The present invention relates to the field of superconducting circuits, and more particularly superconducting circuits for application to quantum computing.
Each patent, patent publication, and other cited reference cited herein is expressly incorporated herein by reference in its entirety for all purposes.
Superconducting integrated circuits based on Josephson junctions (JJs) are capable of operation with very low power and high speed, well beyond those possible using conventional semiconducting circuits. It has long been known that superconducting integrated circuits may be used for digital logic circuits based on single-flux-quantum (SFQ) pulses. These SFQ pulses are voltage pulses with time-integrated voltage of Φ0=h/2e=2.07 mV-ps, each comprising one fluxon of magnetic flux, corresponding typically to a pulse height about 1 mV and a pulse width about 2 ps. Several logic families based on SFQ pulses are known in the prior art, including Rapid Single Flux Quantum (RSFQ), Energy-Efficient RSFQ (EERSFQ), Reciprocal Quantum Logic (RQL), and Quantum Flux Parametron (QFP). Despite the word “quantum”, all of these logic families comprise classical digital computing with classical bits. See, for example, the following U.S. Pat. Nos. 8,571,614; 9,473,124; 9,853,645; 10,917,096; 10,528,886; 10,748,079; 7,969,178; 8,138,784; 9,646,682; 10,084,454.
Recently, superconducting integrated circuits comprised of a plurality of JJs have also been applied to true quantum computing using quantum bits (qubits), which may enable computations that are unachievable using classical computers. There are several types of superconducting qubits disclosed in the prior art, such as flux qubits, phase qubits, charge qubits, topological qubits, fluxonium qubits, and transmon qubits, among others. See, for example, US Patent and Published Application Nos.: U.S. Pat. Nos. 6,459,097; 6,504,172; 6,576,951; 6,627,915; 6,784,451; 6,838,694; 6,984,846; 7,268,576; 7,335,909; 7,843,209; 8,648,331; 8,654,578; 9,524,470; 9,685,935; 10,068,184; 10,176,432; 10,255,557; 10,256,392; 10,622,998; 10,789,123; 10,840,295; 10,949,769; and 2020/0280316.
Each qubit has an infinite number of different potential quantum-mechanical states. When the state of a qubit is physically measured, the measurement produces one of two different basis states resolved from the state of the qubit. Thus, a single qubit can represent a one, a zero, or any quantum superposition of those two qubit states; a pair of qubits can be in any quantum superposition of 4 orthogonal basis states; and three qubits can be in any superposition of 8 orthogonal basis states. The function that defines the quantum-mechanical states of a qubit is known as its wavefunction. The wavefunction also specifies the probability distribution of outcomes for a given measurement.
Although certain descriptions of qubits herein may describe such qubits in terms of their mathematical properties, each such qubit may be implemented in a physical medium in any of a variety of different ways. Examples of such physical media include superconducting material, trapped ions, photons, optical cavities, individual electrons trapped within quantum dots, point defects in solids (e.g., phosphorus donors in silicon or nitrogen-vacancy centers in diamond), molecules (e.g., alanine, vanadium complexes), or aggregations of any of the foregoing that exhibit qubit behavior, that is, comprising quantum states and transitions therebetween that can be controllably induced or detected.
For any given medium that implements a qubit, any of a variety of properties of that medium may be chosen to implement the qubit. For example, if electrons are chosen to implement qubits, then the x component of its spin degree of freedom may be chosen as the property of such electrons to represent the states of such qubits. Alternatively, the y component, or the z component of the spin degree of freedom may be chosen as the property of such electrons to represent the state of such qubits. This is merely a specific example of the general feature that for any physical medium that is chosen to implement qubits, there may be multiple physical degrees of freedom (e.g., the x, y, and z components in the electron spin example) that may be chosen to represent 0 and 1. For any particular degree of freedom, the physical medium may controllably be put in a state of superposition, and measurements may then be taken in the chosen degree of freedom to obtain readouts of qubit values.
Certain implementations of quantum computers, referred to as gate model quantum computers, comprise quantum gates. In contrast to classical gates, there is an infinite number of possible single-qubit quantum gates that change the state vector of a qubit. Changing the state of a qubit state vector typically is referred to as a single-qubit rotation, and may also be referred to herein as a state change or a single-qubit quantum-gate operation. A rotation, state change, or single-qubit quantum-gate operation may be represented mathematically by a unitary 2×2 matrix with complex elements. A rotation corresponds to a rotation of a qubit state within its Hilbert space, which may be conceptualized as a rotation of the Bloch sphere. (As is well-known to those having ordinary skill in the art, the Bloch sphere is a geometrical representation of the space of pure states of a qubit.) Multi-qubit gates alter the quantum state of a set of qubits. For example, two-qubit gates rotate the state of two qubits as a rotation in the four-dimensional Hilbert space of the two qubits. A Hilbert space is an abstract vector space possessing the structure of an inner product that allows length and angle to be measured. Furthermore, Hilbert spaces are complete: there are enough limits in the space to allow the techniques of calculus to be used.
A quantum circuit may be specified as a sequence of quantum gates. The term “quantum gate,” may refer to the application of a gate control signal (defined below) to one or more qubits to cause those qubits to undergo certain physical transformations and thereby to implement a logical gate operation. To conceptualize a quantum circuit, the matrices corresponding to the component quantum gates may be multiplied together in the order specified by the gate sequence to produce a 2n×2n complex matrix representing the same overall state change on n qubits. A quantum circuit may thus be expressed as a single resultant operator. However, designing a quantum circuit in terms of constituent gates allows the design to conform to a standard set of gates, and thus enable greater ease of deployment. A quantum circuit thus corresponds to a design for actions taken upon the physical components of a quantum computer.
A given variational quantum circuit may be parameterized in a suitable device-specific manner. More generally, the quantum gates making up a quantum circuit may have an associated plurality of tuning parameters. For example, in embodiments based on optical switching, tuning parameters may correspond to the angles of individual optical elements.
In certain embodiments of quantum circuits, the quantum circuit includes both one or more gates and one or more measurement operations. Quantum computers implemented using such quantum circuits are referred to herein as implementing “measurement feedback.” For example, a quantum computer implementing measurement feedback may execute the gates in a quantum circuit and then measure only a subset (i.e., fewer than all) of the qubits in the quantum computer, and then decide which gate(s) to execute next based on the outcome(s) of the measurement(s). In particular, the measurement(s) may indicate a degree of error in the gate operation(s), and the quantum computer may decide which gate(s) to execute next based on the degree of error. The quantum computer may then execute the gate(s) indicated by the decision. This process of executing gates, measuring a subset of the qubits, and then deciding which gate(s) to execute next may be repeated any number of times. Measurement feedback may be useful for performing quantum error correction, but is not limited to use in performing quantum error correction. For every quantum circuit, there is an error-corrected implementation of the circuit with or without measurement feedback.
Each superconducting qubit is characterized by a ground quantum state and an excited quantum state, separated by an energy E, such that E=hf. The transition between the ground and excited states is mediated by a narrowband microwave signal with frequency f that is typically of order 10 GHz. Such a microwave signal may have a shaped envelope with a width that may be of order 100 cycles, which may sometimes be referred to as a “microwave pulse”. However, such a “microwave pulse” is quite different from the SFQ pulse mentioned above, which has broadband spectral content up to hundreds of GHz. Most prior-art control systems are based on these narrowband microwave pulses; see U.S. Pat. Nos. 7,932,514; 8,294,138; 8,872,360; 10,572,816; and 10,650,319.
It is known in the prior art that any quantum computing system will require an interface with a classical computer for control and readout. In most of the prior art, the classical control computer may comprise a conventional semiconductor computer at room temperature, with control lines down to the cryogenic qubits. However, it may be advantageous to employ cryogenic control circuits close to the quantum computer, for at least the first stage of control of the quantum computer. Such a control system in close proximity to the quantum computer would reduce latency, enabling more rapid and flexible control of the quantum computer. Furthermore, superconducting quantum computing requires ultra-low temperatures about 0.01 K, typically using a helium dilution refrigerator, where the available cooling capacity is very small. A major heat load in a cryogenic computer comprises the set of input/output (I/O) lines, which would become impractically large for a quantum computer of a significant scale. Including a local source of classical control circuits could reduce the number of I/O lines, thus making a large-scale system more practical, provided that the dissipation of the cryogenic classical control circuits is also very small.
Some prior art discloses use of conventional semiconductor circuits at cryogenic temperatures to control the cryogenic qubits. See, for example, US Patent and Published Application Nos: U.S. Pat. No. 10,671,559; 2020/0394548; and 2020/0160205. However, the power levels for semiconductor control circuits are generally far higher than is compatible with the deep cryogenic environment of the quantum computer.
One type of superconducting circuit that may be used to control superconducting qubits is an inductive circuit that applies magnetic flux, including circuits based on superconducting quantum interference devices or SQUIDs. See, for example, US Patent and Published Application Nos: U.S. Pat. Nos. 7,847,615; 7,932,514; 8,854,074; 9,996,801; 10,665,635; 10,969,443; and 2021/0033683. These control methods are generally quite slow.
Although all superconducting logic circuits are low in dissipation, some variants are especially low in energy, such as those identified as ERSFQ, eSFQ, RQL, and QFP. These are based on SFQ pulses, which is quite different from the resonant narrowband microwave signal that is more commonly used. Such a circuit may be placed close to the superconducting qubits, given a common cryogenic environment and low-power dissipation. There have been several previous proposals for SFQ logic circuits to control or read out superconducting qubits. For example, a properly timed train of SFQ pulses may be used to induce a quantum transition in a superconducting qubit, or to measure the quantum state of a qubit. See, for example, U.S. Pat. Nos. 7,969,178; 8,138,784; 8,508,280; 9,425,804; 9,787,312; 10,726,351; and 10,748,079.
While SFQ pulses are themselves quite fast, the prior art does not teach methods for rapid, programmable SFQ control of over the very large number of qubits that will be needed for a practical quantum computer. In particular, the prior art does not teach methods to tune the parameters of the various qubits and the couplings between them, using SFQ circuits.
Quantum computers (QC), comprising qubits promise exponential speed-up in solving certain problems. A qubit can be implemented in a physical system with two distinct energy levels representing the |0) and |1) states, e.g., the up and down spin states of an electron. The qubit states can be manipulated with microwave pulses, whose frequency f matches the energy level spacing E=hf. Qubit operations can be represented as rotations in the Bloch sphere. The rotation axis is set by the phase of the microwave signal relative to the qubit phase, which must be tracked for coherent operations. The pulse amplitude and duration determine the rotation angle.
A singular value decomposition allows visualization of a two-qubit state through a pair of Bloch spheres, one per subsystem. The Bloch vectors {right arrow over (u)} and {right arrow over (v)} are inscribed in their respective spheres, representing 6 degrees of freedom detectable through local measurements. The 9 degrees of freedom that can only be detected nonlocally are contained in Σ, M, and N, or equivalently, in the two matrix products MΣ and NΣ. The columns of these two products are the scaled correlation axes, given by xi{circumflex over (m)}i and xi{circumflex over (n)}i respectively. To complete the geometric representation of the quantum state, the three scaled correlation axes for each system can be added to their respective Bloch sphere, where they represent the magnitude and direction of the correlation. The scaled correlation axes in the two systems are paired off by a shared index i.
Spin in the directions of two such axes with the same index are correlated, proportional to their shared length xi, while spin along axes with different indices are uncorrelated. That is, simultaneously measuring the two spins on multiple copies of the system, each along the direction of its scaled correlation axis i, yields an expectation value equal to the axis length. Measuring the two spins simultaneously along correlation axes with different indices, i≠j, yields zero expectation value.
Quantum channels and operations are described by completely positive trace preserving maps, and lie at the heart of investigations in quantum information science. The single quantum bit (qubit) case has a particularly attractive geometric interpretation in terms of certain deformations of the Bloch sphere. This geometric picture to a large extent guides the intuition for higher-dimensional cases.
Viewing quantum operations as operators acting on operators leads to a clean geometric decomposition in the single qubit case; that is, completely positive trace preserving maps. Given an arbitrary 2×2 complex matrix, we can identify eight degrees of freedom through the real and imaginary parts of the four entries for example. In the case of Hermitian matrices, these eight degrees of freedom are reduced to four, as specification of any one of the off-diagonal terms fixes one of the others and each of the diagonal terms must be real. As a result, a linear map from 2×2 Hermitian matrices to 2×2 Hermitian matrices can be completely characterized by sixteen parameters. It is easily verified that any Hermitian matrix can be written as a linear combination of the identity and the three Pauli matrices, with real coefficients. Thus we can express any Hermitian 2×2 matrix as a 4-component real vector in the Pauli basis, {1, σx, σy, σz}, and we can express a linear map on the 2×2 Hermitian matrices as a 4×4 real matrix in the same basis.
Shifting attention to a subset of the 2×2 Hermitian matrices, namely density matrices for a single qubit, we add the conditions that the matrices must be positive and have trace equal to one. The trace condition forces the coefficient of the identity to be ½, reducing the characterization to a 3-dimensional real subspace. Positivity then tells us that all density matrices are represented by points within a radius of ½ from the origin in this 3-dimensional real subspace. Using the standard convention that ½ is factored out of each component, we have the familiar Bloch vector representation of a density matrix, wherein the set of permissible density matrices are represented by the ball ∥r∥2≤1, the Bloch sphere. When considering density matrices and quantum operations thereon, we can further refine the form of our linear map since a quantum operation will be described by a completely positive trace-preserving map. (Equivalently, the Hilbert-Schmidt dual of the map is completely positive and unital.)
We can therefore characterize the effect of an arbitrary completely positive trace-preserving map on the Bloch sphere as the composition of a rotation with a possible inversion, a compression to an ellipsoid, a second rotation with a possible inversion, and a translation.
See:
Abrams, Deanna M., Nicolas Didier, Blake R. Johnson, Marcus P. da Silva, and Colm A. Ryan. “Implementation of the XY interaction family with calibration of a single pulse.” arXiv preprint arXiv:1912.04424 (2019).
Abrams, Deanna M., Nicolas Didier, Shane A. Caldwell, Blake R. Johnson, and Colm A. Ryan. “Methods for measuring magnetic flux crosstalk between tunable transmons.” Physical Review Applied 12, no. 6 (2019): 064022.
Ahmad, Meraj, Christos Giagkoulovits, Sergey Danilin, Martin Weides, and Hadi Heidari. “Scalable Cryoelectronics for Superconducting Qubit Control and Readout.” Advanced Intelligent Systems (2022): 2200079.
Antonov, I. V., R. S. Shaikhaidarov, V. N. Antonov, and O. V. Astafiev. “Superconducting ‘twin’qubit.” Physical Review B 102, no. 11 (2020): 115422.
Ash-Saki, Abdullah, Mahabubul Alam, and Swaroop Ghosh. “Experimental characterization, modeling, and analysis of crosstalk in a quantum computer.” IEEE Transactions on Quantum Engineering 1 (2020): 1-6.
Bækkegaard, Thomas, L. B. Kristensen, Niels J S Loft, Christian Kraglund Andersen, David Petrosyan, and Nikolaj T. Zinner. “Realization of efficient quantum gates with a superconducting qubit-qutrit circuit.” Scientific reports 9, no. 1 (2019): 1-10.
Bardin, Joseph C. “Analog/Mixed-Signal Integrated Circuits for Quantum Computing.” In 2020 IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium (BCICTS), pp. 1-8. IEEE, 2020.
Bardin, Joseph C., Daniel Sank, Ofer Naaman, and Evan Jeffrey. “Quantum computing: An introduction for microwave engineers.” IEEE Microwave Magazine 21, no. 8 (2020): 24-44.
Bardin, Joseph C., Evan Jeffrey, Erik Lucero, Trent Huang, Ofer Naaman, Rami Barends, Ted White et al. “29.1 A 28 nm bulk-CMOS 4-to-8 GHz 2 mW cryogenic pulse modulator for scalable quantum computing.” In 2019 IEEE International Solid-State Circuits Conference-(ISSCC), pp. 456-458. IEEE, 2019.
Barends, Rami, C. M. Quintana, A. G. Petukhov, Yu Chen, Dvir Kafri, Kostyantyn Kechedzhi, Roberto Collins et al. “Diabatic gates for frequency-tunable superconducting qubits.” Physical Review Letters 123, no. 21 (2019): 210501.
Berke, Christoph, Evangelos Varvelis, Simon Trebst, Alexander Altland, and David P. DiVincenzo. “Transmon platform for quantum computing challenged by chaotic fluctuations.” arXiv preprint arXiv:2012.05923 (2020).
Besedin, Il'ya Stanislavovich, Gleb Petrovich Fedorov, A. Yu Dmitriev, and Valerii Vladimirovich Ryazanov. “Superconducting qubits in Russia.” Quantum Electronics 48, no. 10 (2018): 880.
Bhattacharyya, Shaman, and Somnath Bhattacharyya. “Demonstrating geometric phase acquisition in multi-path tunnel systems using a near-term quantum computer.” Journal of Applied Physics 130, no. 3 (2021): 034901.
Bocko, Mark F., Andrea M. Herr, and Marc J. Feldman. “Prospects for quantum coherent computation using superconducting electronics.” IEEE Transactions on Applied Superconductivity 7, no. 2 (1997): 3638-3641.
Brink, Markus, Jerry M. Chow, Jared Hertzberg, Easwar Magesan, and Sami Rosenblatt. “Device challenges for near term superconducting quantum processors: frequency collisions.” In 2018 IEEE International Electron Devices Meeting (IEDM), pp. 6-1. IEEE, 2018.
Cai, T-Q., X-Y. Han, Y-K. Wu, Y-L. Ma, J-H. Wang, Z-L. Wang, H-Y. Zhang, H-Y. Wang, Y-P. Song, and L-M. Duan. “Impact of Spectators on a Two-Qubit Gate in a Tunable Coupling Superconducting Circuit.” Physical Review Letters 127, no. 6 (2021): 060505.
Caldwell, S. A., N. Didier, C. A. Ryan, E. A. Sete, A. Hudson, P. Karalekas, R. Manenti et al. “Parametrically activated entangling gates using transmon qubits.” Physical Review Applied 10, no. 3 (2018): 034050.
Castellano, Maria Gabriella, Leif Grönberg, Pasquale Carelli, Fabio Chiarello, Carlo Cosmelli, Roberto Leoni, Stefano Poletto, Guido Torrioli, Juha Hassel, and Panu Helistö. “Characterization of a fabrication process for the integration of superconducting qubits and rapid-single-flux-quantum circuits.” Superconductor Science and Technology 19, no. 8 (2006): 860.
Christensen, B. G., C. D. Wilen, A. Opremcak, J. Nelson, F. Schlenker, C. H. Zimonick, L. Faoro et al. “Anomalous charge noise in superconducting qubits.” Physical Review B 100, no. 14 (2019): 140503.
Coffey, Mark W. “Quantum computing based on a superconducting quantum interference device: Exploiting the flux basis.” Journal of Modern Optics 49, no. 14-15 (2002): 2389-2398.
Crankshaw, Donald Shane. “Measurement and on-chip control of a niobium persistent current qubit.” PhD diss., Massachusetts Institute of Technology, 2003.
de Albornoz, Alejandro Cros Carrillo, John Taylor, and Vlad Cărare. “Time-optimal implementations of quantum algorithms.” Physical Review A 100, no. 3 (2019): 032329.
Dragoman, Mircea, and Daniela Dragoman. “Quantum Computing.” In Atomic-Scale Electronics Beyond CMOS, pp. 157-186. Springer, Cham, 2021.
Espinós, Hilario, Iván Panadero, Juan José García-Ripoll, and Erik Torrontegui. “Quantum control of tunable-coupling transmons using dynamical invariants of motion.” arXiv preprint arXiv:2205.06555 (2022).
Fedorov, Kirill G., Anastasia V. Shcherbakova, Michael J. Wolf, Detlef Beckmann, and Alexey V. Ustinov. “Fluxon readout of a superconducting qubit.” Physical review letters 112, no. 16 (2014): 160502.
Feng, Guanru, Shi-Yao Hou, Hongyang Zou, Wei Shi, Sheng Yu, Zikai Sheng, Xin Rao et al. “SpinQ Triangulum: a commercial three-qubit desktop quantum computer.” arXiv preprint arXiv:2202.02983 (2022).
Foss-Feig, Michael, Stephen Ragole, Andrew Potter, Joan Dreiling, Caroline Figgatt, John Gaebler, Alex Hall et al. “Entanglement from Tensor Networks on a Trapped-Ion Quantum Computer.” Physical Review Letters 128, no. 15 (2022): 150504.
Ganzhorn, Marc, Daniel J. Egger, Panagiotis Barkoutsos, Pauline Ollitrault, Gian Salis, Nikolaj Moll, M. Roth et al. “Gate-efficient simulation of molecular eigenstates on a quantum computer.” Physical Review Applied 11, no. 4 (2019): 044092.
García-Ripoll, J. J., A. Ruiz-Chamorro, and E. Torrontegui. “Quantum control of transmon superconducting qubits.” arXiv preprint arXiv:2002.10320 (2020).
Garciá-Ripoll, Juan José, Andrés Ruiz-Chamorro, and E. Torrontegui. “Quantum Control of Frequency-Tunable Transmon Superconducting Qubits.” Physical Review Applied 14, no. 4 (2020): 044035.
Graham, T. M., Y. Song, J. Scott, C. Poole, L. Phuttitarn, K. Jooya, P. Eichler et al. “Multi-qubit entanglement and algorithms on a neutral-atom quantum computer.” Nature 604, no. 7906 (2022): 457-462.
Graham, T. M., Y. Song, J. Scott, C. Poole, L. Phuttitarn, K. Jooya, P. Eichler et al. “Demonstration of multi-qubit entanglement and algorithms on a programmable neutral atom quantum computer.” arXiv preprint arXiv:2112.14589 (2021).
Hahn, Henning, Giorgio Zarantonello, Marius Schulte, Amado Bautista-Salvador, Klemens Hammerer, and Christian Ospelkaus. “Integrated 9Be+ multi-qubit gate device for the ion-trap quantum computer.” npj Quantum Information 5, no. 1 (2019): 1-5.
Hill, Charles D., Muhammad Usman, and Lloyd C L Hollenberg. “An exchange-based surface-code quantum computer architecture in silicon.” arXiv preprint arXiv:2107.11981 (2021).
Hou, Shi-Yao, Guanru Feng, Zipeng Wu, Hongyang Zou, Wei Shi, Jinfeng Zeng, Chenfeng Cao et al. “SpinQ Gemini: a desktop quantum computer for education and research.” arXiv preprint arXiv:2101.10017 (2021).
Huang, Ziwen, Yao Lu, Eliot Kapit, David I. Schuster, and Jens Koch. “Universal stabilization of single-qubit states using a tunable coupler.” Physical Review A 97, no. 6 (2018): 062345.
Humble, Travis S., Himanshu Thapliyal, Edgard Munoz-Coreas, Fahd A. Mohiyaddin, and Ryan S. Bennink. “Quantum computing circuits and devices.” IEEE Design & Test 36, no. 3 (2019): 69-94.
Hutchings, M. D., Jared B. Hertzberg, Yebin Liu, Nicholas T. Bronn, George A. Keefe, Markus Brink, Jerry M. Chow, and B. L. T. Plourde. “Tunable superconducting qubits with flux-independent coherence.” Physical Review Applied 8, no. 4 (2017): 044003.
Johnson, Philip R., Frederick W. Strauch, Alex J. Dragt, James R. Anderson, Christopher J. Lobb, and Frederick C. Wellstood. “Quantum control of superconducting phase qubits.” In Quantum Information and Computation II, vol. 5436, pp. 232-241. International Society for Optics and Photonics, 2004.
Khabipov, M. I., D. V. Balashov, F. Maibaum, A. B. Zorin, V. A. Oboznov, V. V. Bolginov, A. N. Rossolenko, and V. V. Ryazanov. “A single flux quantum circuit with a ferromagnet-based Josephson π-junction.” Superconductor Science and Technology 23, no. 4 (2010): 045032.
Klenov, N. V., A. V. Kuznetsov, I. I. Soloviev, S. V. Bakurskiy, M. V. Denisenko, and A. M. Satanin. “Flux qubit interaction with rapid single-flux quantum logic circuits: Control and readout.” Low Temperature Physics 43, no. 7 (2017): 789-798.
Krantz, Philip, Morten Kjaergaard, Fei Yan, Terry P. Orlando, Simon Gustavsson, and William D. Oliver. “A quantum engineer's guide to superconducting qubits.” Applied Physics Reviews 6, no. 2 (2019): 021318.
