The present invention generally relates to lighting, and more particularly to a system and method of estimating ambient light.
A smart parking lot with occupancy sensors may greatly facilitate convenience to drivers. However, artificial lighting set up in the conventional parking lots is either adjusted manually or regulated automatically based on fixed timing that is planned beforehand. Therefore, consumption of energy cannot be greatly reduced, and the artificial lighting cannot be flexibly adjusted according to presence and absence of vehicles in the parking lot.
Although some parking lots are equipped with ambient light sensors, which actually sense the amount of light reflected from vehicles rather than real ambient light present in the parking space. For example, the ambient light sensor erroneously senses large amount of reflected light from a white color vehicle, but erroneously senses small amount of reflected light from a black color vehicle even the ambient lighting is kept the same.
A need has thus arisen to propose a novel scheme to overcome drawbacks of the conventional parking lots.
In view of the foregoing, it is an object of the embodiment of the present invention to provide a system and method of estimating ambient light adaptable to parking lot lighting capable of substantially conserving energy and effectively enhancing driving and personal safety.
According to one embodiment, the system of estimating ambient light includes an image sensor, a region of interest (ROI) selector, an occupancy detector and an ambient light estimator. The image sensor captures an image. The ROI selector determines at least one ROI on the image. The occupancy detector determines existence status of an object disposed on the at least one ROI. The ambient light estimator estimates illumination of ambient light of the at least one ROI according to luminance of the at least one ROI on the image.
In the embodiment, the system 100 may include an image sensor 11 with a field of view (FOV) configured to capture an image of multiple (contiguous) parking spaces in a parking lot (or garage). In a preferred embodiment, the image sensor 11 may be a visible-light image sensor such as RGB (red, green, blue) image sensor or monochrome image sensor. The system 100 may include a region of interest (ROI) selector 12 configured to determine at least one ROI (i.e., parking space) on the image.
reflected light∝(relative luminance)/((exposure time)×(gain)) (1)
reflected light∝(incoming light)×(reflectance) (2)
where ∝ denotes “proportional to.”
Accordingly, illumination of the incoming light 23 may be expressed by the following formula (3):
incoming light=K×(relative luminance)/((exposure time)×(gain)×(reflectance)) (3)
where K is a proportionality constant.
The system 100 of the embodiment may include a calibration device 10 coupled to receive an image of a vacant parking space 22 captured by the image sensor 11, and configured to determine the proportionality constant K.
The system 100 of the embodiment may include an occupancy detector 13 configured to determine existence status of an object disposed on the at least one ROI. In the embodiment, as shown in a detailed block diagram of the occupancy detector 13 in
The occupancy detector 13 of the embodiment may include a status detector 132 triggered by the motion detector 131, and configured to determine existence status (i.e., vacancy or occupancy) of a parking space 22. The status detector 132 may execute detection by performing image processing on the image captured by the image sensor 11. In one embodiment, the status detector 132 may adopt feature-based object detection such as histogram of oriented gradient (HOG) or scale-invariant feature transformation (SIFT). In another embodiment, the status detector 132 may adopt neural network such as convolutional neural network (CNN). In an alternative embodiment, the status detector 132 may adopt non-visual-based detection such as ultrasonic distance measurement or earth induction.
In the embodiment, the occupancy detector 13 may include a reflectance estimator 133 configured to estimate reflectance of an occupied parking space 22 as detected by the status detector 132. Specifically, as seen from formula (3), a ratio of the relative luminance to the reflectance for the vacant parking space should be equal to a ratio of the relative luminance to the reflectance for the occupied parking space as expressed by the following formula (4), provided that the incoming light of the light source 21 and exposure time and gain of the image sensor 11 are kept the same:
(relative luminance/reflectance)vacant=(relative luminance/reflectance)occupied (4)
Accordingly, the reflectance of the occupied parking space may then be estimated according to the relative luminance of the vacant parking space, the relative luminance of the occupied parking space and the reflectance of the vacant parking space.
In the embodiment, the system 100 may include an ambient light estimator 14 coupled to receive the image captured by the image sensor 11, and configured to estimate illumination of ambient light (or incoming light 23) of the at least one ROI (i.e., vacant or occupied parking space 22) according to luminance of the at least one ROI on the image. As seen from formula (3), the illumination of ambient light (or incoming light) may be estimated according to the relative luminance of the captured image, the exposure time and gain of the image sensor 11 and the reflectance of (vacant or occupied) parking space.
According to the embodiment disclosed above, artificial lighting set up in the parking lot (or garage) may be adjusted according to the estimated ambient light. For example, if the estimated ambient light is large, the artificial lighting may be reduced to conserve energy; and if the estimated ambient light is small, the artificial lighting may be increased to enhance driving and personal safety. Moreover, small estimated ambient light may probably indicate aged or failed artificial lighting, which need be promptly fixed.
Although specific embodiments have been illustrated and described, it will be appreciated by those skilled in the art that various modifications may be made without departing from the scope of the present invention, which is intended to be limited solely by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
10586351 | Brailovskiy | Mar 2020 | B1 |
Number | Date | Country | |
---|---|---|---|
20210352200 A1 | Nov 2021 | US |