shaped to have sufficient space between the lower flange part 25 and the upper edge 19 of the walls 18, 18′ of the container 16. In other words, this way of gripping the container 16 at its neck portion 100 is only possible for specific types of containers 16. In other types of containers 16 wherein such neck portion 100 is not or not sufficiently available, the hook 96 cannot engage the containers 16 from a position below the guiding elements 17. For these types of containers 16 another solution is provided by using a intermediate tubular unit (cage), as well be explained hereafter.
As can be noticed from the figures the slot 95 of the slotted gripper 93 has a generally curved shape. The same applies for the shape of the plates 94 of the slotted gripper 93. The curved shape is selected to be able to rotate the slotted gripper 93 about its imaginary axis 50 without interfering with the drive shaft 84 (and the drive motor 82). In this manner the discharge device can remain compact.
As shown in
The intermediate tubular unit 120 comprises a number of parallel further elongated guided elements 121. The further guiding elements 121 define between them a number of channels 122 corresponding to the earlier mentioned channels 31 provided in the guiding elements 17 (
As can been seen in
This provides the opportunity for the gripping unit 81 to grip the spout 20 of a container 16 at a different portion than at the neck portion 100 referred to in the earlier described embodiments. More specifically, the gripping unit 81 may be configured to engage the spout 20 at a higher position than the upper flange part 26 of the spout 20. As mentioned earlier, this may be needed in case insufficient space for the gripper 93 is available below the lower flange part 25 of the spout 20. In still further embodiments, the gripper 93 is configured to engage the spout 20 both at an upper position above the upper flange part 26 and a lower position below the lower flange part 25 in order to push the spout 20 at two positions towards the discharge device 14.
In order for the further guiding elements 121 to be maintained in the substantial tubular arrangement, a bridge is provided. The bridge comprises a first ring-shaped element 124 and a second ring-shaped element 125 positioned parallel and at a certain distance of the first ring-shaped element 124. The ring-shaped elements 124, 125 have protrusions 127 connected to the upper surface of the further guiding elements 121 in order to keep the further guiding elements 121 in place. The guiding elements 121 are made of a stiff (substantially non-flexible) material so that the further guiding elements 121 together with the bridge form a relatively stiff construction.
In a further embodiment the intermediate tubular unit 120 can be removed easily. After a suitable relative positioning of the discharge device 14 and the assembly 2 (and possibly after having replaced the hook 96) the discharge system 1 is ready for handling the containers 20 of the type that has a sufficiently large neck portion 100 to allow gripping of the spouts 20 directly from the tubular storage assembly 2.
In
In these embodiments the containers 16 are forced to move downwards with the discharged region by the influence of gravity. In some cases a separate pusher can be dispensed with, while in other cases a pusher 13 is still present (but can have a more simple construction, for instance without the actuators 74 for maintaining the guiding elements 17 in place).
In order to further assist the containers 16 to move in downward direction, an optional vibration unit can be mounted to the support. This vibration unit causes the loaded storage assembly 2 to vibrate as a whole and for at least a minimum period necessary to be able to assist the containers 16 to move downwards along the (further) guiding elements 121 and the slotted gripper 93.
The preceding merely illustrates the principles of the invention. It will be appreciated that those skilled in the art will be able to devise various arrangements which, although not explicitly described or shown herein, embody the principles of the invention and are included within the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2015348 | Aug 2015 | NL | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2016/062084 | 5/27/2016 | WO | 00 |