Landig, Andreas J., Jonne V. Koski, Pasquale Scarlino, Clemens Müller, José C. Abadillo-Uriel, Benedikt Kratochwil, Christian Reichl et al. “Virtual-photon-mediated spin-qubit-transmon coupling.” Nature communications 10, no. 1 (2019): 1-7.
Larsen, Thorvald Wadum, Karl David Petersson, Ferdinand Kuemmeth, Thomas Sand Jespersen, Peter Krogstrup, Jesper Nygård, and Charles M. Marcus. “Semiconductor-nanowire-based superconducting qubit.” Physical review letters 115, no. 12 (2015): 127001.
Leonard Jr, Edward, Matthew A. Beck, J. Nelson, Brad G. Christensen, Ted Thorbeck, Caleb Howington, Alexander Opremcak et al. “Digital coherent control of a superconducting qubit.” Physical Review Applied 11, no. 1 (2019): 014009.
Li, Kangbo, R. McDermott, and Maxim G. Vavilov. “Hardware-efficient qubit control with single-flux-quantum pulse sequences.” Physical Review Applied 12, no. 1 (2019): 014044.
Liebermann, Per J., and Frank K. Wilhelm. “Optimal qubit control using single-flux quantum pulses.” Physical Review Applied 6, no. 2 (2016): 024022.
Lu, Yao, Srivatsan Chakram, Ngainam Leung, Nathan Earnest, Ravi K. Naik, Ziwen Huang, Peter Groszkowski, Eliot Kapit, Jens Koch, and David I. Schuster. “Universal stabilization of a parametrically coupled qubit.” Physical review letters 119, no. 15 (2017): 150502.
Machnes, Shai, Elie Assémat, David Tannor, and Frank K. Wilhelm. “Tunable, flexible, and efficient optimization of control pulses for practical qubits.” Physical review letters 120, no. 15 (2018): 150401.
Malis̆, Momir, P. Kl Barkoutsos, Marc Ganzhorn, Stefan Filipp, Daniel J. Egger, Sara Bonella, and Ivano Tavernelli. “Local control theory for superconducting qubits.” Physical Review A 99, no. 5 (2019): 052316.
Marques, J. F., B. M. Varbanov, M. S. Moreira, Hany Ali, Nandini Muthusubramanian, Christos Zachariadis, Francesco Battistel et al. “Logical-qubit operations in an error-detecting surface code.” Nature Physics 18, no. 1 (2022): 80-86.
McConkey, T. G., J. H. Béjanin, C. T. Earnest, C. R. H. McRae, Z. Pagel, J. R. Rinehart, and M. Mariantoni. “Mitigating leakage errors due to cavity modes in a superconducting quantum computer.” Quantum Science and Technology 3, no. 3 (2018): 034004.
McDermott, R., and M. G. Vavilov. “Accurate qubit control with single flux quantum pulses.” Physical Review Applied 2, no. 1 (2014): 014007.
McDermott, R., M. G. Vavilov, B. L. T. Plourde, F. K. Wilhelm, P. J. Liebermann, O. A. Mukhanov, and T. A. Ohki. “Quantum-classical interface based on single flux quantum digital logic.” Quantum science and technology 3, no. 2 (2018): 024004.
McKay, David C., Christopher J. Wood, Sarah Sheldon, Jerry M. Chow, and Jay M. Gambetta. “Efficient Z gates for quantum computing.” Physical Review A 96, no. 2 (2017): 022330.
Mukhanov, Oleg A, A. Kirichenko, C. Howington, J. Walter, M. Hutchings, I. Vernik, D. Yohannes, K. Dodge, A. Ballard, B. L. T. Plourde, A. Opremcak, C.-H. Liu, R. McDermott, “Scalable Quantum Computing Infrastructure Based on Superconducting Electronics,” 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA (2019): 31.2.1-31.2.4.
Mukhanov, Oleg A. “Energy-efficient single flux quantum technology.” IEEE Transactions on Applied Superconductivity 21, no. 3 (2011): 760-769.
Mundada, Pranav, Gengyan Zhang, Thomas Hazard, and Andrew Houck. “Suppression of qubit crosstalk in a tunable coupling superconducting circuit.” Physical Review Applied 12, no. 5 (2019): 054023.
Murch, K. W., S. J. Weber, Christopher Macklin, and Irfan Siddiqi. “Observing single quantum trajectories of a superconducting quantum bit.” Nature 502, no. 7470 (2013): 211-214.
Negîrneac, V., H. Ali, N. Muthusubramanian, F. Battistel, R. Sagastizabal, M. S. Moreira, J. F. Marques, W. J. Vlothuizen, M. Beekman, C. Zachariadis, N. Haider, A. Bruno, and L. DiCarlo, “High-fidelity controlled-Z gate with maximal intermediate leakage operating at the speed limit in a superconducting quantum processor,” Phys. Rev. Letters 126 (2021): 220502.
Nguyen, Long Bao. “Toward the Fluxonium Quantum Processor.” PhD diss., University of Maryland, College Park, 2020.
Niskanen, A. O., K. Harrabi, F. Yoshihara, Y. Nakamura, S. Lloyd, and Jaw Shen Tsai. “Quantum coherent tunable coupling of superconducting qubits.” Science 316, no. 5825 (2007): 723-726.
Ohki, Thomas A., Michael Wulf, and Marc J. Feldman. “Low-Jc rapid single flux quantum (RSFQ) qubit control circuit.” IEEE transactions on applied superconductivity 17, no. 2 (2007): 154-157.
Patra, Bishnu, Jeroen P G van Dijk, Sushil Subramanian, Andrea Coma, Xiao Xue, Charles Jeon, Farhana Sheikh et al. “19.1 a scalable cryo-CMOS 2-to-20 GHz digitally intensive controller for 4×32 frequency multiplexed spin qubits/transmons in 22 nm FinFET technology for quantum computers.” In 2020 IEEE International Solid-State Circuits Conference-(ISSCC), pp. 304-306. IEEE, 2020.
Pezzagna, Sébastien, and Jan Meijer. “Quantum computer based on color centers in diamond.” Applied Physics Reviews 8, no. 1 (2021): 011308.
Rol, M. A., F. Battistel, F. K. Malinowski, C. C. Bultink, B. M. Tarasinski, R. Vollmer, N. Haider et al. “A fast, low-leakage, high-fidelity two-qubit gate for a programmable superconducting quantum computer.” arXiv preprint arXiv:1903.02492 (2019).
Schrade, Constantin, and Liang Fu. “Majorana superconducting qubit.” Physical Review Letters 121, no. 26 (2018): 267002.
Sete, Eyob A., Matthew J. Reagor, Nicolas Didier, and Chad T. Rigetti. “Charge- and flux-insensitive tunable superconducting qubit.” Physical Review Applied 8, no. 2 (2017): 024004.
Sheldon, Sarah, Easwar Magesan, Jerry M. Chow, and Jay M. Gambetta. “Procedure for systematically tuning up cross-talk in the cross-resonance gate.” Physical Review A 93, no. 6 (2016): 060302.
Sirois, Adam, Manuel Castellanos-Beltran, Anna Fox, Samuel Benz, and Peter Hopkins. “Josephson Microwave Sources Applied to Quantum Information Systems.” IEEE Transactions on Quantum Engineering (2020).
Song, Chao, Kai Xu, Hekang Li, Yu-Ran Zhang, Xu Zhang, Wuxin Liu, Qiujiang Guo et al. “Generation of multicomponent atomic Schrödinger cat states of up to 20 qubits.” Science 365, no. 6453 (2019): 574-577.
Stassi, Roberto, Mauro Cirio, and Franco Nori. “Scalable quantum computer with superconducting circuits in the ultrastrong coupling regime.” npj Quantum Information 6, no. 1 (2020): 1-6.
Stenger, John, Gilad Ben-Shach, David Pekker, and Nicholas T. Bronn. “Simulating spectroscopic detection of Majorana zero modes with a superconducting quantum computer.” arXiv preprint arXiv:2202.12910 (2022).
Uilhoorn, Willemijntje. “Hybrid Josephson junction-based quantum devices in magnetic field.” (2021).
Versluis, Richard, Stefano Poletto, Nader Khammassi, Brian Tarasinski, Nadia Haider, David J. Michalak, Alessandro Bruno, Koen Bertels, and Leonardo DiCarlo. “Scalable quantum circuit and control for a superconducting surface code.” Physical Review Applied 8, no. 3 (2017): 034021.
Wang, Joel, Daniel Rodan Legrain, Charlotte Boettcher, Landry Bretheau, Daniel Campbell, Bharath Kannan, David Kim et al. “Quantum coherent control of graphene-based transmon qubit.” In APS March Meeting Abstracts, vol. 2019, pp. C29-010. 2019.
Wendin, Göran. “Quantum information processing with superconducting circuits: a review.” Reports on Progress in Physics 80, no. 10 (2017): 106001.
Xin, Tao, Shilin Huang, Sirui Lu, Keren Li, Zhihuang Luo, Zhangqi Yin, Jun Li, Dawei Lu, Guilu Long, and Bei Zeng. “NMRCloudQ: a quantum cloud experience on a nuclear magnetic resonance quantum computer.” Science Bulletin 63, no. 1 (2018): 17-23.
Yamanashi, Yuki, Takanobu Nishigai, and Nobuyuki Yoshikawa. “Study of LR-loading technique for low-power single flux quantum circuits.” IEEE Transactions on applied superconductivity 17, no. 2 (2007): 150-153.
Yoshikawa, Nobuyuki. “Superconducting digital electronics for controlling quantum computing systems.” IEICE Transactions on Electronics 102, no. 3 (2019): 217-223.
Zhang, Helin, Srivatsan Chakram, Tanay Roy, Nathan Earnest, Yao Lu, Ziwen Huang, Daniel Weiss, Jens Koch, and David I. Schuster, “Universal fast flux control of a coherent, low-frequency qubit,” Phys. Rev. X 11 (2021): 011010.
Zhang, Xian-Peng, Li-Tuo Shen, Zhang-Qi Yin, Luyan Sun, Huai-Zhi Wu, and Zhen-Biao Yang. “Multi-Resonator-Assisted Multi-Qubit Resetting in a Network.” arXiv preprint arXiv:1604.08393 (2016).
Zhou, Jian, Sai Li, Guo-Zhu Pan, Gang Zhang, Tao Chen, and Zheng-Yuan Xue. “Nonadiabatic geometric quantum gates that are insensitive to qubit-frequency drifts.” Physical Review A 103, no. 3 (2021): 032609.
Zhu, Daoquan, Tuomas Jaako, Qiongyi He, and Peter Rabl. “Quantum computing with superconducting circuits in the picosecond regime.” arXiv preprint arXiv:2101.05810 (2021).
See, U.S. Patent and Published Patent Application Nos.: U.S. Pat. Nos. 5,170,080; 5,233,242; 5,233,243; 5,289,400; 5,388,068; 5,389,837; 5,598,105; 5,629,889; 5,781,009; 5,793,055; 5,818,373; 5,936,458; 5,963,351; 5,982,219; 6,023,161; 6,175,749; 6,188,236; 6,217,165; 6,242,939; 6,315,200; 6,317,192; 6,331,805; 6,345,189; 6,345,190; 6,353,330; 6,356,715; 6,362,868; 6,362,869; 6,415,054; 6,431,669; 6,442,525; 6,459,097; 6,459,495; 6,476,863; 6,479,139; 6,486,694; 6,495,854; 6,504,172; 6,507,234; 6,509,853; 6,518,786; 6,526,491; 6,537,847; 6,542,645; 6,563,310; 6,563,311; 6,573,202; 6,576,951; 6,580,102; 6,605,822; 6,608,581; 6,614,047; 6,626,995; 6,627,915; 6,627,916; 6,630,426; 6,636,216; 6,649,929; 6,665,454; 6,670,630; 6,703,857; 6,724,216; 6,725,248; 6,728,131; 6,734,699; 6,750,901; 6,750,944; 6,753,546; 6,756,925; 6,773,836; 6,781,435; 6,784,451; 6,786,420; 6,788,336; 6,791,109; 6,797,341; 6,803,599; 6,809,734; 6,812,484; 6,813,056; 6,822,255; 6,826,662; 6,831,681; 6,838,694; 6,838,749; 6,850,274; 6,865,639; 6,879,341; 6,885,325; 6,897,468; 6,900,454; 6,900,456; 6,905,887; 6,909,109; 6,911,664; 6,917,537; 6,918,542; 6,919,579; 6,926,921; 6,930,318; 6,930,320; 6,936,841; 6,943,368; 6,946,428; 6,948,661; 6,960,780; 6,979,836; 6,984,846; 6,987,282; 7,002,174; 7,007,852; 7,015,499; 7,018,852; 7,042,005; 7,050,143; 7,073,713; 7,078,694; 7,083,108; 7,089,099; 7,090,889; 7,092,011; 7,093,104; 7,095,227; 7,097,104; 7,100,834; 7,103,460; 7,110,139; 7,113,967; 7,124,259; 7,129,870; 7,135,701; 7,139,882; 7,155,395; 7,187,404; 7,201,319; 7,230,266; 7,231,500; 7,233,421; 7,233,998; 7,234,645; 7,236,998; 7,253,654; 7,268,576; 7,268,713; 7,280,623; 7,283,162; 7,287,702; 7,289,142; 7,289,156; 7,304,646; 7,307,275; 7,313,199; 7,313,467; 7,321,958; 7,332,738; 7,335,909; 7,360,102; 7,362,125; 7,362,971; 7,364,923; 7,365,663; 7,373,083; 7,377,706; 7,379,800; 7,386,687; 7,389,508; 7,391,435; 7,392,511; 7,395,411; 7,408,453; 7,409,570; 7,415,703; 7,418,283; 7,428,562; 7,428,619; 7,437,536; 7,439,208; 7,440,490; 7,443,719; 7,444,210; 7,444,525; 7,444,632; 7,453,492; 7,456,861; 7,457,939; 7,460,152; 7,461,931; 7,467,034; 7,468,630; 7,475,257; 7,475,825; 7,478,390; 7,483,050; 7,496,673; 7,496,917; 7,498,832; 7,502,928; 7,505,310; 7,508,230; 7,509,457; 7,511,744; 7,516,334; 7,516,456; 7,523,157; 7,524,045; 7,526,608; 7,527,288; 7,533,068; 7,546,405; 7,547,648; 7,549,145; 7,549,327; 7,550,759; 7,554,369; 7,559,472; 7,565,653; 7,570,075; 7,598,897; 7,602,423; 7,603,894; 7,605,600; 7,613,764; 7,613,765; 7,613,886; 7,614,053; 7,619,437; 7,624,088; 7,629,999; 7,630,802; 7,631,966; 7,639,035; 7,644,255; 7,650,210; 7,653,908; 7,654,626; 7,672,756; 7,676,683; 7,680,474; 7,680,972; 7,685,601; 7,687,938; 7,689,068; 7,689,783; 7,689,784; 7,689,814; 7,693,053; 7,693,626; 7,694,306; 7,698,473; 7,701,286; 7,701,506; 7,707,385; 7,714,605; 7,719,453; 7,720,982; 7,724,020; 7,724,083; 7,728,748; 7,730,456; 7,732,804; 7,733,253; 7,748,006; 7,749,922; 7,750,664; 7,760,080; 7,768,287; 7,772,871; 7,774,512; 7,782,077; 7,786,748; 7,786,786; 7,786,864; 7,788,192; 7,788,467; 7,800,395; 7,802,023; 7,805,756; 7,814,166; 7,816,940; 7,818,507; 7,818,724; 7,826,088; 7,829,377; 7,837,115; 7,843,209; 7,844,656; 7,847,615; 7,852,106; 7,858,966; 7,863,892; 7,868,645; 7,870,087; 7,875,876; 7,876,145; 7,876,248; 7,876,869; 7,877,333; 7,880,529; 7,880,594; 7,882,310; 7,882,379; 7,886,112; 7,889,096; 7,889,992; 7,893,708; 7,898,282; 7,899,852; 7,903,456; 7,911,265; 7,912,656; 7,917,667; 7,917,798; 7,920,102; 7,921,151; 7,924,313; 7,926,023; 7,928,875; 7,931,200; 7,932,514; 7,932,515; 7,936,395; 7,942,332; 7,944,253; 7,956,640; 7,958,371; 7,969,178; 7,969,805; 7,977,668; 7,982,646; 7,984,012; 7,984,965; 7,990,662; 7,991,013; 7,991,814; 7,999,813; 8,001,294; 8,001,377; 8,001,390; 8,001,592; 8,008,942; 8,008,991; 8,010,716; 8,018,244; 8,022,012; 8,024,084; 8,028,288; 8,028,292; 8,032,474; 8,035,540; 8,045,660; 8,050,648; 8,055,235; 8,055,318; 8,063,657; 8,068,151; 8,068,741; 8,073,808; 8,077,207; 8,089,286; 8,091,078; 8,098,179; 8,108,564; 8,130,880; 8,138,784; 8,138,880; 8,148,715; 8,159,313; 8,159,825; 8,169,231; 8,169,311; 8,175,995; 8,176,481; 8,179,133; 8,188,901; 8,190,548; 8,195,596; 8,195,726; 8,208,288; 8,219,871; 8,219,981; 8,224,639; 8,228,688; 8,234,103; 8,244,650; 8,244,662; 8,247,799; 8,249,540; 8,260,143; 8,260,144; 8,260,145; 8,271,805; 8,283,943; 8,284,585; 8,290,553; 8,291,485; 8,294,138; 8,301,104; 8,301,214; 8,312,529; 8,315,969; 8,321,866; 8,328,101; 8,332,924; 8,401,509; 8,401,600; 8,405,468; 8,416,109; 8,434,091; 8,437,168; 8,437,818; 8,441,329; 8,462,889; 8,494,993; 8,504,497; 8,508,280; 8,514,986; 8,521,117; 8,547,732; 8,549,521; 8,555,370; 8,565,345; 8,571,614; 8,582,687; 8,593,141; 8,604,944; 8,611,974; 8,618,799; 8,619,242; 8,627,444; 8,654,578; 8,655,828; 8,670,807; 8,686,751; 8,726,041; 8,735,964; 8,738,105; 8,744,541; 8,745,850; 8,748,196; 8,751,212; 8,755,220; 8,766,630; 8,769,495; 8,772,759; 8,786,476; 8,787,873; 8,804,358; 8,811,536; 8,812,066; 8,841,764; 8,854,074; 8,861,619; 8,867,931; 8,872,360; 8,872,690; 8,874,629; 8,892,857; 8,922,239; 8,928,391; 8,933,695; 8,936,196; 8,937,255; 8,951,808; 8,970,217; 8,971,977; 8,975,912; 8,977,223; 8,977,576; 8,986,646; 9,015,215; 9,020,079; 9,020,362; 9,021,011; 9,026,574; 9,040,959; 9,041,427; 9,058,164; 9,059,674; 9,059,707; 9,065,452; 9,069,928; 9,072,894; 9,077,577; 9,129,224; 9,130,116; 9,134,047; 9,152,923; 9,152,924; 9,160,593; 9,162,881; 9,170,278; 9,178,154; 9,183,051; 9,183,508; 9,192,085; 9,203,654; 9,207,672; 9,208,446; 9,218,567; 9,235,811; 9,240,773; 9,252,825; 9,252,986; 9,256,834; 9,261,573; 9,270,385; 9,275,011; 9,276,615; 9,312,878; 9,312,895; 9,331,875; 9,335,385; 9,344,069; 9,344,092; 9,350,460; 9,355,364; 9,355,365; 9,361,169; 9,369,133; 9,379,303; 9,384,827; 9,385,293; 9,385,294; 9,396,440; 9,400,499; 9,401,823; 9,405,876; 9,406,026; 9,412,074; 9,424,526; 9,425,377; 9,425,804; 9,425,838; 9,432,024; 9,437,800; 9,438,246; 9,455,391; 9,460,397; 9,461,588; 9,471,880; 9,473,124; 9,476,950; 9,490,296; 9,495,644; 9,501,747; 9,501,748; 9,503,063; 9,503,258; 9,509,274; 9,509,315; 9,514,415; 9,520,180; 9,524,470; 9,531,671; 9,537,575; 9,547,826; 9,548,878; 9,552,862; 9,554,303; 9,559,284; 9,565,045; 9,577,690; 9,588,191; 9,588,940; 9,594,726; 9,595,969; 9,607,270; 9,614,532; 9,618,591; 9,627,045; 9,633,314; 9,641,372; 9,647,194; 9,647,662; 9,661,596; 9,663,358; 9,665,539; 9,680,452; 9,685,935; 9,686,112; 9,692,423; 9,697,473; 9,699,266; 9,703,516; 9,710,586; 9,710,758; 9,712,238; 9,727,527; 9,727,823; 9,727,824; 9,735,776; 9,741,918; 9,741,920; 9,742,429; 9,747,968; 9,748,937; 9,748,976; 9,753,102; 9,755,133; 9,761,305; 9,768,371; 9,768,771; 9,779,360; 9,780,765; 9,787,312; 9,793,913; 9,793,933; 9,806,711; 9,812,836; 9,818,064; 9,836,699; 9,838,051; 9,853,645; 9,859,981; 9,865,648; 9,870,277; 9,875,215; 9,875,444; 9,881,256; 9,882,112; 9,887,000; 9,892,365; 9,906,191; 9,906,248; 9,909,460; 9,917,580; 9,922,289; 9,928,948; 9,929,978; 9,935,252; 9,940,586; 9,948,254; 9,953,268; 9,953,269; 9,966,720; 9,971,970; 9,978,020; 9,978,809; 9,982,935; 9,984,333; 9,991,864; 9,996,801; 9,998,122; 9,998,187; 10,002,107; 10,013,657; 10,014,859; 10,020,438; 10,031,887; 10,037,493; 10,042,805; 10,044,638; 10,050,630; 10,051,591; 10,056,540; 10,056,908; 10,062,828; 10,062,829; 10,068,180; 10,068,181; 10,074,056; 10,074,792; 10,074,793; 10,097,186; 10,097,221; 10,097,281; 10,103,730; 10,108,071; 10,121,754; 10,122,350; 10,122,351; 10,127,500; 10,128,878; 10,133,984; 10,134,972; 10,140,248; 10,140,404; 10,141,493; 10,141,928; 10,147,865; 10,148,360; 10,157,842; 10,158,343; 10,164,606; 10,168,501; 10,169,714; 10,170,680; 10,170,681; 10,171,077; 10,171,086; 10,176,432; 10,177,297; 10,177,749; 10,187,065; 10,192,168; 10,193,729; 10,197,497; 10,199,553; 10,210,460; 10,222,416; 10,224,475; 10,229,355; 10,229,366; 10,230,038; 10,230,389; 10,230,558; 10,235,634; 10,235,635; 10,236,432; 10,236,869; 10,242,968; 10,243,132; 10,255,557; 10,256,206; 10,262,276; 10,262,727; 10,263,170; 10,268,622; 10,268,968; 10,275,422; 10,275,556; 10,275,718; 10,276,771; 10,276,772; 10,281,278; 10,282,675; 10,283,693; 10,283,694; 10,289,960; 10,290,798; 10,291,227; 10,304,004; 10,304,005; 10,305,015; 10,311,369; 10,318,880; 10,318,881; 10,319,896; 10,320,331; 10,320,383; 10,326,526; 10,332,023; 10,332,024; 10,333,046; 10,333,047; 10,333,048; 10,333,049; 10,333,503; 10,340,438; 10,345,678; 10,346,348; 10,346,349; 10,346,508; 10,346,760; 10,346,761; 10,348,245; 10,348,343; 10,352,992; 10,353,844; 10,354,198; 10,355,193; 10,355,677; 10,355,681; 10,366,340; 10,367,132; 10,367,133; 10,373,928; 10,374,612; 10,379,420; 10,380,494; 10,380,495; 10,380,496; 10,381,206; 10,381,541; 10,381,542; 10,382,132; 10,389,336; 10,396,269; 10,396,782; 10,396,801; 10,398,031; 10,403,808; 10,403,809; 10,404,214; 10,411,321; 10,411,804; 10,417,574; 10,418,540; 10,423,888; 10,424,711; 10,424,712; 10,424,713; 10,452,991; 10,453,894; 10,454,015; 10,454,016; 10,454,459; 10,460,796; 10,461,385; 10,467,543; 10,467,544; 10,467,545; 10,468,578; 10,468,740; 10,475,983; 10,482,388; 10,483,980; 10,488,469; 10,489,477; 10,490,600; 10,491,178; 10,491,221; 10,496,933; 10,496,934; 10,497,853; 10,502,802; 10,504,842; 10,505,097; 10,505,524; 10,509,084; 10,510,015; 10,510,943; 10,511,276; 10,516,486; 10,528,885; 10,528,886; 10,528,887; 10,529,003; 10,530,435; 10,535,013; 10,535,809; 10,540,603; 10,540,604; 10,541,659; 10,546,992; 10,546,993; 10,547,160; 10,552,755; 10,552,756; 10,552,757; 10,553,775; 10,554,207; 10,560,076; 10,560,103; 10,565,515; 10,567,100; 10,572,816; 10,573,093; 10,578,891; 10,586,908; 10,586,909; 10,586,911; 10,593,858; 10,593,879; 10,599,988; 10,599,990; 10,601,623; 10,614,372; 10,615,223; 10,615,783; 10,616,025; 10,621,140; 10,621,502; 10,622,032; 10,622,977; 10,622,998; 10,628,752; 10,628,753; 10,629,978; 10,630,326; 10,635,988; 10,635,989; 10,635,990; 10,637,142; 10,637,449; 10,637,479; 10,643,143; 10,644,217; 10,644,809; 10,650,319; 10,650,320; 10,650,322; 10,650,323; 10,651,361; 10,651,808; 10,657,198; 10,657,455; 10,657,456; 10,658,424; 10,659,018; 10,659,075; 10,665,635; 10,665,701; 10,665,769; 10,665,918; 10,666,238; 10,671,559; 10,671,937; 10,680,617; 10,686,007; 10,686,115; 10,691,633; 10,692,010; 10,693,566; 10,700,256; 10,700,257; 10,705,163; 10,706,366; 10,707,402; 10,707,812; 10,707,873; 10,708,046; 10,712,408; 10,713,584; 10,715,083; 10,719,775; 10,719,776; 10,720,562; 10,720,563; 10,720,887; 10,725,131; 10,725,361; 10,726,351; 10,726,353; 10,735,003; 10,740,688; 10,741,742; 10,748,078; 10,748,079; 10,748,082; 10,748,960; 10,748,961; 10,749,095; 10,749,096; 10,755,190; 10,755,194; 10,755,775; 10,756,004; 10,756,712; 10,763,420; 10,769,545; 10,769,546; 10,770,638; 10,775,173; 10,776,709; 10,784,432; 10,789,123; 10,789,329; 10,789,541; 10,790,566; 10,797,684; 10,803,396; 10,804,874; 10,809,177; 10,810,506; 10,810,507; 10,811,276; 10,811,588; 10,813,219; 10,817,463; 10,817,796; 10,819,281; 10,826,845; 10,832,155; 10,832,156; 10,833,016; 10,833,121; 10,833,242; 10,833,243; 10,833,680; 10,839,305; 10,839,306; 10,840,295; 10,847,705; 10,847,706; 10,852,346; 10,852,366; 10,858,239; 10,858,240; 10,862,465; 10,868,540; 10,872,021; 10,879,202; 10,879,446; 10,879,906; 10,884,033; 10,885,459; 10,886,049; 10,886,454; 10,886,585; 10,887,013; 10,891,554; 10,891,555; 10,892,725; 10,892,751; 10,897,069; 10,901,062; 10,903,411; 10,903,809; 10,914,969; 10,915,832; 10,916,690; 10,916,821; 10,917,096; 10,922,381; 10,922,617; 10,922,619; 10,924,095; 10,927,076; 10,929,576; 10,931,267; 10,937,941; 10,938,346; 10,942,804; 10,943,180; 10,944,362; 10,949,769; 10,950,299; 10,950,654; 10,950,778; 10,956,267; 10,957,841; 10,958,253; 10,958,274; 10,964,997; 10,969,443; 10,971,672; 10,978,425; 10,978,632; 10,984,335; 10,984,336; 10,985,308; 10,985,701; 10,985,739; 10,989,767; 10,990,017; 10,991,755; 10,992,106; 10,996,979; 10,998,869; 11,004,009; 11,005,023; 11,005,024; 11,006,527; 11,010,145; 11,010,686; 11,011,693; 11,012,960; 11,017,310; 11,018,290; 11,033,981; 11,037,068; 11,038,095; 11,049,037; 11,050,009; 11,050,010; 11,055,627; 11,056,583; 11,063,201; 11,069,790; 11,070,210; 11,075,435; 11,088,679; 11,095,489; 11,100,418; 11,105,866; 11,106,980; 11,106,993; 11,108,120; 11,108,380; 11,108,398; 11,112,442; 11,112,842; 11,115,011; 11,115,012; 11,115,027; 11,115,131; 11,119,385; 11,120,357; 11,121,239; 11,121,301; 11,121,302; 11,126,062; 11,126926; 11,127,892; 11,128,045; 11,133,450; 11,133,451; 11,138,354; 11,139,424; 11,152,707; 11,157827; 11,163,209; 11,164,100; 11,164,102; 11,164,103; 11,164,104; 11,169,801; 11,170,317; 11,170318; 11,170,846; 11,177,428; 11,177,912; 11,178,771; 11,182,230; 11,182,690; 11,183,989; 11,188843; 11,194,573; 11,194,659; 11,197,365; 11,200,508; 11,210,600; 11,210,601; 11,210,602; 11,211482; 11,218,471; 11,223,005; 11,223,355; 11,240,223; 11,245,389; 11,245,390; 11,245,486; 11,245519; 11,258,415; 11,264,089; 11,264,554; 11,271,280; 11,271,533; 11,281,524; 11,283,002; 11,283445; 11,288,121; 11,289,156; 11,289,639; 11,293,851; 11,294,986; 11,300,853; 11,301,770; 11,302856; 11,303,281; 11,307,242; 11,308,416; 11,309,478; 11,317,519; 11,320,588; 11,321,627; 11,329638; 11,334,811; 11,341,426; 11,342,493; 11,342,905; 20010020701; 20010023943; 20010025012; 20010035524; 20010040447; 20010055669; 20010055775; 20020060635; 20020066936; 20020075057; 20020095765; 20020097047; 20020102674; 20020105948; 20020115571; 20020117467; 20020117656; 20020117738; 20020118903; 20020119243; 20020119805; 20020121636; 20020128156; 20020130313; 20020130315; 20020135582; 20020138637; 20020138701; 20020138707; 20020152810; 20020156993; 20020169079; 20020177529; 20020177769; 20020179937; 20020179939; 20020188578; 20020189533; 20020190381; 20030005010; 20030011398; 20030016010; 20030016069; 20030017949; 20030027724; 20030028338; 20030034794; 20030038285; 20030039138; 20030040440; 20030042481; 20030054960; 20030057441; 20030058026; 20030068832; 20030071246; 20030071258; 20030076251; 20030077224; 20030094606; 20030098455; 20030102470; 20030107033; 20030111659; 20030111661; 20030115401; 20030117496; 20030121028; 20030134089; 20030141868; 20030146429; 20030146430; 20030146746; 20030169041; 20030169142; 20030173498; 20030173997; 20030179831; 20030183935; 20030189203; 20030193097; 20030199395; 20030207766; 20030207767; 20030219911; 20030224944; 20030229765; 20030230732; 20040000666; 20040004129; 20040004698; 20040008262; 20040012388; 20040012407; 20040014077; 20040016883; 20040016918; 20040022332; 20040027125; 20040041018; 20040056105; 20040065738; 20040075747; 20040077503; 20040080620; 20040090553; 20040095803; 20040098443; 20040099861; 20040104410; 20040119061; 20040119827; 20040120299; 20040125209; 20040125212; 20040126304; 20040129789; 20040130311; 20040134967; 20040135139; 20040140537; 20040145366; 20040150458; 20040151321; 20040154704; 20040165454; 20040167036; 20040170047; 20040173787; 20040173792; 20040173793; 20040183914; 20040201400; 20040215931; 20040220057; 20040223380; 20040232405; 20040232912; 20040234785; 20040239319; 20040266497; 20040266627; 20050001209; 20050023518; 20050029512; 20050035368; 20050040843; 20050043185; 20050045869; 20050045872; 20050047245; 20050052181; 20050057248; 20050062131; 20050071404; 20050071513; 20050071526; 20050071578; 20050071651; 20050071828; 20050074220; 20050078022; 20050078117; 20050081181; 20050081182; 20050081201; 20050081202; 20050081203; 20050081209; 20050081213; 20050082519; 20050086655; 20050088174; 20050091473; 20050092849; 20050095011; 20050097231; 20050097280; 20050097302; 20050098773; 20050101489; 20050106313; 20050107262; 20050109879; 20050116204; 20050116719; 20050120185; 20050120187; 20050120254; 20050122399; 20050123674; 20050134262; 20050138325; 20050143791; 20050145701; 20050146613; 20050146614; 20050149002; 20050149169; 20050151819; 20050160097; 20050162302; 20050171421; 20050179781; 20050180095; 20050185198; 20050185461; 20050188372; 20050188373; 20050192727; 20050197254; 20050202572; 20050206376; 20050215436; 20050216222; 20050216775; 20050218236; 20050224784; 20050228967; 20050231196; 20050241394; 20050243708; 20050247793; 20050250651; 20050251659; 20050251667; 20050255680; 20050256007; 20050258248; 20050268038; 20050268048; 20050273652; 20060022671; 20060025897; 20060038821; 20060049891; 20060050286; 20060055782; 20060056728; 20060069879; 20060072030; 20060075397; 20060076423; 20060079402; 20060091881; 20060092957; 20060093861; 20060095220; 20060097746; 20060097747; 20060104889; 20060107122; 20060112213; 20060126770; 20060129786; 20060129999; 20060143509; 20060145694; 20060147154; 20060148514; 20060149861; 20060151775; 20060155792; 20060155955; 20060155964; 20060158519; 20060161741; 20060164081; 20060176054; 20060177122; 20060179179; 20060179198; 20060179255; 20060179275; 20060179277; 20060179278; 20060179436; 20060180371; 20060186881; 20060190614; 20060190942; 20060195824; 20060206731; 20060206732; 20060212193; 20060212194; 20060212643; 20060214012; 20060220641; 20060225165; 20060231627; 20060234419; 20060237660; 20060243043; 20060244581; 20060247131; 20060248618; 20060251070; 20060255987; 20060259733; 20060259743; 20060270173; 20060275958; 20060284839; 20060290553; 20070005202; 20070007956; 20070011023; 20070018643; 20070038067; 20070046955; 20070049097; 20070052441; 20070057781; 20070069339; 20070075729; 20070075752; 20070075919; 20070077906; 20070080341; 20070083870; 20070085534; 20070096565; 20070096730; 20070114994; 20070116629; 20070126561; 20070139216; 20070156312; 20070156320; 20070158791; 20070167723; 20070168538; 20070174227; 20070176625; 20070180041; 20070180586; 20070186077; 20070194225; 20070194958; 20070197900; 20070201845; 20070201846; 20070205881; 20070212794; 20070236245; 20070240013; 20070241746; 20070241747; 20070254375; 20070258329; 20070263432; 20070277000; 20070283103; 20070288701; 20070293160; 20080001599; 20080024126; 20080024642; 20080040805; 20080047367; 20080048762; 20080048902; 20080049885; 20080051291; 20080051292; 20080052055; 20080052504; 20080065290; 20080065573; 20080074110; 20080074113; 20080077721; 20080077815; 20080084898; 20080086240; 20080086438; 20080091886; 20080098260; 20080100175; 20080101444; 20080101501; 20080101503; 20080103708; 20080107213; 20080108503; 20080109500; 20080112313; 20080116448; 20080116449; 20080122434; 20080126601; 20080129475; 20080146449; 20080155203; 20080156406; 20080162613; 20080162834; 20080162877; 20080165254; 20080168443; 20080176750; 20080186064; 20080209156; 20080215850; 20080216567; 20080218519; 20080229143; 20080231353; 20080235679; 20080238531; 20080250414; 20080256275; 20080258753; 20080260257; 20080271003; 20080274898; 20080276232; 20080279370; 20080282063; 20080282084; 20080282093; 20080282341; 20080282342; 20080284413; 20080284575; 20080290938; 20080297230; 20080301695; 20080313114; 20080313430; 20090002014; 20090008632; 20090014714; 20090015317; 20090031412; 20090033369; 20090034657; 20090043441; 20090057652; 20090068355; 20090070402; 20090072828; 20090073017; 20090075825; 20090077001; 20090078931; 20090078932; 20090082209; 20090086533; 20090102580; 20090121215; 20090122508; 20090125717; 20090135215; 20090135232; 20090143665; 20090153180; 20090153381; 20090167342; 20090168286; 20090173936; 20090189633; 20090192041; 20090206871; 20090227044; 20090232191; 20090232507; 20090232510; 20090233798; 20090237106; 20090241013; 20090242636; 20090244215; 20090244292; 20090244958; 20090256561; 20090259905; 20090261319; 20090267635; 20090274609; 20090289638; 20090299947; 20090302844; 20090319757; 20090321720; 20090322374; 20090324484; 20100006825; 20100026447; 20100026537; 20100033206; 20100033252; 20100066576; 20100079600; 20100085827; 20100091116; 20100094796; 20100097056; 20100102904; 20100109638; 20100109669; 20100133514; 20100148841; 20100148853; 20100149011; 20100164536; 20100170951; 20100176840; 20100182039; 20100194466; 20100207622; 20100207657; 20100207754; 20100237899; 20100239489; 20100281885; 20100301855; 20100301856; 20100301857; 20100303731; 20100303733; 20100306142; 20100312969; 20100315516; 20100327861; 20100327865; 20100329401; 20100329962; 20100330704; 20110004930; 20110009274; 20110010412; 20110018612; 20110022820; 20110031994; 20110047201; 20110049475; 20110054236; 20110054450; 20110054876; 20110055520; 20110057169; 20110060710; 20110060711; 20110060780; 20110063016; 20110065585; 20110065586; 20110068789; 20110085381; 20110087909; 20110089405; 20110098623; 20110102068; 20110122261; 20110125460; 20110133770; 20110152104; 20110167241; 20110175061; 20110175062; 20110175628; 20110210738; 20110231462; 20110238607; 20110241765; 20110254583; 20110267878; 20110278355; 20110285393; 20110288823; 20110298489; 20110302591; 20110303153; 20120005456; 20120012818; 20120019242; 20120023053; 20120030386; 20120042372; 20120045136; 20120053059; 20120088674; 20120089299; 20120094838; 20120096873; 20120108434; 20120112168; 20120135867; 20120144159; 20120157319; 20120157321; 20120172233; 20120184445; 20120187378; 20120187872; 20120210111; 20120212375; 20120215821; 20120225411; 20120238860; 20120252678; 20120254586; 20120258861; 20120265718; 20120266174; 20120274494; 20120278057; 20120294424; 20120302446; 20120314490; 20120319684; 20120320668; 20120324563; 20120324564; 20120326130; 20120326720; 20120328301; 20130004180; 20130005580; 20130007087; 20130009677; 20130015885; 20130038330; 20130040818; 20130043945; 20130079230; 20130096825; 20130117200; 20130144925; 20130186953; 20130190185; 20130196855; 20130201316; 20130221960; 20130231249; 20130233077; 20130245402; 20130258595; 20130271142; 20130272453; 20130278265; 20130278283; 20130282636; 20130303379; 20130313526; 20130324832; 20140000630; 20140025606; 20140050475; 20140056385; 20140089374; 20140097405; 20140113828; 20140167811; 20140167836; 20140175380; 20140187427; 20140203838; 20140223224; 20140228222; 20140229705; 20140229722; 20140232400; 20140235450; 20140245249; 20140245314; 20140246763; 20140249033; 20140250288; 20140253111; 20140264285; 20140286465; 20140296076; 20140303931; 20140314419; 20140315723; 20140324933; 20140329687; 20140343397; 20140344322; 20140354326; 20140368234; 20150006443; 20150028970; 20150032991; 20150032993; 20150032994; 20150043273; 20150046681; 20150055961; 20150070131; 20150078290; 20150087945; 20150092465; 20150094207; 20150111754; 20150119252; 20150119253; 20150125155; 20150143817; 20150146805; 20150146806; 20150161524; 20150178432; 20150179913; 20150179914; 20150179915; 20150179916; 20150179918; 20150184286; 20150187840; 20150195248; 20150205759; 20150212166; 20150219730; 20150229343; 20150241481; 20150242758; 20150254571; 20150262073; 20150263736; 20150269124; 20150288476; 20150288542; 20150300719; 20150310350; 20150318095; 20150332164; 20150346291; 20150349780; 20150357550; 20150358022; 20150363708; 20150372217; 20150379418; 20160012346; 20160012347; 20160012882; 20160013791; 20160019468; 20160023906; 20160028402; 20160028403; 20160032904; 20160034609; 20160035404; 20160036612; 20160042294; 20160044647; 20160045841; 20160065693; 20160071021; 20160071903; 20160079968; 20160080189; 20160085616; 20160087599; 20160093420; 20160103192; 20160112031; 20160127073; 20160132785; 20160139213; 20160148112; 20160149111; 20160154068; 20160156357; 20160164505; 20160191060; 20160197628; 20160221825; 20160233405; 20160233860; 20160233965; 20160248582; 20160254434; 20160267032; 20160267964; 20160276570; 20160283857; 20160292586; 20160292587; 20160296145; 20160308502; 20160314407; 20160321559; 20160335558; 20160335559; 20160351306; 20160364653; 20160371227; 20160380636; 20170000375; 20170012862; 20170017742; 20170017894; 20170026095; 20170038123; 20170039481; 20170045592; 20170045800; 20170061317; 20170062107; 20170069367; 20170069415; 20170070290; 20170071082; 20170072504; 20170077381; 20170077382; 20170077665; 20170078400; 20170085231; 20170086281; 20170089961; 20170091647; 20170091649; 20170091650; 20170098682; 20170104491; 20170104493; 20170104695; 20170116159; 20170116542; 20170117901; 20170117994; 20170123171; 20170133336; 20170133576; 20170133577; 20170134091; 20170141286; 20170141287; 20170141769; 20170146618; 20170162778; 20170163301; 20170168123; 20170177534; 20170177751; 20170178017; 20170178018; 20170179973; 20170184689; 20170186934; 20170186935; 20170193388; 20170199036; 20170201224; 20170212860; 20170213143; 20170228483; 20170229167; 20170229631; 20170229632; 20170229633; 20170230050; 20170237144; 20170237594; 20170241953; 20170250796; 20170255629; 20170255871; 20170255872; 20170262765; 20170265158; 20170265287; 20170276827; 20170286859; 20170294965; 20170295048; 20170296169; 20170296177; 20170296178; 20170296179; 20170296180; 20170296183; 20170296184; 20170296185; 20170296189; 20170296213; 20170300454; 20170300808; 20170300827; 20170301444; 20170316487; 20170317262; 20170323195; 20170324019; 20170329883; 20170331899; 20170337155; 20170343750; 20170344898; 20170345990; 20170351974; 20170359072; 20170366270; 20170373044; 20170373369; 20180005809; 20180005887; 20180012932; 20180013052; 20180013426; 20180019737; 20180025775; 20180026633; 20180032893; 20180033944; 20180034425; 20180034912; 20180040935; 20180054201; 20180062765; 20180067182; 20180069288; 20180069631; 20180076777; 20180090661; 20180091115; 20180091141; 20180091142; 20180091143; 20180091440; 20180092313; 20180101784; 20180101785; 20180101786; 20180101787; 20180102166; 20180102469; 20180102470; 20180107092; 20180114568; 20180118573; 20180123544; 20180124181; 20180131376; 20180137428; 20180137429; 20180137430; 20180138987; 20180145631; 20180145664; 20180145753; 20180150579; 20180150760; 20180150761; 20180157775; 20180164385; 20180188107; 20180196780; 20180198427; 20180211158; 20180218279; 20180218280; 20180218281; 20180219150; 20180225586; 20180226974; 20180226975; 20180232652; 20180232653; 20180232654; 20180232655; 20180240033; 20180240034; 20180240035; 20180246848; 20180247974; 20180248103; 20180248104; 20180260245; 20180260729; 20180260730; 20180260731; 20180260732; 20180261752; 20180262243; 20180267116; 20180267933; 20180275057; 20180276550; 20180277733; 20180278693; 20180278694; 20180285761; 20180287041; 20180294401; 20180294815; 20180300286; 20180301612; 20180301613; 20180308007; 20180308896; 20180309452; 20180314968; 20180314970; 20180322408; 20180323364; 20180330264; 20180330266; 20180330267; 20180331274; 20180335683; 20180336153; 20180337138; 20180337324; 20180341874; 20180342663; 20180343304; 20180348310; 20180350411; 20180350749; 20180351521; 20180359718; 20180365587; 20180366634; 20180373996; 20180375790; 20180375940; 20190005403; 20190006572; 20190007051; 20190013065; 20190019098; 20190019099; 20190019938; 20190027672; 20190034819; 20190036515; 20190042264; 20190042962; 20190042963; 20190042964; 20190042967; 20190042968; 20190042970; 20190042971; 20190042972; 20190042973; 20190043822; 20190043919; 20190044044; 20190044046; 20190044047; 20190044051; 20190044668; 20190049495; 20190058105; 20190065981; 20190065982; 20190073439; 20190079145; 20190081629; 20190082997; 20190087385; 20190095811; 20190098090; 20190102691; 20190104614; 20190109273; 20190109904; 20190122133; 20190123743; 20190123744; 20190131511; 20190131683; 20190131944; 20190147359; 20190149139; 20190156237; 20190156238; 20190158098; 20190164077; 20190164959; 20190165239; 20190165240; 20190165242; 20190165245; 20190165246; 20190173708; 20190182995; 20190187075; 20190188596; 20190188597; 20190190463; 20190190474; 20190204372; 20190204753; 20190205784; 20190207075; 20190207076; 20190207794; 20190212147; 20190214561; 20190214789; 20190214971; 20190215952; 20190220771; 20190227439; 20190228331; 20190228332; 20190229094; 20190229690; 20190236476; 20190237648; 20190237649; 20190238137; 20190245538; 20190245544; 20190251466; 20190252754; 20190259931; 20190266508; 20190266510; 20190266512; 20190267154; 20190267532; 20190267692; 20190270635; 20190273196; 20190273197; 20190288174; 20190288176; 20190288178; 20190288367; 20190294025; 20190294991; 20190296212; 20190296214; 20190296743; 20190302194; 20190303242; 20190303788; 20190305037; 20190305038; 20190305206; 20190317167; 20190317978; 20190321039; 20190324846; 20190324941; 20190326501; 20190332965; 20190337894; 20190339339; 20190341540; 20190341668; 20190343002; 20190343003; 20190347576; 20190348597; 20190354890; 20190362260; 20190362780; 20190363239; 20190363688; 20190369171; 20190370679; 20190370680; 20190372192; 20190378874; 20190385088; 20190385673; 20190391214; 20190392344; 20190392878; 20190393401; 20200000468; 20200005178; 20200005186; 20200006421; 20200006619; 20200006620; 20200006621; 20200007235; 20200008800; 20200012961; 20200018803; 20200023462; 20200027502; 20200028480; 20200028512; 20200033511; 20200036330; 20200036331; 20200036332; 20200036333; 20200044137; 20200044632; 20200044656; 20200046348; 20200049776; 20200050026; 20200050958; 20200050959; 20200050961; 20200052101; 20200052183; 20200052359; 20200057957; 20200058702; 20200062583; 20200064412; 20200065696; 20200074345; 20200075093; 20200075832; 20200075833; 20200075834; 20200078015; 20200081075; 20200081076; 20200082291; 20200083424; 20200090738; 20200091396; 20200091397; 20200091867; 20200099116; 20200104740; 20200106149; 20200106444; 20200106445; 20200111016; 20200111944; 20200112310; 20200115372; 20200116623; 20200118025; 20200118026; 20200119251; 20200119254; 20200119737; 20200120812; 20200125625; 20200127186; 20200127678; 20200134502; 20200134503; 20200136008; 20200136223; 20200136626; 20200138434; 20200138437; 20200142225; 20200144476; 20200144690; 20200145065; 20200152696; 20200152851; 20200152853; 20200152854; 20200156955; 20200160204; 20200161446; 20200161531; 20200162047; 20200162078; 20200166586; 20200167683; 20200167684; 20200167685; 20200169396; 20200176409; 20200176662; 20200183768; 20200184364; 20200186132; 20200193320; 20200204181; 20200206344; 20200210879; 20200215131; 20200219001; 20200220064; 20200220757; 20200226487; 20200227617; 20200234171; 20200234173; 20200235277; 20200242452; 20200242500; 20200242501; 20200242503; 20200243132; 20200243133; 20200244253; 20200250564; 20200250567; 20200250569; 20200250570; 20200251419; 20200257644; 20200258003; 20200259066; 20200259483; 20200264130; 20200264213; 20200265334; 20200266234; 20200272910; 20200272925; 20200272929; 20200274049; 20200274050; 20200274526; 20200274703; 20200274929; 20200278308; 20200278903; 20200279013; 20200279184; 20200279186; 20200279990; 20200280316; 20200280317; 20200280607; 20200284855; 20200284859; 20200285539; 20200287118; 20200287122; 20200287525; 20200287540; 20200287550; 20200287631; 20200293486; 20200293937; 20200293938; 20200294401; 20200294557; 20200299146; 20200301244; 20200301874; 20200311591; 20200320420; 20200320423; 20200320424; 20200320426; 20200321506; 20200321508; 20200327440; 20200327441; 20200328339; 20200333263; 20200334101; 20200334104; 20200334107; 20200335683; 20200342296; 20200342345; 20200344051; 20200349326; 20200349458; 20200349459; 20200350083; 20200350880; 20200352918; 20200356889; 20200356890; 20200358187; 20200359501; 20200362384; 20200363206; 20200364600; 20200364602; 20200365397; 20200371974; 20200372094; 20200373351; 20200373475; 20200379768; 20200380396; 20200381608; 20200381609; 20200393738; 20200394524; 20200394537; 20200394546; 20200394547; 20200395405; 20200395448; 20200401649; 20200401922; 20200401927; 20200403137; 20200403289; 20200410343; 20200410382; 20200411937; 20200411938; 20200412369; 20210004708; 20210005249; 20210013391; 20210013570; 20210018575; 20210019223; 20210019646; 20210019647; 20210021245; 20210026162; 20210027188; 20210028138; 20210028343; 20210028345; 20210028346; 20210033683; 20210034998; 20210035004; 20210035005; 20210036206; 20210036692; 20210043824; 20210047913; 20210056454; 20210056455; 20210057135; 20210057484; 20210057631; 20210064350; 20210065036; 20210066570; 20210067146; 20210068320; 20210072139; 20210073667; 20210073668; 20210075860; 20210075861; 20210081816; 20210083167; 20210083168; 20210083676; 20210085316; 20210085317; 20210085675; 20210089954; 20210091062; 20210091755; 20210099129; 20210099201; 20210103012; 20210103018; 20210104656; 20210110290; 20210110291; 20210110868; 20210111469; 20210114864; 20210116499; 20210117512; 20210117845; 20210119101; 20210125096; 20210132969; 20210133614; 20210133617; 20210133618; 20210139315; 20210142203; 20210142205; 20210142215; 20210143804; 20210143805; 20210151844; 20210157877; 20210159384; 20210167272; 20210175095; 20210182724; 20210182725; 20210182728; 20210184329; 20210190885; 20210193270; 20210202573; 20210208509; 20210218367; 20210226113; 20210226597; 20210226635; 20210230674; 20210232960; 20210232963; 20210233617; 20210233896; 20210234086; 20210234087; 20210247329; 20210255856; 20210256351; 20210256409; 20210257177; 20210257969; 20210257995; 20210263390; 20210264309; 20210265964; 20210271545; 20210272002; 20210279134; 20210279624; 20210279625; 20210280701; 20210280704; 20210280766; 20210281252; 20210288611; 20210294680; 20210296558; 20210296749; 20210302513; 20210304052; 20210304053; 20210304054; 20210305958; 20210313973; 20210325368; 20210326737; 20210326739; 20210326740; 20210334081; 20210336032; 20210336121; 20210336319; 20210341411; 20210341979; 20210342161; 20210342726; 20210342727; 20210342729; 20210343923; 20210350266; 20210350268; 20210351075; 20210357798; 20210359666; 20210359670; 20210365622; 20210367065; 20210374550; 20210374595; 20210384401; 20210384402; 20210384406; 20210384896; 20210390440; 20210390442; 20210391851; 20210391852; 20210399044; 20210399199; 20210399763; 20210406746; 20210408112; 20210408355; 20220003676; 20220004079; 20220011384; 20220012622; 20220014408; 20220019927; 20220019929; 20220020912; 20220021391; 20220028927; 20220029083; 20220036943; 20220045416; 20220045425; 20220051123; 20220052662; 20220057261; 20220058508; 20220059919; 20220065954; 20220076154; 20220083488; 20220083891; 20220083892; 20220083893; 20220084085; 20220085527; 20220087012; 20220087022; 20220092461; 20220092462; 20220094320; 20220094338; 20220094341; 20220094342; 20220101171; 20220103172; 20220115577; 20220116208; 20220121978; 20220121979; 20220123449; 20220129779; 20220131064; 20220135409; 20220136895; 20220137390; 20220138609; 20220138611; 20220140223; 20220140820; 20220140927; 20220146905; 20220147358; 20220147859; 20220149841; 20220156444; 20220156621; 20220164501; 20220164694; 202102580109; and 202103904449.
See Patent and Publication Nos.: AU-2002248800; AU-2003250608; AU-2004266178; AU-2005242881; AU-2007209712; AU-2008200506; AU-2012236227; AU-2012271422; AU-2012279307; AU-2014354845; AU-2015267491; AU-2015275326; AU-2015283229; AU-2015347258; AU-2015361113; AU-2015417667; AU-2015417766; AU-2016215234; AU-2016215236; AU-2016287262; AU-2016335554; AU-2016351374; AU-2016357098; AU-2016423167; AU-2016423191; AU-2016432064; AU-2016432315; AU-2017215201; AU-2017219169; AU-2017280880; AU-2017345039; AU-2017360505; AU-2017386234; AU-2017387796; AU-2017404530; AU-2017404536; AU-2017429630; AU-2017429631; AU-2017430443; AU-2017431392; AU-2017431764; AU-2017432161; AU-2017432809; AU-2017434905; AU-2017442682; AU-2017442703; AU-2017443043; AU-2017443044; AU-2018230440; AU-2018230642; AU-2018247327; AU-2018278348; AU-2018282100; AU-2018362084; AU-2018406532; AU-2018415721; AU-2018434686; AU-2019203536; AU-2019206299; AU-2019206300; AU-2019209295; AU-2019210496; AU-2019283688; AU-2019289070; AU-2019321613; AU-2019333268; AU-2019365240; AU-2019389858; AU-2019420732; AU-2019426405; AU-2019430032; AU-2019446426; AU-2020202779; AU-2020217399; AU-2020235374; AU-2020250769; AU-2020255132; AU-2020256387; AU-2020259653; AU-2020274007; AU-2020292425; AU-2020294362; AU-2020297857; AU-2020324398; AU-2020340968; AU-2020349591; AU-2020354489; AU-2020376131; AU-2021201028; AU-2021201029; AU-2021201519; AU-2021201695; AU-2021202981; AU-2021203130; AU-2021204723; AU-2021225173; AU-2021232777; AU-2021257928; AU-763277; CA-2225803-C; CA-2381109; CA-2396201; CA-2444659; CA-2448682; CA-2482792; CA-2493592; CA-2530942-C; CA-2637071; CA-2662604; CA-2662604-C; CA-2667640; CA-2667640-C; CA-2681147; CA-2751897; CA-2763134; CA-2765898; CA-2814865; CA-2836156; CA-2837896; CA-2849589; CA-2860516; CA-2868986; CA-2898598; CA-2898608; CA-2927326; CA-2931398; CA-2950133; CA-2953185; CA-2960483; CA-2968827; CA-2968830; CA-2974106; CA-2977662; CA-2977780; CA-2981493; CA-2987426; CA-2988829; CA-2996620; CA-2998363; CA-3003272; CA-3004750; CA-3008796; CA-3008825; CA-3009887; CA-3010686; CA-3012700; CA-3012853; CA-3026499; CA-3032557; CA-3034528; CA-3036054; CA-3036059; CA-3036478; CA-3036489; CA-3036501; CA-3036945; CA-3040583; CA-3043201; CA-3046173; CA-3046616; CA-3047541; CA-3049097; CA-3054796; CA-3056595; CA-3056596; CA-3058725; CA-3058731; CA-3065337; CA-3065859; CA-3074067; CA-3074121; CA-3074722; CA-3075163; CA-3075253; CA-3076182; CA-3076743; CA-3078581; CA-3080318; CA-3085717; CA-3085827; CA-3085866; CA-3085954; CA-3085955; CA-3086919; CA-3087071; CA-3087257; CA-3087539; CA-3088133; CA-3088135; CA-3088650; CA-3089263; CA-3090429; CA-3093134; CA-3093358; CA-3096026; CA-3096490; CA-3096897; CA-3101170; CA-3102199; CA-3102773; CA-3102866; CA-3103471; CA-3104518; CA-3109380; CA-3109599; CA-3109604; CA-3109643; CA-3112351; CA-3112444; CA-3112594; CA-3112596; CA-3114773; CA-3117223; CA-3125749; CA-3125824; CA-3125917; CA-3125986; CA-3127307; CA-3132092; CA-3132152; CA-3133917; CA-3135530; CA-3135532; CA-3137517; CA-3137657; CA-3139157; CA-3140970; CA-3141547; CA-3142865; CA-3143227; CA-3143363; CA-3143581; CA-3143661; CA-3143691; CA-3147698; CA-3147706; CA-3149305; CA-3150036; CA-3150374; CA-3151055; CA-3151510; CA-3154738; CN-100382014; CN-100409222; CN-100412848; CN-100419638; CN-100432956; CN-100451996; CN-100504790; CN-100524270; CN-100549984; CN-100555174; CN-100572590; CN-101040268; CN-101057223; CN-101080701; CN-101084505; CN-101091147; CN-101099140; CN-101099141; CN-101203939; CN-101326500; CN-101375302; CN-101401128; CN-101615233; CN-101626233; CN-101626234; CN-101657827; CN-101705469; CN-101838844; CN-102334206; CN-102449481; CN-102460196; CN-102687169; CN-102687476; CN-102959750; CN-103069421; CN-103451265; CN-103582949; CN-103781918; CN-104081464; CN-104576914; CN-104838590; CN-105190656; CN-105264680; CN-105814074; CN-105814856; CN-105914219; CN-105980615; CN-105984840; CN-106267902; CN-106461287; CN-106575667; CN-106662707; CN-106664194; CN-106767944; CN-106953000; CN-107004755; CN-107075559; CN-107251435; CN-107302512; CN-107393941; CN-107580752; CN-107636699; CN-107704649; CN-107924490; CN-107925146; CN-107980145; CN-107994307; CN-108028293; CN-108108151; CN-108259014; CN-108290733; CN-108342385; CN-108349725; CN-108352841; CN-108475353; CN-108778345; CN-108780119; CN-108780129; CN-108796058; CN-109075186; CN-109238775; CN-109285760; CN-109313725; CN-109314174; CN-109376870; CN-109389223; CN-109450555; CN-109477061; CN-109508303; CN-109626323; CN-109643710; CN-109643730; CN-109685216; CN-109715802; CN-109716650; CN-109764960; CN-109783054; CN-109791944; CN-109792840; CN-109804477; CN-109841645; CN-109844637; CN-109844642; CN-109845107; CN-109863249; CN-109874327; CN-109889318; CN-109891252; CN-109891591; CN-109997156; CN-110024146; CN-110024282; CN-110024292; CN-110034228; CN-110050383; CN-110069238; CN-110073375; CN-1101083-C; CN-110176532; CN-110235150; CN-110249343; CN-110257430; CN-110289256; CN-110289312; CN-110311662; CN-110383303; CN-110383485; CN-110402446; CN-110431568; CN-110462836; CN-110472740; CN-110494998; CN-110520873; CN-110622297; CN-110646503; CN-110692067; CN-110709934; CN-110739010; CN-110741391; CN-110945536; CN-110998853; CN-111033773; CN-111049503; CN-111095306; CN-111095307; CN-111095584; CN-111108687; CN-111133459; CN-111149439; CN-111164618; CN-111180848; CN-111183434; CN-111213280; CN-111213281; CN-111247741; CN-111260066; CN-111260068; CN-111328432; CN-111344875; CN-111344896; CN-111417966; CN-111417967; CN-111427810; CN-111460749; CN-111465947; CN-111465948; CN-111480170; CN-111523672; CN-111542842; CN-111542935; CN-111598248; CN-111613716; CN-111630531; CN-111656374; CN-111712842; CN-111723936; CN-111725382; CN-111727248; CN-111755587; CN-111788588; CN-111868755; CN-111868756; CN-111868757; CN-111902358; CN-111903057; CN-111914500; CN-111914507; CN-111950215; CN-111950216; CN-111967603; CN-111969100; CN-112114875; CN-112116094; CN-112149832; CN-112236785; CN-112262398; CN-112313677; CN-112313796; CN-112331693; CN-112368721; CN-112368940; CN-112385140; CN-112397862; CN-112400178; CN-112444715; CN-112449704; CN-112514158; CN-112514246; CN-112534448; CN-112567397; CN-112585627; CN-112602205; CN-112633506; CN-112640200; CN-112654970; CN-112673486; CN-112771553; CN-112771717; CN-112789629; CN-112819170; CN-112823361; CN-112861463; CN-112868135; CN-112930491; CN-112949229; CN-112956129; CN-112990468; CN-112990470; CN-113037294; CN-113056752; CN-113065301; CN-113095033; CN-113128165; CN-113128172; CN-113168579; CN-113168581; CN-113193311; CN-113206364; CN-113215326; CN-113255921; CN-113257552; CN-113261156; CN-113302631; CN-113328759; CN-113330465; CN-113361718; CN-113421600; CN-113424205; CN-113424441; CN-113449870; CN-113452326; CN-113454656; CN-113490731; CN-113516248; CN-113557666; CN-113627614; CN-113646779; CN-113646781; CN-113661502; CN-113725208; CN-113725349; CN-113826124; CN-113839644; CN-113853619; CN-113890513; CN-113906449; CN-113934680; CN-113939833; CN-113987993; CN-114021519; CN-114077897; CN-114122249; CN-114127900; CN-114175058; CN-114175059; CN-114186516; CN-114200282; CN-114207630; CN-114221629; CN-114223003; CN-114239838; CN-114254754; CN-114296685; CN-114297976; CN-114335318; CN-114373635; CN-114386610; CN-114399054; CN-114429215; CN-114444703; CN-114450697; CN-114450698; CN-114497113; CN-114503019; CN-114503027; CN-114503431; CN-114514192; CN-114528806; CN-1189934; CN-1279469-C; CN-1279470-C; CN-1291327-C; CN-1292366-C; CN-1300723-C; CN-1494690; CN-1496511; CN-1496516; CN-1496517; CN-1496518; CN-1601468; CN-1601511; CN-1601512; CN-1806231; CN-1808400; CN-1811745; CN-1815438; CN-1834852; CN-1839093; CN-1890400; CN-1906576; CN-1906586; CN-1906587; CN-1910554; CN-1914600; CN-1938687; CN-1942858; CN-1989769; CN-201479114; CN-201667647; CN-207399151; CN-209930215; CN-209930216; CN-210327515; CN-211404707; CN-213069884; CN-213426111; CN-214378496; CN-215008192; CN-215186652; CN-215729853; CN-215895506; CN-216083004; CN-216083732; CN-216086610; CN-216134457; CN-216285581; CN-216286750; CN-216286751; DE-102004005243; DE-102008036993; DE-102009025716; DE-102010026098; DE-1020100260989; DE-102010053575; DE-102016204201; DE-102017129364; DE-102017129365; DE-102019101054; DE-102019104312; DE-102019112893; DE-102020007977; DE-102020122245; DE-102020125169; DE-102020125171; DE-102020125172; DE-102020125173; DE-102020125174; DE-102020125175; DE-102020125176; DE-102020125177; DE-102020125178; DE-102020125179; DE-102020125180; DE-102020125181; DE-102020125182; DE-102020125183; DE-102020125185; DE-102020125186; DE-102020125187; DE-102020125188; DE-102020125189; DE-102020125190; DE-102020125191; DE-102020201688; DE-102021005497; DE-102021121877; DE-10218695; DE-112012001735; DE-112012003764; DE-112012005798; DE-112014000501; DE-112016001769; DE-112016003215; DE-112016004439; DE-112016005278; DE-112017003036; DE-112017003044; DE-112017003719; DE-112017004725; DE-112017004860; DE-112017007187; DE-112017007873; DE-112017007921; DE-112020002985; DE-19634808; DE-19649500; DE-19705239; DE-19741483; DE-19927661; DE-19954265; DE-19964555; DE-202017105268; DE-202020005427; DE-4441766; DE-602005005035; DE-60212967; EP-0835555; EP-0922333; EP-0985939; EP-1001473; EP-1030380; EP-1069687; EP-1245002; EP-1324549; EP-1370948; EP-1370961; EP-1370968; EP-1370969; EP-1370971; EP-1395947; EP-1468303; EP-1518208; EP-1561277; EP-1620800; EP-1623317; EP-1639463; EP-1658564; EP-1660403; EP-1669911; EP-1677193; EP-1690218; EP-1696318; EP-1697558; EP-1702264; EP-1716486; EP-1725935; EP-1730635; EP-1733296; EP-1769347; EP-1779668; EP-1800214; EP-1803062; EP-1805575; EP-1805626; EP-1805627; EP-1834245; EP-1836635; EP-1839165; EP-1842227; EP-1846820; EP-1846829; EP-1846895; EP-1851637; EP-1854016; EP-1861790; EP-1884791; EP-1974315; EP-1975590; EP-19755909; EP-2021929; EP-2097936; EP-2143044; EP-2149196; EP-2263332; EP-2296090; EP-2304654; EP-2309562; EP-2397004; EP-2401776; EP-2425609; EP-2443469; EP-2446069; EP-2457354; EP-2476119; EP-2504777; EP-2519870; EP-2585987; EP-2591514; EP-2609541; EP-2638448; EP-2659365; EP-2691996; EP-2707832; EP-2707903; EP-2710471; EP-2730029; EP-2774077; EP-2797038; EP-2803211; EP-2904540; EP-2919172; EP-29191729; EP-2945160; EP-2946413; EP-2946414; EP-3039174; EP-3058618; EP-3075123; EP-3098865; EP-3111379; EP-3111380; EP-3111381; EP-3113084; EP-3114618; EP-3127266; EP-3130031; EP-3132209; EP-3164889; EP-3170259; EP-3195377; EP-3217336; EP-3224640; EP-3231092; EP-3248210; EP-3250792; EP-3254241; EP-3254375; EP-3262573; EP-3262762; EP-3266063; EP-3284115; EP-3296932; EP-3300004; EP-3304363; EP-3332363; EP-3344576; EP-3360253; EP-3378162; EP-3380995; EP-3380996; EP-3383793; EP-3391415; EP-3394905; EP-3398213; EP-3411080; EP-3414583; EP-3422412; EP-3427310; EP-3475217; EP-3475760; EP-3476048; EP-3488474; EP-3491586; EP-3497726; EP-3513249; EP-3513434; EP-3513443; EP-3513631; EP-3514723; EP-3516407; EP-3516596; EP-3520039; EP-3539061; EP-3542320; EP-3542321; EP-3542463; EP-3545563; EP-3563308; EP-3563309; EP-3563310; EP-3568128; EP-3574455; EP-3576025; EP-3576142; EP-3577700; EP-3580701; EP-3580702; EP-3583626; EP-3589581; EP-3593296; EP-3593297; EP-3593298; EP-3596669; EP-3610519; EP-3613141; EP-3619655; EP-3634442; EP-3635726; EP-3639295; EP-3642959; EP-3660179; EP-3662515; EP-3673487; EP-3676882; EP-3682381; EP-3682382; EP-3685321; EP-3685322; EP-3685323; EP-3685451; EP-3689113; EP-3692476; EP-3703141; EP-3704794; EP-3707649; EP-3711004; EP-3718059; EP-3718166; EP-3718207; EP-3718208; EP-3724827; EP-3724828; EP-3724829; EP-3724933; EP-3735392; EP-3735710; EP-3735711; EP-3735712; EP-3738206; EP-3738209; EP-3738210; EP-3740910; EP-3744001; EP-3745481; EP-3746953; EP-3746954; EP-3759659; EP-3769271; EP-3769347; EP-3776390; EP-3782089; EP-3785185; EP-3785186; EP-3788562; EP-3788563; EP-3788565; EP-3788657; EP-3789932; EP-3791334; EP-3795950; EP-3803719; EP-3805423; EP-3807825; EP-3807972; EP-3814905; EP-3815006; EP-3818173; EP-3822871; EP-3824415; EP-3827381; EP-3828782; EP-3830625; EP-3830867; EP-3830953; EP-3835916; EP-3836038; EP-3837646; EP-3837647; EP-3844684; EP-3844687; EP-3844688; EP-3847701; EP-3850478; EP-3852021; EP-3853943; EP-3857619; EP-3861488; EP-3861489; EP-3861588; EP-3864110; EP-3864403; EP-3864586; EP-3867829; EP-3867972; EP-3869420; EP-3871162; EP-3886003; EP-3886321; EP-3888018; EP-3888019; EP-3888020; EP-3895078; EP-3899814; EP-3903375; EP-3903415; EP-3907669; EP-3908988; EP-3908989; EP-3910415; EP-3912107; EP-3912200; EP-3918538; EP-3928260; EP-3931765; EP-3935583; EP-3939160; EP-3939165; EP-3942362; EP-3948697; EP-3948698; EP-3948953; EP-3956770; EP-3956824; EP-3959666; EP-3963518; EP-3966751; EP-3970084; EP-3970272; EP-3971793; EP-3983958; EP-3983961; EP-3983962; EP-3983963; EP-3983964; EP-3987462; EP-3989130; EP-3991104; EP-3992868; ES-2346045; ES-2849257; ES-2850151; FI-128904; FI-129128; FI-129520; FI-20195045; FI-20205115; FR-2855921; FR-2862151; FR-3021163; FR-3090891; GB-2482008; GB-2524039; GB-2553848; GB-2592935; GB-2598059; IL-245788; IL-260859; IL-283799; IL-2837990; IL-286336; IL-2863360; IL-286366; IL-2863660; IL-286404; IL-2864040; IL-286612; IL-2866120; IL-288973; IL-2889730; IN-2006KN00539; IN-2006KN01207; IN-2008CN03914; IN-2011DN10030; IN-201847025509; IN-201847025527; IN-201947035669; IN-202047029322; IN-242559; JP-2000150973; JP-2000244308; JP-2000260187; JP-2001060862; JP-2001068995; JP-2001119300; JP-2001504647; JP-2002135111; JP-2002237749; JP-2002342165; JP-2002344307; JP-2002351850; JP-2002358289; JP-2002366533; JP-2002366534; JP-2003069418; JP-2003271570; JP-2003281107; JP-2003303134; JP-2003519927; JP-2004015151; JP-2004032481; JP-2004046861; JP-2004071630; JP-2004072141; JP-2004072305; JP-2004078979; JP-2004252990; JP-2004533061; JP-2005079749; JP-2005093511; JP-2005100405; JP-2005166056; JP-2005235228; JP-2005235229; JP-2005259812; JP-2005260364; JP-2005267635; JP-2005285123; JP-2005285124; JP-2005322232; JP-2005322240; JP-2005332402; JP-2005339557; JP-2005346327; JP-2005513600; JP-2005527902; JP-2006040451; JP-2006065864; JP-2006092541; JP-2006092542; JP-2006099774; JP-2006107513; JP-2006107514; JP-2006120147; JP-2006139785; JP-2006146921; JP-2006165812; JP-2006172468; JP-2006172474; JP-2006178987; JP-2006190299; JP-2006190301; JP-2006196004; JP-2006202287; JP-2006216058; JP-2006216060; JP-2006221638; JP-2006221639; JP-2006221642; JP-2006221643; JP-2006221644; JP-2006221645; JP-2006260555; JP-2006260556; JP-2006268928; JP-2006286002; JP-2006318470; JP-2006318477; JP-2006323824; JP-2006323829; JP-2006506010; JP-2006512270; JP-2007042074; JP-2007049009; JP-20070490095; JP-2007053247; JP-2007104332; JP-2007214885; JP-2007250771; JP-2007287933; JP-2007516610; JP-2007521397; JP-2007534144; JP-2008047678; JP-2008077640; JP-2008108927; JP-2008182157; JP-2008526682; JP-2009003946; JP-2009016767; JP-2009049631; JP-2009182745; JP-2009194646; JP-2009217845; JP-2009225213; JP-2009302219; JP-2009503624; JP-2009508179; JP-2009524857; JP-2010092499; JP-2010109697; JP-2010199343; JP-2010213210; JP-2010271087; JP-2010511293; JP-2010525431; JP-2011082515; JP-2011197875; JP-2011523747; JP-2012015878; JP-2012026738; JP-2012064622; JP-2012519379; JP-2012530674; JP-2012530895; JP-2012531876; JP-2013058705; JP-2013058997; JP-2013058998; JP-2013535805; JP-2014166956; JP-2014215985; JP-2014216596; JP-2014241073; JP-2014504057; JP-2014523705; JP-2014525161; JP-2015015590; JP-2015035129; JP-2015155377; JP-2015167176; JP-2015508253; JP-2015511067; JP-2016042521; JP-2016045001; JP-2016058441; JP-2016151561; JP-2016509800; JP-2016510497; JP-2016511534; JP-2016518637; JP-2016539607; JP-2016541146; JP-2017073106; JP-2017175155; JP-2017511463; JP-2017517918; JP-2017518629; JP-2017529695; JP-2017532841; JP-2017533572; JP-2018129535; JP-2018136316; JP-2018503249; JP-2018511848; JP-2018512729; JP-2018514094; JP-2018514104; JP-2018516456; JP-2018524667; JP-2018529142; JP-2018532177; JP-2018533253; JP-2018536324; JP-2018538681; JP-2019003975; JP-2019036625; JP-20190366255; JP-2019041088; JP-2019041121; JP-2019047126; JP-2019050399; JP-2019145800; JP-2019186418; JP-2019501581; JP-2019504511; JP-2019504527; JP-2019505989; JP-2019508819; JP-2019508876; JP-2019511562; JP-2019512112; JP-2019513249; JP-2019525452; JP-2019530051; JP-2019530336; JP-2019532505; JP-2019532506; JP-2019532507; JP-2019532520; JP-2019534551; JP-2019534555; JP-2019537241; JP-2019537882; JP-2020010337; JP-2020038976; JP-2020047999; JP-2020065261; JP-2020074351; JP-2020127032; JP-2020501216; JP-2020502551; JP-2020503690; JP-2020503694; JP-2020503706; JP-2020504466; JP-2020509608; JP-2020510309; JP-2020511794; JP-2020513610; JP-2020519005; JP-2020520084; JP-2020522120; JP-2020522128; JP-2020522805; JP-2020522892; JP-2020532099; JP-2020532865; JP-2020532866; JP-2020533705; JP-2020533804; JP-2020534607; JP-2020535461; JP-2020535690; JP-2020535747; JP-2020536376; JP-2020536397; JP-2021087004; JP-2021090075; JP-2021103093; JP-2021118342; JP-2021121946; JP-2021141318; JP-2021141319; JP-2021157798; JP-2021175178; JP-2021500737; JP-2021500781; JP-2021500783; JP-2021501499; JP-2021504956; JP-2021504964; JP-2021506045; JP-2021509244; JP-2021509748; JP-2021509771; JP-2021509982; JP-2021511657; JP-2021511659; JP-2021512395; JP-2021512396; JP-2021515395; JP-2021516389; JP-2021518655; JP-2021519459; JP-2021521550; JP-2021524198; JP-2021530040; JP-2021530042; JP-2021531544; JP-2021531578; JP-2021532396; JP-2021532514; JP-2021532629; JP-2021533345; JP-2021535592; JP-2021535593; JP-2021536666; JP-2022003576; JP-2022010223; JP-2022069496; JP-2022069525; JP-2022500776; JP-2022501802; JP-2022501885; JP-2022502836; JP-2022509003; JP-2022509907; JP-2022511331; JP-2022511376; JP-2022512281; JP-2022513533; JP-2022517773; JP-2022518863; JP-2022520689; JP-2022522757; JP-2022525909; JP-2022525910; JP-2679610; JP-2688011; JP-2768276; JP-2931787; JP-2962251; JP-3107034; JP-3325545; JP-3411273; JP-3454808; JP-3483877; JP-3488663; JP-3515985; JP-3519303; JP-3647795; JP-3648551; JP-3696563; JP-3705252; JP-3802042; JP-3821405; JP-3936889; JP-3983250; JP-4015159; JP-4023546; JP-4024271; JP-4044807; JP-4053547; JP-4113077; JP-4116978; JP-4134182; JP-4176787; JP-4183712; JP-4219369; JP-4243318; JP-4246204; JP-4255457; JP-4286826; JP-4316574; JP-4322259; JP-4334521; JP-4334901; JP-4339307; JP-4346612; JP-4364202; JP-4386373; JP-4386883; JP-4408079; JP-4421561; JP-4451397; JP-4455822; JP-4489399; JP-4507791; JP-4524126; JP-4524784; JP-4526412; JP-4527029; JP-4578366; JP-4583327; JP-4597553; JP-4609733; JP-4645973; JP-4681755; JP-4712328; JP-4733085; JP-4756718; JP-4768386; JP-4769938; JP-4777718; JP-4792328; JP-4805341; JP-4836028; JP-4855255; JP-4913501; JP-4925012; JP-4955961; JP-5020181; JP-5048350; JP-5062659; JP-5078979; JP-5092596; JP-5093515; JP-5167504; JP-5414031; JP-5432073; JP-5497596; JP-5513188; JP-5520939; JP-5567669; JP-5579563; JP-5638770; JP-5669832; JP-5674603; JP-5750194; JP-5766350; JP-5877428; JP-5956392; JP-5976641; JP-6028307; JP-6029070; JP-6030591; JP-6042777; JP-6066314; JP-6087716; JP-6230123; JP-6247177; JP-6326379; JP-6347489; JP-6360499; JP-6379298; JP-6395736; JP-6396726; JP-6397509; JP-6415737; JP-6437607; JP-6461009; JP-6498752; JP-6530326; JP-6534741; JP-6553287; JP-6556952; JP-6590446; JP-6609066; JP-6617197; JP-6656273; JP-6678102; JP-6684366; JP-6704086; JP-6706391; JP-6734873; JP-6742028; JP-6742433; JP-6744379; JP-6749382; JP-6771009; JP-6771660; JP-6776187; JP-6779278; JP-6785219; JP-6788734; JP-6789385; JP-6790245; JP-6802266; JP-6802383; JP-6810280; JP-6831452; JP-6840237; JP-6840818; JP-6845238; JP-6849858; JP-6852187; JP-6853141; JP-6861245; JP-6864812; JP-6877050; JP-6882533; JP-6884273; JP-6894378; JP-6912559; JP-6931071; JP-6936313; JP-6941166; JP-6941230; JP-6947408; JP-6964079; JP-6974470; JP-6974473; JP-6977176; JP-6986627; JP-6998459; JP-7005748; JP-7005786; JP-7033658; JP-7035169; JP-7039689; JP-7047230; JP-7050153; JP-70501536; JP-7052042; JP-7058014; JP-7064057; JP-7064599; JP-H07235699; JP-H08172352; JP-H08340136; JP-H09198876; JP-H09219542; JP-H09237923; JP-H09246608; JP-H10269783; JP-H11261384; JP-H11311663; JP-H11312971; JP-H1140866; JP-H11508747; JP-WO2006011451; JP-WO2007077984; JP-WO20070779846; JP-WO2008029815; JP-WO2020179554; JP-WO2020213596; KR-100282356; KR-100388497; KR-100724098; KR-100777600; KR-100829287; KR-100832192; KR-100840113; KR-100841864; KR-100847982; KR-100866739; KR-100875030; KR-100878424; KR-100881539; KR-100881810; KR-100890134; KR-100891063; KR-100933389; KR-100938942; KR-100959748; KR-101052209; KR-101189972; KR-101309677; KR-101747455; KR-101822326; KR-101899842; KR-101901166; KR-101929207; KR-101936533; KR-102031584; KR-102035149; KR-102063563; KR-102088675; KR-102098081; KR-102109070; KR-102116277; KR-102158678; KR-102173099; KR-102174976; KR-102193846; KR-102196240; KR-102208348; KR-102211013; KR-102217205; KR-102241971; KR-102247626; KR-102250154; KR-102250155; KR-102252438; KR-102279157; KR-102283357; KR-102318773; KR-102319393; KR-102389777; KR-102390936; KR-102400989; KR-19990028555; KR-19990065792; KR-20020092038; KR-20030081532; KR-20030085037; KR-20030085038; KR-20030086319; KR-20030086320; KR-20060063977; KR-20060096109; KR-20060121266; KR-20060127120; KR-20060127859; KR-20060132852; KR-20070007775; KR-20070052311; KR-20070073825; KR-20070085411; KR-20070089998; KR-20070098900; KR-20070100336; KR-20080106911; KR-20080108588; KR-20100056622; KR-20110002020; KR-20110040705; KR-20110046390; KR-20130045831; KR-20140140474; KR-20160072187; KR-20160089410; KR-20160140913; KR-20160147988; KR-20170013224; KR-20170048470; KR-20170085533; KR-20170089880; KR-20170103866; KR-20170106364; KR-20170127476; KR-20170134399; KR-20180004132; KR-20180022925; KR-20180043802; KR-20180069026; KR-20180090857; KR-20180102581; KR-20180112833; KR-20180122596; KR-20190015330; KR-20190035819; KR-20190042720; KR-20190043170; KR-20190045362; KR-20190047022; KR-20190052109; KR-20190077518; KR-20190094418; KR-20190100344; KR-20190113923; KR-20190116452; KR-20190123313; KR-20200016336; KR-20200038546; KR-20200040839; KR-20200040862; KR-20200051769; KR-20200052367; KR-20200065032; KR-20200097787; KR-20200103786; KR-20200104374; KR-20200105510; KR-20200105517; KR-20200106535; KR-20200127052; KR-20210011433; KR-20210024638; KR-20210054034; KR-20210055806; KR-20210095784; KR-20210106452; KR-20210113669; KR-20210118459; KR-20210120869; KR-20210123400; KR-20210125035; KR-20210129186; KR-20210130209; KR-20210134031; KR-20210134688; KR-20210136986; KR-20210138678; KR-20220002366; KR-20220031998; KR-20220041156; KR-20220042440; KR-20220043190; KR-20220044944; KR-20220047753; NL-2016442; NL-2018253; NL-2024742; Publication Number; RU-177295; RU-2599904; RU-2612847; RU-2682559; RU-2716028; RU-2742504; SE-512591; TW-200525428; TW-200532471; TW-200540705; TW-201731071; TW-201814902; TW-201930633; TW-202007091; TW-202011286; TW-202107744; TW-202107837; TW-202115625; TW-202121267; TW-202123097; TW-202205159; TW-202215309; TW-461105; TW-574653; TW-594492; TW-I227401; TW-I274283; TW-I291656; TW-I292880; TW-I293157; TW-I306552; TW-I314285; TW-I314286; TW-I321414; TW-I326426; TW-I338844; TW-I345155; TW-I352905; TW-I361981; TW-I713194; UA-104982; WO-1997002661; WO-1998008307; WO-19980083079; WO-1999017449; WO-2001010027; WO-2001039283; WO-2001050534; WO-2002063430; WO-2002069498; WO-2002077826; WO-2002077838; WO-2002077845; WO-2002077846; WO-2002077848; WO-2002084337; WO-2002086813; WO-2002097725; WO-2003019685; WO-2003025725; WO-2003052438; WO-2003052687; WO-2003082482; WO-2003090162; WO-2004013808; WO-2004013965; WO-2004019270; WO-2004045063; WO-2004086295; WO-2004102470; WO-2004109924; WO-2005010953; WO-2005019095; WO-2005048183; WO-2005055057; WO-2005069392; WO-2005081104; WO-2005081105; WO-2005088443; WO-2005089092; WO-2005093564; WO-2005093649; WO-2005096150; WO-2005106647; WO-2005106662; WO-2005111799; WO-2005116839; WO-2006011451; WO-2006019188; WO-2006033419; WO-2006033423; WO-2006035989; WO-2006038714; WO-2006038717; WO-2006041218; WO-2006043300; WO-2006052017; WO-2006064961; WO-2006064962; WO-2006073204; WO-2006076354; WO-2006078002; WO-2006083043; WO-2006083045; WO-2006083046; WO-2006085636; WO-2006085639; WO-2006085641; WO-2006085665; WO-2006098499; WO-2006121175; WO-2006121211; WO-2006127495; WO-2007077617; WO-2007077984; WO-2007085074; WO-2007086542; WO-2007129786; WO-2007135783; WO-2008006217; WO-2008024368; WO-2008029815; WO-2008064491; WO-2008128338; WO-2008147769; WO-2008150341; WO-2009019040; WO-2009114738; WO-2009117003; WO-2010011409; WO-2010051580; WO-2010092545; WO-2010099312; WO-2010125233; WO-2010145631; WO-2010149775; WO-2011064440; WO-2011088399; WO-2012003821; WO-2012007736; WO-2012025665; WO-2012030319; WO-2012064974; WO-2012089904; WO-2012113983; WO-2012123642; WO-2012135683; WO-2012153000; WO-2012173712; WO-2012174366; WO-2013006375; WO-2013034801; WO-2013035512; WO-2013104822; WO-2013126120; WO-2013160531; WO-2013180780; WO-2014006567; WO-2014053697; WO-2014075296; WO-2014092819; WO-2014140943; WO-2014163728; WO-2014168665; WO-2014197047; WO-2014197048; WO-2014197095; WO-2015014549; WO-2015036266; WO-2015057839; WO-2015081107; WO-2015127498; WO-2015153056; WO-2015159258; WO-2015178990; WO-2015178991; WO-2015178992; WO-2015183535; WO-2016000836; WO-2016003626; WO-2016020648; WO-2016022689; WO-2016025598; WO-2016049446; WO-2016061114; WO-2016076935; WO-2016083140; WO-2016094045; WO-2016118821; WO-2016126979; WO-2016126981; WO-2016138395; WO-2016138406; WO-2016168642; WO-2016183213; WO-2016199029; WO-2016200845; WO-2017001404; WO-2017015432; WO-2017015532; WO-2017021714; WO-2017040598; WO-2017055946; WO-2017059104; WO-2017062143; WO-2017065934; WO-2017079394; WO-20170793949; WO-2017079417; WO-2017079424; WO-2017082983; WO-2017087070; WO-2017089891; WO-2017100078; WO-2017103694; WO-2017105429; WO-2017105524; WO-2017111949; WO-2017115008; WO-2017115160; WO-2017116442; WO-2017131831; WO-2017136450; WO-2017139683; WO-2017151200; WO-2017152287; WO-2017155531; WO-2017158134; WO-2017217958; WO-2017217959; WO-2017217960; WO-2017217961; WO-2017222806; WO-2018004578; WO-2018004634; WO-2018004635; WO-2018004636; WO-2018009240; WO-2018030977; WO-2018034638; WO-2018035448; WO-2018038707; WO-2018051123; WO-2018052397; WO-2018052399; WO-2018052414; WO-2018052424; WO-2018052427; WO-2018052465; WO-2018052466; WO-2018055467; WO-2018055607; WO-2018057024; WO-2018060981; WO-2018062991; WO-2018063139; WO-2018063168; WO-2018063205; WO-2018063206; WO-2018069908; WO-2018073668; WO-2018075106; WO-2018089850; WO-2018093545; WO-2018106215; WO-2018106222; WO-2018111242; WO-2018125026; WO-2018125513; WO-2018125543; WO-2018125604; WO-2018132769; WO-2018139928; WO-2018144601; WO-2018159832; WO-2018160184; WO-2018160185; WO-2018160187; WO-2018160674; WO-2018162965; WO-2018165021; WO-2018165500; WO-2018165607; WO-2018169579; WO-2018169585; WO-2018182571; WO-2018182584; WO-2018185306; WO-2018191041; WO-2018192674; WO-2018217351; WO-2018219484; WO-2018223037; WO-2018226586; WO-2018231212; WO-2018231241; WO-2018236374; WO-2018236922; WO-2019004991; WO-2019025019; WO-2019032114; WO-2019032115; WO-2019038409; WO-2019040098; WO-2019045762; WO-2019045763; WO-2019050525; WO-2019054990; WO-2019054995; WO-2019055002; WO-2019055038; WO-2019055048; WO-2019057317; WO-2019059879; WO-2019063113; WO-2019063116; WO-2019070228; WO-2019070265; WO-2019077397; WO-2019077398; WO-2019077399; WO-2019084286; WO-2019086943; WO-2019089141; WO-2019089603; WO-2019105630; WO-2019106416; WO-2019108512; WO-2019116103; WO-2019117883; WO-2019117922; WO-2019117929; WO-2019117930; WO-2019117949; WO-2019117954; WO-2019117955; WO-2019117972; WO-2019117973; WO-2019117974; WO-2019117975; WO-2019118442; WO-2019125423; WO-2019125498; WO-2019126396; WO-2019132963; WO-2019136213; WO-2019139799; WO-2019139800; WO-2019143680; WO-2019152019; WO-2019152020; WO-2019156759; WO-2019156760; WO-2019164591; WO-2019168721; WO-2019173651; WO-2019173799; WO-2019178009; WO-2019179732; WO-2019179740; WO-2019183602; WO-2019190460; WO-2019204680; WO-2019217772; WO-2019222514; WO-2019224789; WO-2019229527; WO-2019236137; WO-2019241570; WO-2019245740; WO-2020005963; WO-2020010147; WO-2020010214; WO-2020018797; WO-2020019015; WO-2020025458; WO-2020025460; WO-2020027779; WO-2020028325; WO-2020028650; WO-2020033807; WO-2020033974; WO-2020036673; WO-2020036707; WO-2020037253; WO-2020037300; WO-2020037301; WO-2020043415; WO-2020043596; WO-2020043597; WO-2020046928; WO-2020048842; WO-2020055450; WO-2020056176; WO-2020058002; WO-2020068237; WO-20200682379; WO-2020069623; WO-2020069883; WO-2020072661; WO-2020072819; WO-2020074742; WO-2020077288; WO-20200772889; WO-2020078777; WO-2020078849; WO-2020081805; WO-2020083618; WO-2020086867; WO-2020104206; WO-2020106313; WO-2020106955; WO-2020109106; WO-2020109107; WO-2020109869; WO-2020112185; WO-2020120183; WO-2020127299; WO-2020139407; WO-2020142122; WO-2020145854; WO-2020146025; WO-20201460259; WO-2020146083; WO-2020146794; WO-2020148565; WO-2020150348; WO-2020152393; WO-2020156680; WO-2020169224; WO-2020178640; WO-2020179554; WO-2020180442; WO-2020180902; WO-2020183060; WO-2020186076; WO-2020197575; WO-2020200782; WO-2020200801; WO-2020212092; WO-2020213596; WO-2020214910; WO-2020219578; WO-2020222044; WO-2020227385; WO-2020231378; WO-2020231795; WO-2020236587; WO-2020252157; WO-2020252425; WO-2020253292; WO-2020254055; WO-2020257772; WO-2020259813; WO-2020263255; WO-2020263278; WO-2021007153; WO-2021008796; WO-2021011765; WO-2021015789; WO-2021016542; WO-2021018466; WO-2021019294; WO-2021021398; WO-2021022217; WO-2021022375; WO-2021022376; WO-2021026070; WO-2021029095; WO-2021034404; WO-2021044210; WO-2021044212; WO-2021046184; WO-2021046495; WO-2021050541; WO-2021051163; WO-2021055000; WO-2021055507; WO-2021056115; WO-2021059013; WO-2021061776; WO-2021062331; WO-2021067023; WO-2021076221; WO-2021076808; WO-2021077691; WO-2021080789; WO-2021083448; WO-2021087206; WO-2021091600; WO-2021092351; WO-2021093977; WO-2021096955; WO-2021101829; WO-2021102321; WO-2021102344; WO-2021105100; WO-2021107949; WO-2021108487; WO-2021111961; WO-2021113513; WO-2021118867; WO-2021123903; WO-2021132009; WO-2021140995; WO-2021146028; WO-2021148311; WO-2021150101; WO-2021155289; WO-2021156538; WO-2021162981; WO-2021163032; WO-2021163487; WO-2021165639; WO-2021168019; WO-2021168096; WO-2021176974; WO-2021178042; WO-2021178562; WO-2021181059; WO-2021181155; WO-2021183344; WO-2021185595; WO-2021188193; WO-2021191501; WO-2021195368; WO-2021201954; WO-2021202405; WO-2021202409; WO-2021202687; WO-2021211657; WO-2021216497; WO-2021223964; WO-2021223983; WO-2021224551; WO-2021229388; WO-2021231224; WO-2021236725; WO-2021237362; WO-2021247125; WO-2021247540; WO-2021247656; WO-2021247878; WO-2021249759; WO-2021253404; WO-2021255055; WO-2021259711; WO-2021262741; WO-2022002881; WO-2022003450; WO-2022004921; WO-2022015399; WO-2022018038; WO-2022018170; WO-2022020951; WO-2022023913; WO-2022031348; WO-2022036422; WO-2022037958; WO-2022038205; WO-2022043020; WO-2022043297; WO-2022048399; WO-2022051030; WO-2022053561; WO-2022054992; WO-2022058025; WO-2022058285; WO-2022058381; WO-2022060897; WO-2022060950; WO-2022060954; WO-2022060957; WO-2022060959; WO-2022060962; WO-2022060964; WO-2022073380; WO-2022074041; WO-2022081675; WO-2022084350; WO-2022084778; WO-2022086751; WO-2022087143; WO-2022092815; WO-2022093575; WO-2022093618; and ZA-200207825.
A quantum computer requires many qubits and couplers with well-defined and precise energies. Superconducting quantum computers are fabricated from integrated circuits comprising a plurality of Josephson junctions. In practice, due to the spread in the fabrication processes of Josephson junctions, the fabricated qubits will possess energies that are slightly different from the design parameters. Such variations in the energy of qubits and coupler make it difficult to accurately perform single and multi-qubit operations in the quantum computer, particularly as the number of coupled qubits increase. An external energy tuning of the qubits through flux biasing may compensate for the inherent variation of the fabrication process, and permit additional degrees of control. Precisely controlled flux biasing of superconducting circuits is necessary to achieve the desired quantum behavior in scalable quantum computing systems.
In addition to compensation for the fabrication variation, the controllability of the energy of the quantum circuit such as qubits and quantum coupler enables certain functions and properties. As an example, by changing the energy of the qubits and quantum couplers, we can increase or decrease the interaction with other components in a quantum circuit. This enables deliberate coupling and decoupling of different quantum components based on the desired functionality. For example, to enable two-qubit or multi-qubit gate operation, the energies of the coupler or the qubits may be tuned to enable interaction among them. Similarly, a qubit may be decoupled from other qubits or couplers by detuning the energy through the flux biasing. Change of flux biasing to increase coupling enables multi-qubit and coupler gate operations, whereas the change of flux biasing to decouple quantum components enables preserving the quantum coherence by decreasing interaction.
Finally, one can execute single or two-qubit gate operations by applying the generated fast flux bias pulses to execute high-fidelity qubit control. Such control can be done using a universal set of flux pulses, in which qubit gates are completed within a single or multiple Larmor periods. The basic principle of SFQ flux biasing according to the present invention is as follows. A superconducting storage loop is magnetically coupled to the quantum circuit. To change the amount of the flux biasing of the qubits or couplers, SFQ pulses are added or removed from the storage loop as shown in
The resolution, amount of coupling, and the speed of the change of flux biasing can be controlled through different design parameters of the transformer, i.e., Lin, Lout, M, and SFQ circuits and/or the qubit/coupler.
Li, X., T. Cai, H. Yan, Z. Wang, X. Pan, Y. Ma, W. Cai et al. “Tunable coupler for realizing a controlled-phase gate with dynamically decoupled regime in a superconducting circuit.” Physical Review Applied 14, no. 2 (2020): 024070, discloses a tunable and switchable qubit coupler. Controllable interaction between superconducting qubits is desirable for large-scale quantum computation and simulation. Based on Yan et al. [Phys. Rev. Appl. 10, 054061 (2018)], a flux-controlled tunable coupler with a continuous tunability by adjusting the coupler frequency, which can completely turn off adjacent superconducting qubit coupling was tested. Utilizing the tunable interaction between two qubits via the coupler, a controlled-phase (CZ) gate with dynamically decoupled regime, which allows the qubit-qubit coupling to be only “on” at the usual operating point while dynamically “off” during the tuning process of one qubit frequency into and out of the operating point. This efficiently suppresses the leakage out of the computational subspace, but also allows for the acquired two-qubit phase being geometric at the operating point. See also:
Sung, Youngkyu, Leon Ding, Jochen Braumüller, Antti Vepsäläinen, Bharath Kannan, Morten Kjaergaard, Ami Greene et al. “Realization of High-Fidelity CZ and Z Z-Free iSWAP Gates with a Tunable Coupler.” Physical Review X 11, no. 2 (2021): 021058.
Allman, Michael S., Fabio Altomare, Jed D. Whittaker, Katarina Cicak, Dale Li, Adam Sirois, Joshua Strong, John D. Teufel, and Raymond W. Simmonds. “rf-SQUID-mediated coherent tunable coupling between a superconducting phase qubit and a lumped-element resonator.” Physical review letters 104, no. 17 (2010): 177004.
Han, X. Y., T. Q. Cai, X. G. Li, Y. K. Wu, Y. W. Ma, Y. L. Ma, J. H. Wang, H. Y. Zhang, Y. P. Song, and L. M. Duan. “Error analysis in suppression of unwanted qubit interactions for a parametric gate in a tunable superconducting circuit.” Physical Review A 102, no. 2 (2020): 022619.
Harris, R., A. J. Berkley, M. W. Johnson, P. Bunyk, S. Govorkov, M. C. Thom, S. Uchaikin et al. “Sign- and magnitude-tunable coupler for superconducting flux qubits.” Physical review letters 98, no. 17 (2007): 177001.
Xu, Huikai, Weiyang Liu, Zhiyuan Li, Jiaxiu Han, Jingning Zhang, Kehuan Linghu, Yongchao Li et al. “Realization of adiabatic and diabatic CZ gates in superconducting qubits coupled with a tunable coupler.” Chinese Physics B 30, no. 4 (2021): 044212.
Yang, Chui-Ping, Qi-Ping Su, Shi-Biao Zheng, and Siyuan Han. “One-step transfer or exchange of arbitrary multipartite quantum states with a single-qubit coupler.” Physical Review B 92, no. 5 (2015): 054509.
Van der Ploeg, S. H. W., A. Izmalkov, Alec Maassen van den Brink, U. Hübner, M. Grajcar, E. Il'Ichev, H-G. Meyer, and A. M. Zagoskin. “Controllable coupling of superconducting flux qubits.” Physical review letters 98, no. 5 (2007): 057004.
Zajac, D. M., J. Stehlik, D. L. Underwood, T. Phung, J. Blair, S. Carnevale, D. Klaus et al. “Spectator errors in tunable coupling architectures.” arXiv preprint arXiv:2108.11221 (2021).
McKay, David C., Stefan Filipp, Antonio Mezzacapo, Easwar Magesan, Jerry M. Chow, and Jay M. Gambetta. “Tunable coupling between fixed-frequency superconducting transmon qubits, Part II: Implementing a two-qubit XX-90 gate.” In APS March Meeting Abstracts, vol. 2016, pp. F48-008. 2016.
Jin, Lijing. “Implementing High-fidelity Two-Qubit Gates in Superconducting Coupler Architecture with Novel Parameter Regions.” arXiv preprint arXiv:2105.13306 (2021).
Quintana, Chris, Yu Chen, D. Sank, D. Kafri, A. Megrant, T. C. White, A. Shabani et al. “Coplanar waveguide flux qubit suitable for quantum annealing.” In APS March Meeting Abstracts, vol. 2016, pp. K48-010. 2016.
Kafri, Dvir, Chris Quintana, Yu Chen, Alireza Shabani, John M. Martinis, and Hartmut Neven. “Tunable inductive coupling of superconducting qubits in the strongly nonlinear regime.” Physical Review A 95, no. 5 (2017): 052333.
Wulschner, Friedrich, Jan Goetz, Fabian R. Koessel, Elisabeth Hoffmann, Alexander Baust, Peter Eder, Michael Fischer et al. “Tunable coupling of transmission-line microwave resonators mediated by an rf SQUID.” EPJ Quantum Technology 3, no. 1 (2016): 1-10.
Xu, Xuexin, and M. H. Ansari. “Parasitic-free gate: A protected switch between idle and entangled states.” arXiv preprint arXiv:2202.05208 (2022).
Xu, Yuan, Ji Chu, Jiahao Yuan, Jiawei Qiu, Yuxuan Zhou, Libo Zhang, Xinsheng Tan et al. “High-fidelity, high-scalability two-qubit gate scheme for superconducting qubits.” Physical Review Letters 125, no. 24 (2020): 240503.
Groszkowski, Peter, Austin G. Fowler, Felix Motzoi, and Frank K. Wilhelm. “Tunable coupling between three qubits as a building block for a superconducting quantum computer.” Physical Review B 84, no. 14 (2011): 144516.
Di Paolo, Agustin, Catherine Leroux, Thomas M. Hazard, Kyle Serniak, Simon Gustavsson, Alexandre Blais, and William D. Oliver. “Extensible circuit-QED architecture via amplitude- and frequency-variable microwaves.” arXiv preprint arXiv:2204.08098 (2022).
Nägele, Maximilian, Christian Schweizer, Federico Roy, and Stefan Filipp. “Effective non-local parity-dependent couplings in qubit chains.” arXiv preprint arXiv:2203.07331 (2022).
McCourt, Trevor, Charles Neill, Kenny Lee, Chris Quintana, Yu Chen, Julian Kelly, V. N. Smelyanskiy et al. “Learning Noise via Dynamical Decoupling of Entangled Qubits.” arXiv preprint arXiv:2201.11173 (2022).
He, Yongcheng, Jianshe Liu, Changhao Zhao, Rutian Huang, Genting Dai, and Wei Chen. “Control System of Superconducting Quantum Computers.” Journal of Superconductivity and Novel Magnetism (2022): 1-21.
The circuit to add or remove flux could be designed in many ways. The simplest approach is using Josephson Transmission lines (JTLs) as shown in
A more scalable approach uses parallel JTLs to increase the capacity of stored fluxons in the loop and, therefore, the induced current through inductor Lin as shown in
It is possible to create different profiles of the flux biasing over time using this technique. In
As an example, a flux pump could be used for a fast change in the flux biasing by injection or removal of a fast train of pulses for coarse flux biasing, as shown in
Flux biasing using SFQ pulses can be further refined for specific purposes including fast but high-resolution biasing over large intervals by combining coarse and fine tune biasing as shown in
The initial flux stored in the flux biasing storage loop can be reset by adding a reset circuit as shown in
SFQ pulse control can be used not only for tuning of a qubit, but also for initiating quantum transitions between qubit states, as was proposed in the prior art. In this scheme, SFQ pulse is applied resonantly (uniformly) over many qubit Larmor periods or using more complex, non-uniform pulse patterns derived using the optimal control theory methods.
With a central control unit (which may also be an SFQ digital logic circuit), the combination and timing of these two control mechanisms can be coordinated and synchronized, as suggested in the block diagram of
Here, the central control unit is capable of precise timing and control of a train of SFQ pulses acting on each qubit, and the flux biasing of all the qubits and coupler to achieve faster multi-qubit operation with higher fidelity.
Alternatively, quantum transitions can be executed using FBP waveforms generated by SFQ circuits, as shown in
An example of the application of SFQ flux biasing to change the energy of the qubit during SFQ single qubit operation as shown in
This type of flux bias control can be applied to change the superconducting critical current of a SQUID loop incorporated in qubit in place of a single Josephson junction (sometimes called a split junction) that is a central component of a superconducting qubit or coupler, which in turn affects the energy and coupling strength of the quantum device. Applicable qubits include flux qubits, phase qubits, and transmons, among others. For fluxoniums and similar qubits having large inductors (superinductors), flux bias can be applied to the superinductor which can be made using a Josephson junction array. Other applications of the rapid time-varying superconducting digital flux control to quantum computing are described in more detail below, or may become clear to those skilled in the art.
It is therefore an object to provide a magnetic flux control system, comprising: a superconducting circuit configured to convert each of successive single-flux-quantum pulses into a magnetic flux; a superconducting inductor configured to integrate the magnetic flux from the superconducting circuit to define an integrated magnetic flux; and a control system comprising a plurality of Josephson junctions, the control system being configured to generate at least one output control signal for controlling the superconducting circuit, the output control signal comprising at least one sequence of single-flux-quantum pulses adapted to selectively change the integrated magnetic flux.
It is also an object to provide a magnetic flux control system, comprising: at least one superconducting circuit configured to generate single-flux-quantum pulses; a coupling circuit configured to couple the single-flux-quantum pulses into a corresponding magnetic flux; a superconducting inductor configured to integrate the magnetic flux corresponding to the single-flux-quantum pulses to define an integrated magnetic flux; a qubit having a resonance frequency dependent on the integrated magnetic flux; and a sensor having a sensor output, the sensor being configured to determine at least one of the resonance frequency and the integrated magnetic flux; a control system comprising a plurality of Josephson junctions, the control system being configured to control a value of the integrated magnetic flux dependent on the sensor output.
It is a further object to provide a magnetic flux control method for controlling a superconducting system, comprising a superconducting circuit configured to convert each of successive single-flux-quantum pulses into a magnetic flux, and a superconducting inductor configured to integrate the magnetic flux from the superconducting circuit to define an integrated magnetic flux, and a control circuit comprising a plurality of Josephson junctions, the method comprising: defining a target magnetic flux; controlling the superconducting circuit to produce a sequence of single-flux-quantum pulses for monotonically changing the integrated magnetic flux to reduce a difference between the target magnetic flux and the integrated magnetic flux; and controlling the superconducting circuit to cease production of the sequence of single-flux-quantum pulses for monotonically changing the integrated magnetic flux and thereby cease monotonically changing the integrated magnetic flux, wherein said controlling superconducting circuit to cease production of the sequence of single-flux-quantum pulses is dependent on a value of the integrated magnetic flux.
The magnetic flux control system may further comprise a quantum computing circuit comprising at least one qubit having at last one physical property tunable dependent on at least the integrated magnetic flux, wherein the integrated magnetic flux is coupled with the at least one qubit. The at least one physical property may comprise a microwave resonance. The control system may be configured to control a dynamic variation of the at least one physical property of the at least one qubit over time. The at least one physical property may comprise at least one of a microwave resonance, an energy and a phase of the qubit, and may control each of a microwave resonance, an energy and a phase of the qubit. The control system may be configured to control a dynamic variation of the at least one physical property of the at least one of the qubit and the tunable qubit coupler. The at least one of the qubit and the tunable qubit coupler may comprise a switched qubit coupler configured to selectively control presence and absence of an interaction of a plurality of qubits.
The magnetic flux control system may be provided in a first integrated circuit and the at least one of the qubit and the tunable qubit coupler is provided in a second integrated circuit, therein the first integrated circuit and the second integrated circuit are provided on a common substrate.
The magnetic flux control system may further comprise at least one of a qubit and a tunable qubit coupler associated with a qubit, coupled to the integrated magnetic flux, wherein a qubit Bloch sphere state of the qubit is responsive to the at least one output control signal.
The magnetic flux control system may further comprising a qubit, whose state is represented by a phase and an amplitude a Bloch sphere, coupled to the integrated magnetic flux, wherein the phase and amplitude of the Bloch sphere are responsive to the at least one output control signal.
The magnetic flux control system may be provided in a first integrated circuit and the at least one of the qubit and the tunable qubit coupler is provided in a second integrated circuit, therein the first integrated circuit and the second integrated circuit are inductively coupled and provided on separate substrates having a flip chip geometry.
The control system may further comprise an input port configured to receive at least one feedback signal relating to a magnitude of the integrated magnetic flux.
The control system further may further comprise a pair of output ports configured to produce a first signal adapted to increase the integrated magnetic flux and a second signal adapted to decrease the integrated magnetic flux.
The control system may be configured to implement at least one of a phase locked loop control and a frequency locked loop control.
The control system may be configured to receive a photonic input control signal.
The magnetic flux control system may further comprise a frequency mixer and a detector configured to receive an output of at least one qubit and produce an input control signal for the control system.
The magnetic flux control system may further comprise a superconducting oscillator configured to generate a microwave signal which interacts with a qubit.
The superconducting inductor may be further configured to couple the integrated magnetic flux with a quantum computing circuit comprising a transmon qubit circuit having a microwave resonance tunable dependent on at least the integrated magnetic flux. The control system may be configured to, within a quantum calculation period of the transmon qubit, define a first microwave resonant frequency of the transmon qubit, and subsequently define a second microwave resonant frequency of the transmon qubit, wherein the first microwave resonant frequency and the second microwave resonant frequency are different.
The superconducting inductor may be further configured to couple the integrated magnetic flux with a quantum computing circuit comprising a transmon qubit circuit having a microwave resonance tunable dependent on at least the integrated magnetic flux, and the control system may be configured to tune the microwave resonance of the transmon qubit circuit with the integrated magnetic flux dependent on a microwave resonance state of the transmon qubit circuit.
The magnetic flux control system may further comprise a superconducting quantum interference device responsive to the integrated magnetic flux, adapted to produce a magnetometer output, wherein the control system comprises a control system input responsive to the magnetometer output.
The control system further may comprise a first input port configured to receive a reference frequency signal, a second input port configured to receive a microwave resonance signal, and a comparing circuit configured to produce a comparison output configured to control the integrated magnetic flux to selectively change the integrated magnetic flux in response to the comparison output.
The control system is further configured: to receive at least one input control signal selectively dependent on a signal from a qubit during a quantum computing calculation representing a calculation state of the qubit during a phase of quantum computing, and to control the integrated magnetic flux selectively dependent on the calculation state of the qubit during a subsequent phase of quantum computing.
The magnetic flux control system may further comprise an error input port configured to receive an error signal; and at least one memory configured to persistently store a calibration value dependent on the error signal, wherein the control system produces output control signal selectively dependent on the persistently stored calibration value.
The magnetic flux control system may further comprise a superconducting circuit configured to reset the integrated magnetic flux to a predetermine value.
The control system may be further configured to produce at least two types of the at least one sequence of single-flux-quantum pulses, comprising: a first type of the sequence adapted to change the integrated magnetic flux by a first amount; and a second type of the sequence adapted to change the integrated magnetic flux by a second amount, the first amount being different from the second amount; and the control system is configured to receive at least one input control signal representing an amount of change of the integrated magnetic flux, and to produce at least the first type of sequence and the second type of sequence selectively dependent on the at least one input control signal.
The control system may be further configured to produce at least two different types of the output control signal comprising the at least one sequence of single-flux-quantum pulses, comprising a first type of sequence associated with a first positive whole number of single single-flux-quantum pulses, and a second type of sequence associated with a second positive whole number of single-flux-quantum pulses, the first positive whole number and the second positive whole number being different.
The magnetic flux control system may further comprise a counter responsive to a target value, configured to count each single-flux-quantum pulse and selectively produce a signal when a cumulative value of the at least one sequence of single-flux-quantum pulses corresponds to the target value, wherein the superconducting circuit comprises a superconducting transformer primary inductor, coupled to the superconducting inductor as a superconducting transformer secondary inductor; and the at least one sequence of single-flux-quantum pulses comprise first pulses and second pulses; the superconducting transformer primary inductor has a first terminal and a second terminal, the first pulses enter the superconducting transformer primary inductor at the first terminal, and the second pulses enter the superconducting transformer primary inductor at the second terminal, such that the first pulses act with opposite polarity with respect to the second pulses with respect to changes in the integrated magnetic flux.
See, Çelik, Mustafa Eren, Timur V. Filippov, Anubhav Sahu, Dmitri E. Kirichenko, Saad M. Sarwana, A. Erik Lehmann, and Deepnarayan Gupta. “Fast RSFQ and ERSFQ parallel counters.” IEEE Transactions on Applied Superconductivity 30, no. 7 (2020): 1-4; L. V. Filippenko, V. K. Kaplunenko, M. I. Khabipov, V. P. Koshelets, K. K. Likharev, O. A. Mukhanov, S. V. Rylov, V. K. Semenov, and A. N. Vystavkin, “Experimental Implementation of Analog-to-Digital Converter Based on the Reversible Ripple Counter,” IEEE Trans. Magn., vol. MAG-27, no. 2, pp. 2464-2467, March 1991; Shukla, Ashish, Dmitry Kirichenko, Timur Filippov, Anubhav Sahu, Mustafa Eren Celik, Mingoo Seok, and Deepnarayan Gupta. “Pulse Interfaces and Current Management Techniques for Serially Biased RSFQ Circuits.” IEEE Transactions on Applied Superconductivity (2022); Amparo, Denis, Mustafa Eren Çelik, Sagnik Nath, Joao P. Cerqueira, and Amol Inamdar. “Timing characterization for RSFQ cell library.” IEEE Transactions on Applied Superconductivity 29, no. 5 (2019): 1-9; Kito, Nobutaka, and Kazuyoshi Takagi. “An RSFQ flexible-precision multiplier utilizing bit-level processing.” In Journal of Physics: Conference Series, vol. 1975, no. 1, p. 012025. IOP Publishing, 2021; Qu, Pei-Yao, Guang-Ming Tang, Jia-Hong Yang, Xiao-Chun Ye, Dong-Rui Fan, Zhi-Min Zhang, and Ning-Hui Sun. “Design of an 8-bit Bit-Parallel RSFQ Microprocessor.” IEEE Transactions on Applied Superconductivity 30, no. 7 (2020): 1-6; Yamae, Taiki, Naoki Takeuchi, and Nobuyuki Yoshikawa. “Binary counters using adiabatic quantum-flux-parametron logic.” IEEE Transactions on Applied Superconductivity 31, no. 2 (2020): 1-5.
The control system may be configured to receive a feedback signal based on a magnitude of the integrated magnetic flux, further comprising a gate configured to cease the at least one sequence of single-flux-quantum pulses when the feedback signal indicates a sufficient correction in the integrated magnetic flux.
The magnetic flux control system may further comprise a control system input representing a feedback signal, wherein the control system is configured to produce the at least one output control signal selectively in dependence on the feedback signal, to produce: a continuous series of single-flux-quantum pulses of a first type for increasing the integrated magnetic flux; or a continuous series of single-flux-quantum pulses of a second type for decreasing the integrated magnetic flux; or an output representing no net single-flux-quantum pulses for maintaining the integrated magnetic flux.
The magnetic flux control system may further comprise a counter, wherein the control system is configured to receive a target value and in dependence thereon selectively: increment a counter based on a continuous series of single-flux-quantum pulses adapted to increase the integrated magnetic flux; decrement the counter based on a continuous series of single-flux-quantum pulses adapted to decrease the integrated magnetic flux; and suppress net single-flux-quantum pulses while a count value of the counter corresponds to an error margin of the target value.
The magnetic flux control system may further comprise a reset circuit configured to establish the magnetic flux at a predetermined value, the reset circuit comprising a reset inductor coupled to a superconducting quantum interference device (SQUID) having a critical current, in series with the superconducting inductor, wherein a current in the reset inductor is sufficient to drive the SQUID above the critical current and become resistive and dissipative of energy stored in the superconducting inductor.
It is another object of the invention to provide a method for controlling a superconducting quantum computing circuit, comprising generating different types of flux biasing pulses using a superconducting digital SFQ control circuit dependent on at least one control signal over time; converting the single-flux-quantum voltage pulses to a magnetic flux selectively dependent on a history of the at least one control signal, using the generated flux bias pulse with or without single-flux-quantum pulse control patterns applied to a superconducting quantum circuit, the different types of single-flux-quantum voltage pulses selectively causing increases and decreases in the magnetic flux; coupling the magnetic flux to a quantum computing circuit having a property tunable dependent on the coupled magnetic flux; and defining the at least one control signal over time dependent on a performance of the quantum computing circuit.
It is also an object of the invention to provide a method for controlling a superconducting quantum computing circuit, comprising: generating single-flux-quantum voltage pulses with a superconducting digital control circuit dependent on at least one control signal over time; converting the single-flux-quantum voltage pulses to a magnetic flux selectively dependent on a history of the at least one control signal; coupling the magnetic flux to a quantum computing circuit comprising at least one component having a property tunable dependent on the coupled magnetic flux; and defining the at least one control signal over time to selectively define the magnetic flux, to alter the property of the at least one component. The coupled magnetic flux may control a frequency, phase, rate, precision, or dynamic range of the at least one component, for example.
It is a further object to provide a magnetic flux control method, comprising: a control system comprising a plurality of Josephson junctions, the control system being configured to generate a sequence of single-flux-quantum pulses; a superconducting circuit configured to convert the sequence of single-flux-quantum pulses into a magnetic flux; and a superconducting inductor configured to couple the magnetic flux with a quantum computing circuit comprising at least one qubit coupler circuit having physical properties tunable dependent on the magnetic flux.
It is also an object to provide a magnetic flux control system, comprising: a control system comprising a plurality of Josephson junctions, configured to generate a sequence of single-flux-quantum pulses; a superconducting circuit configured to convert each pulse of the sequence of single-flux-quantum pulses into a magnetic flux; and a superconducting inductor configured to integrate the magnetic flux, wherein the integrated magnetic flux is controlled to increase and decrease corresponding to at least one control signal of the control system.
The superconducting inductor may be further configured to couple the integrated magnetic flux with a quantum computing circuit comprising at least one qubit circuit having physical properties tunable dependent on at least the magnetic flux.
The magnetic flux control system may further comprise the quantum computing circuit comprising at least one qubit circuit having physical properties tunable dependent on at least the magnetic flux.
The control system may have at least one control mode adapted to maintain a constant physical property of the at least one qubit.
The control system may have at least one control mode adapted to dynamically vary the physical property of the at least one qubit over time.
The superconducting inductor may be further configured to couple the integrated magnetic flux with a qubit circuit having physical properties tunable dependent on at least the magnetic flux.
The magnetic flux control system may be provided together with, or integrated with, the qubit circuit having physical properties tunable dependent on at least the magnetic flux.
The control system may have at least one control mode adapted to maintain a constant physical property of the qubit.
The control system may have at least one control mode adapted to dynamically vary the physical property of the qubit over time.
The control system may comprise an input configured to receive a feedback signal.
The control system may comprise a pair of inputs configured to receive feedback signals representing an excess of magnetic flux and a deficiency of magnetic flux.
The control system may comprise a pair of outputs configured to produce signals representing an increase of magnetic flux and a decrease of magnetic flux.
The control system may be configured to implement a phase locked loop control. See, en.wikipedia.org/wiki/Phase-locked_loop.
The control system may be configured to implement a frequency locked loop control. See, en.wikipedia.org/wiki/Frequency-locked_loop.
The control system may be configured to receive an optical control signal. See, e.g., Nakahara, K., H. Nagaishi, H. Hasegawa, S. Kominami, H. Yamada, and T. Nishino. “Optical input/output interface system for Josephson junction integrated circuits.” IEEE transactions on applied superconductivity 4, no. 4 (1994): 223-227; Van Zeghbroeck, B. “Optical data communication between Josephson-junction circuits and room-temperature electronics.” IEEE transactions on applied superconductivity 3, no. 1 (1993): 2881-2884; Karlsen, Bjørnar. “Optically operated pulse-driven Josephson junction arrays and range extension using voltage dividers and buffer amplifiers.” (2019); Karlsen, Bjørnar. “Optically operated pulse-driven Josephson junction arrays and range extension using voltage dividers and buffer amplifiers.” (2019).
The control system may be configured to receive a photonic control signal.
The control system may further comprise an optical output signal. See, e.g., Ireland, Jane, Oliver Kieler, Johannes Kohlmann, Helge Malmbekk, Jonathan M. Williams, Ralf Behr, Bjornar Karlsen et al. “Josephson arbitrary waveform system with optoelectronic drive.” In 2017 16th International Superconductive Electronics Conference (ISEC), pp. 1-4. IEEE, 2017; Youssefi, Amir, Itay Shomroni, Yash J. Joshi, Nathan R. Bernier, Anton Lukashchuk, Philipp Uhrich, Liu Qiu, and Tobias J. Kippenberg. “A cryogenic electro-optic interconnect for superconducting devices.” Nature Electronics (2021): 1-7.
The control system may further comprise a photonic output signal. See, Liu, Chenxu, Maria Mucci, Xi Cao, Michael Hatridge, and David Pekker. “Theory of an on-chip Josephson quantum micromaser.” Bulletin of the American Physical Society 65 (2020).
The superconducting inductor may couple the integrated magnetic flux of a transmon qubit circuit of a quantum computing system having a microwave resonance tunable dependent on at least the integrated magnetic flux. The control system tunes the microwave resonance of the transmon qubit circuit by adjusting the integrated magnetic flux dependent on a microwave resonance state of the transmon qubit circuit.
Modulation of signals may be detected by using receiver having a heterodyne or homodyne architecture, as shown in
The magnetic flux control system may further comprise a heterodyne detector. See, e.g., Ilves, Jesper, Shingo Kono, Yoshiki Sunada, Shota Yamazaki, Minkyu Kim, Kazuki Koshino, and Yasunobu Nakamura. “On-demand generation and characterization of a microwave time-bin qubit.” npj Quantum Information 6, no. 1 (2020): 1-7.
The magnetic flux control system may further comprise a homodyne detector. See, e.g., Fong, Kin Chung, Evan Walsh, Gil-Ho Lee, Dmitri Efetov, Jesse Crossno, Leonardo Ranzani, Thomas Ohki, Philip Kim, and Dirk Englund. “Graphene Josephson Junction Microwave Detector.” In APS March Meeting Abstracts, vol. 2017, pp. S51-011. 2017; Salmon, Neil A. “A quantum Bell Test homodyne interferometer at ambient temperature for millimetre wave entangled photons.” In Quantum Information Science and Technology IV, vol. 10803, p. 1080301. International Society for Optics and Photonics, 2018; Vrajitoarea, Andrei, Ziwen Huang, Peter Groszkowski, Jens Koch, and Andrew A. Houck. “Quantum control of an oscillator using a stimulated Josephson nonlinearity.” Nature Physics 16, no. 2 (2020): 211-217; Lüders, Carolin, and Marc Aßmann. “Distinguishing intrinsic photon correlations from external noise with frequency-resolved homodyne detection.” Scientific Reports 10, no. 1 (2020): 1-11.
The magnetic flux control system may further comprise a phase-sensitive amplifier configured to amplify a microwave signal which interacts with at least one qubit.
The magnetic flux control system may further comprise a Josephson parametric amplifier configured to amplify signals associated with at least one qubit. See, e.g., Boutin, Samuel, David M. Toyli, Aditya V. Venkatramani, Andrew W. Eddins, Irfan Siddiqi, and Alexandre Blais. “Effect of higher-order nonlinearities on amplification and squeezing in Josephson parametric amplifiers.” Physical Review Applied 8, no. 5 (2017): 054030; Sivak, V. V., Shyam Shankar, Gangqiang Liu, Jose Aumentado, and M. H. Devoret. “Josephson array-mode parametric amplifier.” Physical Review Applied 13, no. 2 (2020): 024014; Winkel, Patrick, Ivan Takmakov, Dennis Rieger, Luca Planat, Wiebke Hasch-Guichard, Lukas Grünhaupt, Nataliya Maleeva et al. “Nondegenerate parametric amplifiers based on dispersion-engineered josephson-junction arrays.” Physical Review Applied 13, no. 2 (2020): 024015; Planat, Luca, Arpit Ranadive, Rémy Dassonneville, Javier Puertas Martínez, Sébastien Léger, Cécile Naud, Olivier Buisson, Wiebke Hasch-Guichard, Denis M. Basko, and Nicolas Roch. “Photonic-crystal Josephson traveling-wave parametric amplifier.” Physical Review X 10, no. 2 (2020): 021021; Miano, Alessandro, and Oleg A. Mukhanov. “Symmetric traveling wave parametric amplifier.” IEEE Transactions on Applied Superconductivity 29, no. 5 (2019): 1-6; Aumentado, Jose. “Superconducting parametric amplifiers: The state of the art in Josephson parametric amplifiers.” IEEE Microwave Magazine 21, no. 8 (2020): 45-59.
The magnetic flux control system may further comprise a quadrature oscillator. See, Naaman, Ofer, J. A. Strong, D. G. Ferguson, J. Egan, N. Bailey, and R. T. Hinkey. “Josephson junction microwave modulators for qubit control.” Journal of Applied Physics 121, no. 7 (2017): 073904; Naaman, Ofer, Joshua Strong, David Ferguson, Jonathan Egan, Nancyjane Bailey, and Robert Hinkey. “Josephson Junction Microwave Modulators.” In 2018 IEEE/MTT-S International Microwave Symposium-IMS, pp. 1003-1005. IEEE, 2018.
The magnetic flux control system may further comprise a quadrature signal demodulator. See, e.g., Kono, Shingo, Kazuki Koshino, Yutaka Tabuchi, Atsushi Noguchi, and Yasunobu Nakamura. “Quantum non-demolition detection of an itinerant microwave photon.” Nature Physics 14, no. 6 (2018): 546-549.
The control system may be configured to, within a decoherence time of a qubit, maintain a first magnetic flux associated with the qubit, and maintain a second magnetic flux associated with the qubit, wherein the first magnetic flux and the second magnetic flux are different.
The superconducting inductor may be further configured to couple the integrated magnetic flux with a quantum computing circuit comprising at least one qubit circuit having a physical property tunable dependent on at least the magnetic flux, and the control system may be configured to, within a decoherence time of the at least one qubit, maintain a first state of the physical property of the at least one qubit, and subsequently maintain a second state of the physical property of the at least one qubit, wherein the first state and the second state are different.
The physical property may comprise a microwave resonance.
The superconducting inductor may be further configured to couple the integrated magnetic flux with a quantum computing circuit comprising a transmon qubit circuit having a microwave resonance tunable dependent on at least the magnetic flux, and the control system may be configured to, within a quantum calculation period of the transmon qubit, define a first microwave resonant frequency of the transmon qubit, and subsequently define a second microwave resonant frequency of the transmon qubit, wherein the first microwave resonant frequency and the second microwave resonant frequency are different.
The magnetic flux control system may further comprise a magnetometer configured to measure the integrated magnetic flux. The magnetometer may comprise a superconducting quantum interference detector (SQUID) magnetometer. The magnetometer may comprise a superconducting quantum interference filter (SQIF) magnetometer. The control system may further comprise an input for receiving a signal dependent on an output of the magnetometer.
The control system may further comprise an input for receiving a reference frequency signal, an input for receiving a microwave resonance signal, and a comparing circuit producing an output for controlling the magnetic flux to increase or decrease.
The control system may receive control signals comprising a reference frequency signal, and a microwave resonance signal, the control system further comprising a comparing circuit producing an output for controlling the magnetic flux to increase or decrease in dependence on an output of the comparing circuit.
The control system may receive at least one control signal selectively dependent on a signal from a qubit during a quantum computing calculation representing a calculation state of the qubit during a phase of quantum computing, and controls the magnetic flux selectively dependent on the calculation state of the qubit during a subsequent phase of quantum computing.
The magnetic flux control system may further comprise at least one memory configured to persistently store a calibration value, wherein the control system produces the sequence of single-flux-quantum pulses dependent on the persistently stored calibration value. An input may be provided to receive the calibration value. A circuit may be provided to determine the calibration value.
The magnetic flux control system may further comprise a circuit configured to reset the integrated magnetic flux to a predetermine value, e.g., by providing an element that temporarily transitions from a superconducting state to a non-superconducting state to dissipate energy stored in the superconducting inductor.
The control system may be configured to produce at least two types of the sequence of single-flux-quantum pulses, comprising a first type having a first number of single-flux-quantum pulses to change the integrated magnetic flux by a first amount, and second type having a second number of single-flux-quantum pulses to change the integrated magnetic flux by a second amount, the first number being different from the second number.
The control system may be configured to produce at least two types of the sequence of single-flux-quantum pulses, a first type which changes the integrated magnetic flux by a first amount, and second type which changes the integrated magnetic flux by a second amount, the first amount and the second amount being different.
The control system may be configured to produce at least four types of the sequence of single-flux-quantum pulses, comprising a first type having a first number of single-flux-quantum pulses to increase the integrated magnetic flux by a first amount, second type having a second number of single-flux-quantum pulses to increase the integrated magnetic flux by a second amount, a third type having a third number of single-flux-quantum pulses to decrease the integrated magnetic flux by a third amount, and fourth type having a fourth number of single-flux-quantum pulses to decrease the integrated magnetic flux by a second amount, the first number being different from the second number; and the third number being different from the fourth number.
The control system may be configured to produce at least four types of the sequence of single-flux-quantum pulses, a first type which increases the integrated magnetic flux by a first amount, second type which increases the integrated magnetic flux by a second amount, a third type which decreases the integrated magnetic flux by a third amount, and fourth type which decreases the integrated magnetic flux by a fourth amount, the first amount and the second amount being different, and the third amount and the fourth amount being different.
The control system may be configured to produce at least three respectively different types of the sequence of single-flux-quantum pulses, a first type which changes the integrated magnetic flux by a first amount, a second type which changes the integrated magnetic flux by a second amount, and a third type which changes the integrated magnetic flux by a third amount.
The control system may receive at least one control signal representing an amount of change of the integrated magnetic flux, and the control system may be configured to produce at least the first type, the second type, and the third type selectively dependent on the at least one control signal representing an amount of change of the integrated magnetic flux.
The control system may be configured to produce at least two different types of the sequence of single-flux-quantum pulses for increasing the integrated magnetic flux, a first type which produces a single single-flux-quantum pulse and a second type which produces a plurality of single-flux-quantum pulses.
The control system may be configured to produce at least two different types of the sequence of single-flux-quantum pulses for decreasing the integrated magnetic flux, a third type which produces a single single-flux-quantum pulse and a fourth type which produces a plurality of single-flux-quantum pulses.
The control system may be configured to produce at least three different types of the sequence of single-flux-quantum pulses for increasing the integrated magnetic flux, a first type which produces a single single-flux-quantum pulse, a second type which produces a plurality of single-flux-quantum pulses comprising a first range, and a third type which produces a plurality of single-flux-quantum pulses comprising a second range. The first range and the second range may be different. The control system may be configured to produce at least three additional different types of the sequence of single-flux-quantum pulses for decreasing the integrated magnetic flux, a fourth type which produces a single single-flux-quantum pulse, a fifth type which produces a plurality of single-flux-quantum pulses comprising a third range, and a sixth type which produces a plurality of single-flux-quantum pulses comprising a fourth range. The first range and the second range are different, and the third range and the fourth range are different.
It is also an object to provide a flux bias control method, comprising: generating a sequence of single-flux-quantum pulses with a control system having a plurality of Josephson junctions; converting each pulse of the sequence of single-flux-quantum pulses into a magnetic flux with a superconducting circuit; and integrating the magnetic flux with a superconducting inductor, wherein the integrated magnetic flux may be increased and decreased corresponding to at least one control signal of the control system.
The superconducting inductor may couple the integrated magnetic flux with a quantum computing circuit comprising at least one qubit circuit having physical properties tunable dependent on at least the magnetic flux.
The control system may maintain a constant physical property of the at least one qubit over a period.
The control system may dynamically vary the physical property of the at least one qubit over time.
The superconducting inductor may couple the integrated magnetic flux with a qubit circuit having physical properties tunable dependent on at least the magnetic flux.
The control system may maintain a constant physical property of the qubit over a period.
The control system may dynamically vary the physical property of the qubit over time.
A control system feedback signal may be received. A pair of feedback signals may be received representing respectively an excess of magnetic flux and a deficiency of magnetic flux.
A pair of outputs may be provided producing signals representing an increase of magnetic flux and a decrease of magnetic flux.
The control system implements a phase locked loop control and/or a frequency locked loop control.
The magnetic flux control method may receive an optical control signal and/or a photonic control signal, and may produce an optical output signal and/or a photonic output signal.
A microwave signal may be detected with a heterodyne detector or a homodyne detector.
A phase-sensitive amplifier may be provided for amplifying a microwave signal which interacts with at least one qubit. A Josephson parametric amplifier may be provided for amplifying signals associated with at least one qubit. The microwave signal may be an output of a qubit, have a characteristic dependent on the qubit. In some cases, a plurality of qubits are coupled, and an output signal derived from one qubit may be used to influence another qubit.
A quadrature microwave signal may be generated with a quadrature oscillator.
A microwave signal may be demodulated with a quadrature signal demodulator.
Within a decoherence time of a qubit, a first magnetic flux associated with the qubit may be maintained, and subsequently a second magnetic flux associated with the qubit maintained, wherein the first magnetic flux and the second magnetic flux are different.
The magnetic flux control method may further comprise coupling the integrated magnetic flux with a quantum computing circuit comprising at least one qubit circuit having a physical property tunable dependent on at least the magnetic flux, and within a decoherence time of the at least one qubit maintaining a first state of the physical property of the at least one qubit, and subsequently maintaining a second state of the physical property of the at least one qubit, wherein the first state and the second state are different.
The physical property may comprise a microwave resonance.
The superconducting inductor may couple the integrated magnetic flux with a quantum computing circuit comprising a transmon qubit circuit having a microwave resonance tunable dependent on at least the magnetic flux, further comprising, within a quantum calculation period of the transmon qubit: defining a first microwave resonant frequency of the transmon qubit, and subsequently defining a second microwave resonant frequency of the transmon qubit, wherein the first microwave resonant frequency and the second microwave resonant frequency are different.
A magnetometer sensor may be provided to measure the integrated magnetic flux. The magnetometer may comprise a superconducting quantum interference detector (SQUID) magnetometer. The magnetometer may comprise a superconducting quantum interference filter (SQIF) magnetometer. A control system input signal dependent on an output of the magnetometer may be provided.
The magnetic flux control method may further comprise comparing a reference frequency signal, and a microwave resonance signal, and controlling the magnetic flux to increase or decrease in dependence on the comparing.
The magnetic flux control method may further comprise receiving control signals comprising a reference frequency signal, and a microwave resonance signal; comparing the reference frequency signal, and a microwave resonance signal to produce a comparing output; and controlling the magnetic flux to increase or decrease in dependence on the comparing output.
The magnetic flux control method may further comprise receiving at least one control signal selectively dependent on a signal from a qubit during a quantum computing calculation representing a calculation state of the qubit during a phase of quantum computing; and controlling the magnetic flux selectively dependent on the calculation state of the qubit during a subsequent phase of quantum computing.
The magnetic flux control method may further comprise storing a calibration value in a memory, register or analog storage; and producing the sequence of single-flux-quantum pulses dependent on the persistently stored calibration value. The calibration value may be received from an external input. The calibration value may be determined within the control system.
The integrated magnetic flux may be reset to a predetermine value. The integrated magnetic flux may be reset by causing at least one superconducting element associated with the superconducting inductor to become temporarily resistive while a portion of the superconducting inductor remains superconductive. The at least one superconducting element may comprise a superconducting quantum interference device (SQUID) which is induced to enter into a non-superconducting state by exceeding a critical current.
At least two types of the sequence of single-flux-quantum pulses may be produced, comprising a first type having a first number of single-flux-quantum pulses to change the integrated magnetic flux by a first amount, and second type having a second number of single-flux-quantum pulses to change the integrated magnetic flux by a second amount, the first number being different from the second number.
At least two types of the sequence of single-flux-quantum pulses may be produced, comprising a first type which changes the integrated magnetic flux by a first amount, and second type which changes the integrated magnetic flux by a second amount, the first amount and the second amount being different.
At least four types of the sequence of single-flux-quantum pulses may be produced, comprising a first type having a first number of single-flux-quantum pulses to increase the integrated magnetic flux by a first amount, second type having a second number of single-flux-quantum pulses to increase the integrated magnetic flux by a second amount, a third type having a third number of single-flux-quantum pulses to decrease the integrated magnetic flux by a third amount, and fourth type having a fourth number of single-flux-quantum pulses to decrease the integrated magnetic flux by a second amount, the first number being different from the second number; and the third number being different from the fourth number.
At least four types of the sequence of single-flux-quantum pulses may be produced, a first type which increases the integrated magnetic flux by a first amount, second type which increases the integrated magnetic flux by a second amount, a third type which decreases the integrated magnetic flux by a third amount, and fourth type which decreases the integrated magnetic flux by a fourth amount, the first amount and the second amount being different, and the third amount and the fourth amount being different.
The magnetic flux control method may further comprise producing at least three respectively different types of the sequence of single-flux-quantum pulses, a first type which changes the integrated magnetic flux by a first amount, a second type which changes the integrated magnetic flux by a second amount, and a third type which changes the integrated magnetic flux by a third amount. The method may further comprise receiving at least one control signal representing an amount of change of the integrated magnetic flux, and the control system may be configured to produce at least the first type, the second type, and the third type selectively dependent on the at least one control signal representing an amount of change of the integrated magnetic flux.
The magnetic flux control method may further comprise producing at least two different types of the sequence of single-flux-quantum pulses for increasing the integrated magnetic flux, a first type which produces a single single-flux-quantum pulse and a second type which produces a plurality of single-flux-quantum pulses. The method may further comprise producing at least two different types of the sequence of single-flux-quantum pulses for decreasing the integrated magnetic flux, a third type which produces a single single-flux-quantum pulse and a fourth type which produces a plurality of single-flux-quantum pulses.
The magnetic flux control method may further comprise producing at least three different types of the sequence of single-flux-quantum pulses for increasing the integrated magnetic flux, a first type which produces a single single-flux-quantum pulse, a second type which produces a plurality of single-flux-quantum pulses comprising a first range, and a third type which produces a plurality of single-flux-quantum pulses comprising a second range. The first range and the second range may be different. At least three additional different types of the sequence of single-flux-quantum pulses for decreasing the integrated magnetic flux may be produced, a fourth type which produces a single single-flux-quantum pulse, a fifth type which produces a plurality of single-flux-quantum pulses comprising a third range, and a sixth type which produces a plurality of single-flux-quantum pulses comprising a fourth range. The first range and the second range may be different, and the third range and the fourth range may be different.
The magnetic flux from the sequence of single-flux-quantum pulses may be integrated by the superconducting inductor, such that successive single-flux-quantum pulses cause a change in a current in the superconducting inductor by a quantized amount.
The control system may selectively produce single-flux-quantum pulses representing different polarities.
The control system may selectively produce single-flux-quantum pulses of a first type and single-flux-quantum pulses of a second type, wherein the single-flux-quantum pulse of the first type causes an increase in a current in the superconducting inductor, and the single-flux-quantum pulse of the second type causes a decrease in the current in the superconducting inductor. The superconducting circuit may comprise a superconducting transformer primary inductor, coupled to the superconducting inductor as a superconducting transformer secondary inductor. The superconducting transformer primary inductor may have a first terminal and a second terminal, wherein the single-flux-quantum pulse of the first type enters the superconducting transformer primary inductor at the first terminal, and the single-flux-quantum pulse of the second type enters the superconducting transformer primary inductor at the second terminal, such that the single-flux-quantum pulse of the first type acts with opposite polarity with respect to the single-flux-quantum pulse of the first type with respect to changes in the magnetic flux.
The control system may be configured to receive a target value for the magnetic flux, the system further comprising a counter configured to count the single-flux-quantum pulses and cease the sequence of single-flux-quantum pulses when the counter value corresponds to the target value.
The control system may be configured to receive a feedback signal for the magnetic flux, the system further comprising a gate configured to cease the sequence of single-flux-quantum pulses (or their effect on the integrated magnetic flux) when the feedback signal indicates a sufficient correction in the magnetic flux.
The control system may receive a feedback signal and in dependence thereon selectively produce a continuous series of single-flux-quantum pulses of a first type or selectively produce a continuous series of single-flux-quantum pulses of a second type, wherein the single-flux-quantum pulse of the first type causes an increase in a current in the superconducting inductor, and the single-flux-quantum pulse of the second type causes a decrease in the current in the superconducting inductor.
The control system may receive a target value and in dependence thereon selectively produce and count a continuous series of single-flux-quantum pulses of a first type or of a second type, until the count corresponds to the target value, wherein the single-flux-quantum pulse of the first type causes an increase in a current in the superconducting inductor, and the single-flux-quantum pulse of the second type causes a decrease in the current in the superconducting inductor. The counter acts as a numerical integrator for the pulses. Since the pulses are quantized, their cumulative effect correlates with their numerosity.
The control system may receive a feedback signal and in dependence thereon selectively produce: a continuous series of single-flux-quantum pulses of a first type; or a continuous series of single-flux-quantum pulses of a second type; or an output representing no net single-flux-quantum pulses; wherein the single-flux-quantum pulse of the first type causes an increase in a current in the superconducting inductor, the single-flux-quantum pulse of the second type causes a decrease in the current in the superconducting inductor, and the output representing no net single-flux-quantum pulses produces no net change in the current in the superconducting inductor. The output representing no net single-flux-quantum pulses may comprise no single-flux-quantum pulses. The output may represent no net single-flux-quantum pulses may comprise offsetting single-flux-quantum pulses of the first type and single-flux-quantum pulses of the second type.
The control system may receive a target value and in dependence thereon selectively: increment a counter based on a continuous series of single-flux-quantum pulses of a first type until the count increases to the target value; decrement the counter based on a continuous series of single-flux-quantum pulses of a second type until the count decreases to the target value; or suppress net single-flux-quantum pulses while the counter corresponds to an error margin of the target value, wherein the single-flux-quantum pulse of the first type causes an increase in a current in the superconducting inductor, and the single-flux-quantum pulse of the second type causes a decrease in the current in the superconducting inductor. The suppressed net single-flux-quantum pulses may comprise no single-flux-quantum pulses and/or offsetting single-flux-quantum pulses of the first type and single-flux-quantum pulses of the second type.
The system may further comprise a sensor configured to measure the magnetic flux, a sensor configured to measure the physical properties, and/or an input configured to receive a feedback signal dependent on a performance of the plurality of qubits.
The at least one qubit may comprise a plurality of qubits and couplers between the plurality of qubits, having physical properties tunable dependent on the magnetic flux. The qubits may be superconducting qubits.
The control system may selectively produce single-flux-quantum pulses of a first type and single-flux-quantum pulses of a second type, wherein the single-flux-quantum pulse of the first type cause a change in current in the superconducting inductor of a first amplitude, and the single-flux-quantum pulse of the second type causes a change in current in the superconducting inductor of a second amplitude, and wherein the single-flux-quantum pulse of the first type is produced independently of the single-flux-quantum pulse of the second type. The single-flux-quantum pulse of the first type may cause a change in the current in the superconducting inductor which has an absolute value smaller than the change in the current in the superconducting inductor caused by the single-flux-quantum pulse of the second type.
A reset may be provided, configured to establish the magnetic flux at a predetermined value, e.g., zero. The reset may comprise a reset inductor coupled to a superconducting quantum interference device (SQUID) in series with the superconducting inductor, wherein a current in the reset inductor is sufficient to drive the SQUID above its critical current and become resistive and therefore dissipative of energy stored in the superconducting inductor.
It is also an object to provide a flux bias control method, comprising generating a sequence of single-flux-quantum pulses with a control system comprising a plurality of Josephson junctions; converting the sequence of single-flux-quantum pulses into a magnetic flux; coupling the magnetic flux with a quantum computing circuit comprising at least one qubit circuit with a superconducting inductor; and tuning physical properties of the qubit dependent on the magnetic flux.
The magnetic flux from the sequence of single-flux-quantum pulses may be integrated by the superconducting inductor, such that successive single-flux-quantum pulses cause a change in a current in the superconducting inductor by a quantized amount.
The generating may comprise selectively producing single-flux-quantum pulses representing different polarities with a control system.
Single-flux-quantum pulses of a first type and single-flux-quantum pulses of a second type may be selectively produced, wherein the single-flux-quantum pulse of the first type causes an increase in a current in the superconducting inductor, and the single-flux-quantum pulse of the second type causes a decrease in the current in the superconducting inductor.
The sequence of single-flux-quantum pulses may be converted into a magnetic flux by a superconducting circuit comprising a superconducting transformer primary inductor, coupled to the superconducting inductor as a superconducting transformer secondary inductor.
The superconducting transformer primary inductor may have a first terminal and a second terminal, wherein the single-flux-quantum pulse of the first type enters the superconducting transformer primary inductor at the first terminal, and the single-flux-quantum pulse of the second type enters the superconducting transformer primary inductor at the second terminal, such that the single-flux-quantum pulse of the first type acts with opposite polarity with respect to the single-flux-quantum pulse of the first type with respect to changes in the magnetic flux.
The method may further comprise receiving a target value for the magnetic flux; counting the sequence of single-flux-quantum pulses; and ceasing the single-flux-quantum pulses after the counter value corresponds to the target value.
The method may further comprise receiving a feedback signal for the magnetic flux dependent on a required correction of the magnetic flux; and gating the sequence of single-flux-quantum pulses when the feedback signal indicates a sufficient correction of the magnetic flux.
The method may further comprise receiving a feedback signal; and producing a continuous series of single-flux-quantum pulses of a first type or a second type selectively dependent on the feedback signal, wherein the single-flux-quantum pulse of the first type causes an increase in a current in the superconducting inductor, and the single-flux-quantum pulse of the second type causes a decrease in the current in the superconducting inductor.
The method may further comprise receiving a target value; and counting a continuous series of single-flux-quantum pulses of a first type or a second type, until the count corresponds to the target value; wherein the single-flux-quantum pulse of the first type causes an increase in a current in the superconducting inductor, and the single-flux-quantum pulse of the second type causes a decrease in the current in the superconducting inductor.
The method may further comprise receiving a feedback signal; and selectively producing a continuous series of single-flux-quantum pulses of a first type or of a second type or an output representing no net single-flux-quantum pulses, selectively dependent on the feedback signal; wherein the single-flux-quantum pulse of the first type causes an increase in a current in the superconducting inductor, the single-flux-quantum pulse of the second type causes a decrease in the current in the superconducting inductor, and the output representing no net single-flux-quantum pulses produces no net change in the current in the superconducting inductor.
The output representing no net single-flux-quantum pulses may comprise no single-flux-quantum pulses and/or offsetting single-flux-quantum pulses of the first type and single-flux-quantum pulses of the second type.
The method may further comprise receiving a target value; selectively incrementing a counter based on a continuous series of single-flux-quantum pulses of a first type if the count is below the target value; selectively decrementing the counter based on a continuous series of single-flux-quantum pulses of a second type if the count is above the target value; and selectively suppressing net single-flux-quantum pulses if the count corresponds to an error margin of the target value, wherein the single-flux-quantum pulse of the first type causes an increase in a current in the superconducting inductor, and the single-flux-quantum pulse of the second type causes a decrease in the current in the superconducting inductor. The suppressed net single-flux-quantum pulses may comprise no single-flux-quantum pulses and/or offsetting single-flux-quantum pulses of the first type and single-flux-quantum pulses of the second type.
The method may further comprise measuring the magnetic flux or integrated magnetic flux with a sensor, and/or measuring the physical properties with a sensor, and/or receiving a feedback signal dependent on a performance of the plurality of qubits.
The at least one qubit may comprise a plurality of qubits and couplers between the plurality of qubits, having physical properties tunable dependent on the magnetic flux. The qubits may be superconducting qubits.
The method may further comprise selectively producing single-flux-quantum pulses of a first type and selectively producing single-flux-quantum pulses of a second type, wherein the single-flux-quantum pulses of the first type cause an change in current in the superconducting inductor of a first amplitude, and the single-flux-quantum pulses of the second type cause a change in current in the superconducting inductor of a second amplitude, and wherein the single-flux-quantum pulse of the first type is produced independently of the single-flux-quantum pulse of the second type. The single-flux-quantum pulse of the first type may cause a change in the current in the superconducting inductor which has an absolute value smaller than the change in the current in the superconducting inductor caused by the single-flux-quantum pulse of the second type.
The method may further comprise resetting the magnetic flux to a predetermined value. The resetting may comprise passing a pulse through a reset inductor coupled to a superconducting quantum interference device (SQUID) in series with the superconducting inductor, wherein a pulse-induced current in the reset inductor is sufficient to drive the SQUID above its critical current and become resistive and therefore dissipative of energy stored in the superconducting inductor.
This conceptual diagram is further refined in
A further embodiment of the flux biasing circuit is shown in
A further refinement is shown in
The block diagram in
The block diagram on
An illustrative example of these two types of SFQ control is shown in
In addition to presenting the concept and method of superconducting digital flux bias of qubits, portions of a preferred embodiment have been designed, simulated, fabricated, and demonstrated experimentally.
Alternately, as shown in
The AJTL can be a parallel JTL with 6 JTL stages in parallel, as shown in
The counter can be a fixed frequency divider, based on a simple chain of N T-flip-flops (TFFs), well known in the prior art, which generates 2N SFQ pulses. Alternatively, a programmable counter such as that in
Portions of the schematic hierarchy for a prototype flux bias control circuit based on
The circuits of
The operation of the circuit in
A chip based on the layout of
Similar superconducting circuits would be expected to exhibit similar performance at high speed, at reduced cryogenic temperatures in the mK range, with flux bias linked to a superconducting qubit or inter-qubit coupler.
Number | Name | Date | Kind |
---|---|---|---|
5170080 | Murphy | Dec 1992 | A |
5233242 | Murphy | Aug 1993 | A |
5233243 | Murphy | Aug 1993 | A |
5289400 | Przybysz | Feb 1994 | A |
5388068 | Ghoshal | Feb 1995 | A |
5389837 | Hietala | Feb 1995 | A |
5598105 | Kurosawa | Jan 1997 | A |
5629889 | Chandra | May 1997 | A |
5781009 | Lee | Jul 1998 | A |
5793055 | Kastalsky | Aug 1998 | A |
5818373 | Semenov | Oct 1998 | A |
5936458 | Rylov | Aug 1999 | A |
5963351 | Kaplounenko | Oct 1999 | A |
6023161 | Dantsker | Feb 2000 | A |
6175749 | Wōrdenweber | Jan 2001 | B1 |
6188236 | Wikborg | Feb 2001 | B1 |
6242939 | Nagasawa | Jun 2001 | B1 |
6331805 | Gupta | Dec 2001 | B1 |
6345189 | Wördenweber | Feb 2002 | B1 |
6345190 | Wördenweber | Feb 2002 | B1 |
6353330 | Kanda | Mar 2002 | B1 |
6459097 | Zagoskin | Oct 2002 | B1 |
6479139 | Claeson | Nov 2002 | B1 |
6486694 | Kirichenko | Nov 2002 | B1 |
6495854 | Newns | Dec 2002 | B1 |
6504172 | Zagoskin | Jan 2003 | B2 |
6507234 | Johnson | Jan 2003 | B1 |
6509853 | Gupta | Jan 2003 | B2 |
6518786 | Herr | Feb 2003 | B2 |
6537847 | Zagoskin | Mar 2003 | B2 |
6563310 | Zagoskin | May 2003 | B2 |
6563311 | Zagoskin | May 2003 | B2 |
6573202 | Ivanov | Jun 2003 | B2 |
6576951 | Ivanov | Jun 2003 | B2 |
6580102 | Ivanov | Jun 2003 | B2 |
6605822 | Blais | Aug 2003 | B1 |
6608581 | Semenov | Aug 2003 | B1 |
6614047 | Tzalenchuk | Sep 2003 | B2 |
6626995 | Kim | Sep 2003 | B2 |
6627915 | Ustinov | Sep 2003 | B1 |
6627916 | Amin | Sep 2003 | B2 |
6649929 | Newns | Nov 2003 | B2 |
6670630 | Blais | Dec 2003 | B2 |
6703857 | Kameda | Mar 2004 | B2 |
6724216 | Suzuki | Apr 2004 | B2 |
6725248 | Hasegawa | Apr 2004 | B1 |
6728131 | Ustinov | Apr 2004 | B2 |
6734699 | Herr | May 2004 | B1 |
6753546 | Tzalenchuk | Jun 2004 | B2 |
6756925 | Leung | Jun 2004 | B1 |
6773836 | Kim | Aug 2004 | B2 |
6781435 | Gupta | Aug 2004 | B1 |
6784451 | Amin | Aug 2004 | B2 |
6791109 | Tzalenchuk | Sep 2004 | B2 |
6803599 | Amin | Oct 2004 | B2 |
6812484 | Tzalenchuk | Nov 2004 | B2 |
6813056 | Cottrell | Nov 2004 | B2 |
6822255 | Tzalenchuk | Nov 2004 | B2 |
6838694 | Esteve | Jan 2005 | B2 |
6865639 | Herr | Mar 2005 | B2 |
6885325 | Omelyanchouk | Apr 2005 | B2 |
6897468 | Blais | May 2005 | B2 |
6900454 | Blais | May 2005 | B2 |
6900456 | Blais | May 2005 | B2 |
6905887 | Amin | Jun 2005 | B2 |
6909109 | Herr | Jun 2005 | B2 |
6911664 | Il'ichev et al. | Jun 2005 | B2 |
6917537 | Bunyk | Jul 2005 | B2 |
6919579 | Amin | Jul 2005 | B2 |
6926921 | Stasiak | Aug 2005 | B2 |
6930318 | Vion | Aug 2005 | B2 |
6930320 | Blais | Aug 2005 | B2 |
6936841 | Amin | Aug 2005 | B2 |
6943368 | Amin | Sep 2005 | B2 |
6960780 | Blais | Nov 2005 | B2 |
6979836 | Zagoskin | Dec 2005 | B2 |
6984846 | Newns | Jan 2006 | B2 |
6987282 | Amin | Jan 2006 | B2 |
7002174 | Il'ichev et al. | Feb 2006 | B2 |
7015499 | Zagoskin | Mar 2006 | B1 |
7018852 | Wu | Mar 2006 | B2 |
7042005 | Il'ichev et al. | May 2006 | B2 |
7078694 | Polonsky | Jul 2006 | B2 |
7095227 | Tarutani | Aug 2006 | B2 |
7113967 | Cleve | Sep 2006 | B2 |
7129870 | Hirano | Oct 2006 | B2 |
7135701 | Amin | Nov 2006 | B2 |
7230266 | Hilton | Jun 2007 | B2 |
7253654 | Amin | Aug 2007 | B2 |
7268576 | Amin | Sep 2007 | B2 |
7268713 | Suzuki | Sep 2007 | B2 |
7280623 | Gupta | Oct 2007 | B2 |
7307275 | Lidar | Dec 2007 | B2 |
7313199 | Gupta | Dec 2007 | B2 |
7321884 | Burkard | Jan 2008 | B2 |
7332738 | Blais | Feb 2008 | B2 |
7335909 | Amin | Feb 2008 | B2 |
7362125 | Gupta | Apr 2008 | B2 |
7364923 | Lidar | Apr 2008 | B2 |
7365663 | Rylov | Apr 2008 | B2 |
7400282 | Tanaka | Jul 2008 | B2 |
7418283 | Amin | Aug 2008 | B2 |
7428562 | Beausoleil | Sep 2008 | B2 |
7440490 | Kidiyarova-Shevchenko | Oct 2008 | B2 |
7443719 | Kirichenko | Oct 2008 | B2 |
7468630 | Inamdar | Dec 2008 | B2 |
7498832 | Baumgardner | Mar 2009 | B2 |
7505310 | Nagasawa | Mar 2009 | B2 |
7508230 | Kirichenko | Mar 2009 | B2 |
7533068 | Maassen van den Brink | May 2009 | B2 |
7550759 | Hakonen | Jun 2009 | B2 |
7554369 | Kirichenko | Jun 2009 | B2 |
7570075 | Gupta | Aug 2009 | B2 |
7598897 | Kirichenko | Oct 2009 | B2 |
7605600 | Harris | Oct 2009 | B2 |
7613764 | Hilton | Nov 2009 | B1 |
7613765 | Hilton | Nov 2009 | B1 |
7619437 | Thom | Nov 2009 | B2 |
7624088 | Johnson | Nov 2009 | B2 |
7639035 | Berkley | Dec 2009 | B2 |
7687938 | Bunyk | Mar 2010 | B2 |
7689068 | Wang | Mar 2010 | B1 |
7714605 | Baumgardner | May 2010 | B2 |
7724020 | Herr | May 2010 | B2 |
7724083 | Herring | May 2010 | B2 |
7749922 | Bezryadin | Jul 2010 | B2 |
7772871 | Herr | Aug 2010 | B2 |
7782077 | Herr | Aug 2010 | B2 |
7786748 | Herr | Aug 2010 | B1 |
7788192 | Amin | Aug 2010 | B2 |
7800395 | Johnson | Sep 2010 | B2 |
7843209 | Berkley | Nov 2010 | B2 |
7844656 | Macready | Nov 2010 | B2 |
7847615 | Yorozu | Dec 2010 | B2 |
7852106 | Herr | Dec 2010 | B2 |
7858966 | Kitaev | Dec 2010 | B2 |
7863892 | Morley | Jan 2011 | B2 |
7868645 | Herr | Jan 2011 | B2 |
7870087 | Macready | Jan 2011 | B2 |
7875876 | Wandzura | Jan 2011 | B1 |
7876145 | Koch | Jan 2011 | B2 |
7876248 | Berkley | Jan 2011 | B2 |
7877333 | Macready | Jan 2011 | B2 |
7880529 | Amin | Feb 2011 | B2 |
7889992 | DiVincenzo | Feb 2011 | B1 |
7893708 | Baumgardner | Feb 2011 | B2 |
7898282 | Harris | Mar 2011 | B2 |
7899852 | Amin | Mar 2011 | B2 |
7912656 | Berns | Mar 2011 | B2 |
7925614 | Burkard | Apr 2011 | B2 |
7932514 | Farinelli | Apr 2011 | B2 |
7932515 | Bunyk | Apr 2011 | B2 |
7969178 | Przybysz | Jun 2011 | B2 |
7969805 | Thom | Jun 2011 | B2 |
7977668 | Nevirkovets | Jul 2011 | B2 |
7982646 | Herr | Jul 2011 | B2 |
7984012 | Coury | Jul 2011 | B2 |
7990662 | Berkley | Aug 2011 | B2 |
8008942 | van den Brink | Aug 2011 | B2 |
8008991 | Tcaciuc | Aug 2011 | B2 |
8018244 | Berkley | Sep 2011 | B2 |
8032474 | Macready | Oct 2011 | B2 |
8035540 | Berkley | Oct 2011 | B2 |
8063657 | Rose | Nov 2011 | B2 |
8073808 | Rose | Dec 2011 | B2 |
8089286 | Silva | Jan 2012 | B2 |
8098179 | Bunyk | Jan 2012 | B2 |
8102185 | Johansson | Jan 2012 | B2 |
8111083 | Pesetski | Feb 2012 | B1 |
8138784 | Przybysz | Mar 2012 | B2 |
8138880 | Keefe | Mar 2012 | B2 |
8159313 | Uchaykin | Apr 2012 | B2 |
8169231 | Berkley | May 2012 | B2 |
8174305 | Harris | May 2012 | B2 |
8175995 | Amin | May 2012 | B2 |
8190548 | Choi | May 2012 | B2 |
8195596 | Rose | Jun 2012 | B2 |
8195726 | Macready | Jun 2012 | B2 |
8222899 | Horng | Jul 2012 | B2 |
8228688 | Uchaykin | Jul 2012 | B2 |
8229863 | Amin | Jul 2012 | B2 |
8234103 | Biamonte | Jul 2012 | B2 |
8244650 | Rose | Aug 2012 | B2 |
8244662 | Coury | Aug 2012 | B2 |
8247799 | Bunyk | Aug 2012 | B2 |
8275428 | Bonderson | Sep 2012 | B2 |
8279022 | Thom | Oct 2012 | B2 |
8283943 | van den Brink | Oct 2012 | B2 |
8284585 | Maekawa | Oct 2012 | B2 |
8294138 | Farinelli | Oct 2012 | B2 |
8315969 | Roetteler | Nov 2012 | B2 |
8355765 | Uchaykin | Jan 2013 | B2 |
8386554 | Macready | Feb 2013 | B2 |
8405468 | Uchaykin | Mar 2013 | B2 |
8421053 | Bunyk | Apr 2013 | B2 |
8437168 | Maekawa | May 2013 | B2 |
8441329 | Thom | May 2013 | B2 |
8461862 | Pesetski | Jun 2013 | B2 |
8494993 | Harris | Jul 2013 | B2 |
8504497 | Amin | Aug 2013 | B2 |
8508280 | Naaman | Aug 2013 | B2 |
8536566 | Johansson | Sep 2013 | B2 |
8560282 | Macready | Oct 2013 | B2 |
8560470 | Amin | Oct 2013 | B2 |
8571614 | Mukhanov | Oct 2013 | B1 |
8604944 | Berkley | Dec 2013 | B2 |
8606341 | Bonderson | Dec 2013 | B2 |
8611974 | Maibaum | Dec 2013 | B2 |
8648331 | Bonderson | Feb 2014 | B2 |
8654578 | Lewis | Feb 2014 | B2 |
8655828 | Rose | Feb 2014 | B2 |
8659007 | Bonderson | Feb 2014 | B2 |
8670807 | Rose | Mar 2014 | B2 |
8686751 | van den Brink | Apr 2014 | B2 |
8738105 | Berkley | May 2014 | B2 |
8745850 | Farinelli | Jun 2014 | B2 |
8748196 | Bonderson | Jun 2014 | B2 |
8748950 | Levy | Jun 2014 | B2 |
8772759 | Bunyk | Jul 2014 | B2 |
8786476 | Bunyk | Jul 2014 | B2 |
8812066 | Lanting | Aug 2014 | B2 |
8841764 | Poletto | Sep 2014 | B2 |
8854074 | Berkley | Oct 2014 | B2 |
8861619 | McDermott | Oct 2014 | B2 |
8872360 | Chow | Oct 2014 | B2 |
8874629 | Macready | Oct 2014 | B2 |
8892857 | Ozols | Nov 2014 | B2 |
8922239 | Pesetski | Dec 2014 | B2 |
8928391 | Naaman | Jan 2015 | B2 |
8951808 | Ladizinsky | Feb 2015 | B2 |
8975912 | Chow | Mar 2015 | B2 |
8977576 | Macready | Mar 2015 | B2 |
9015215 | Berkley | Apr 2015 | B2 |
9026574 | Macready | May 2015 | B2 |
9040959 | Lutchyn | May 2015 | B2 |
9041427 | Gambetta | May 2015 | B2 |
9059674 | Chow | Jun 2015 | B2 |
9059707 | Gambetta | Jun 2015 | B2 |
9069928 | van den Brink | Jun 2015 | B2 |
9129224 | Lanting | Sep 2015 | B2 |
9130116 | Tolpygo | Sep 2015 | B1 |
9134047 | Black | Sep 2015 | B2 |
9152923 | Harris | Oct 2015 | B2 |
9152924 | Bonderson | Oct 2015 | B2 |
9162881 | Biamonte | Oct 2015 | B2 |
9170278 | Neufeld | Oct 2015 | B2 |
9178154 | Bunyk | Nov 2015 | B2 |
9183508 | King | Nov 2015 | B2 |
9192085 | Chavez | Nov 2015 | B2 |
9207672 | Williams | Dec 2015 | B2 |
9208446 | Pesetski | Dec 2015 | B2 |
9218567 | Macready | Dec 2015 | B2 |
9231181 | Thom | Jan 2016 | B2 |
9235811 | Stoltz | Jan 2016 | B2 |
9240773 | Mukhanov | Jan 2016 | B1 |
9256834 | Bonderson | Feb 2016 | B2 |
9275011 | Svore | Mar 2016 | B2 |
9335385 | Lanting | May 2016 | B2 |
9344092 | Abraham | May 2016 | B2 |
9350460 | Paik | May 2016 | B2 |
9355364 | Miller | May 2016 | B2 |
9355365 | Berkley | May 2016 | B2 |
9361169 | Berkley | Jun 2016 | B2 |
9369133 | Naaman | Jun 2016 | B2 |
9379303 | Gambetta | Jun 2016 | B2 |
9384827 | Reohr | Jul 2016 | B1 |
9385293 | Nayfeh | Jul 2016 | B1 |
9385294 | Rigetti | Jul 2016 | B2 |
9396440 | Macready | Jul 2016 | B2 |
9400499 | Williams | Jul 2016 | B2 |
9405876 | Macready | Aug 2016 | B2 |
9406026 | Bunyk | Aug 2016 | B2 |
9412074 | Troyer | Aug 2016 | B2 |
9424526 | Ranjbar | Aug 2016 | B2 |
9425377 | Moyerman | Aug 2016 | B2 |
9425804 | McDermott, III | Aug 2016 | B2 |
9432024 | Chow | Aug 2016 | B2 |
9437800 | McDermott, III | Sep 2016 | B1 |
9438246 | Naaman | Sep 2016 | B1 |
9454061 | Abdo | Sep 2016 | B1 |
9455391 | Nayfeh | Sep 2016 | B1 |
9460397 | Apalkov | Oct 2016 | B2 |
9461588 | Naaman | Oct 2016 | B1 |
9471880 | Williams | Oct 2016 | B2 |
9473124 | Mukhanov | Oct 2016 | B1 |
9490296 | Ladizinsky | Nov 2016 | B2 |
9495644 | Chudak | Nov 2016 | B2 |
9501747 | Roy | Nov 2016 | B2 |
9501748 | Naaman | Nov 2016 | B2 |
9503063 | Abraham | Nov 2016 | B1 |
9509274 | Naaman | Nov 2016 | B2 |
9514415 | Bocharov | Dec 2016 | B2 |
9520180 | Mukhanov | Dec 2016 | B1 |
9524470 | Chow | Dec 2016 | B1 |
9547826 | King | Jan 2017 | B2 |
9548742 | Abdo | Jan 2017 | B1 |
9559284 | Chang | Jan 2017 | B2 |
9588940 | Hamze | Mar 2017 | B2 |
9594726 | Macready | Mar 2017 | B2 |
9595969 | Miller | Mar 2017 | B2 |
9607270 | Harris | Mar 2017 | B2 |
9614532 | Bulzacchelli | Apr 2017 | B1 |
9633314 | Kwon | Apr 2017 | B2 |
9646682 | Miller | May 2017 | B1 |
9647662 | Abutaleb | May 2017 | B1 |
9663358 | Cory | May 2017 | B1 |
9665539 | Macready | May 2017 | B1 |
9680452 | Abdo | Jun 2017 | B1 |
9685935 | Strand | Jun 2017 | B2 |
9692423 | McDermott, III | Jun 2017 | B2 |
9697473 | Abdo | Jul 2017 | B2 |
9699266 | Rose | Jul 2017 | B2 |
9710758 | Bunyk | Jul 2017 | B2 |
9727527 | Maassen van den Brink | Aug 2017 | B2 |
9727823 | Amin | Aug 2017 | B2 |
9727824 | Rose | Aug 2017 | B2 |
9735776 | Abdo | Aug 2017 | B1 |
9741918 | Yohannes | Aug 2017 | B2 |
9741920 | Tolpygo | Aug 2017 | B1 |
9748976 | Naaman | Aug 2017 | B2 |
9755133 | Nayfeh | Sep 2017 | B1 |
9761305 | Reohr | Sep 2017 | B2 |
9762200 | Thom | Sep 2017 | B2 |
9767238 | Oberg | Sep 2017 | B2 |
9768371 | Ladizinsky | Sep 2017 | B2 |
9768771 | Naaman | Sep 2017 | B2 |
9779360 | Bunyk | Oct 2017 | B2 |
9780764 | Pesetski | Oct 2017 | B2 |
9780765 | Naaman | Oct 2017 | B2 |
9787278 | Abdo | Oct 2017 | B1 |
9787312 | Herr | Oct 2017 | B2 |
9793913 | Bulzacchelli | Oct 2017 | B2 |
9806711 | Abdo | Oct 2017 | B1 |
9812836 | Osborn | Nov 2017 | B1 |
9818064 | Abdo | Nov 2017 | B1 |
9836699 | Rigetti | Dec 2017 | B1 |
9845153 | Sekelsky | Dec 2017 | B2 |
9853645 | Mukhanov | Dec 2017 | B1 |
9865648 | Bunyk | Jan 2018 | B2 |
9870277 | Berkley | Jan 2018 | B2 |
9875215 | Macready | Jan 2018 | B2 |
9875444 | King | Jan 2018 | B2 |
9880365 | Goutzoulis | Jan 2018 | B2 |
9881256 | Hamze | Jan 2018 | B2 |
9882112 | Kwon | Jan 2018 | B2 |
9887000 | Mukhanov | Feb 2018 | B1 |
9892365 | Rigetti | Feb 2018 | B2 |
9909460 | Allen | Mar 2018 | B2 |
9913414 | Sadleir | Mar 2018 | B2 |
9917580 | Naaman | Mar 2018 | B2 |
9922289 | Abdo | Mar 2018 | B2 |
9928948 | Naaman | Mar 2018 | B2 |
9929978 | Naaman | Mar 2018 | B2 |
9935252 | Abraham | Apr 2018 | B2 |
9940586 | Epstein | Apr 2018 | B1 |
9945917 | Drake | Apr 2018 | B2 |
9948254 | Narla | Apr 2018 | B2 |
9952830 | Tomaru | Apr 2018 | B2 |
9953268 | Abdo | Apr 2018 | B2 |
9953269 | Chow | Apr 2018 | B2 |
9966926 | Abdo | May 2018 | B2 |
9971970 | Rigetti | May 2018 | B1 |
9978020 | Gambetta | May 2018 | B1 |
9978809 | Ladizinsky | May 2018 | B2 |
9984333 | Biamonte | May 2018 | B2 |
9991864 | Strong | Jun 2018 | B2 |
9996801 | Shim | Jun 2018 | B2 |
9998122 | Hamilton | Jun 2018 | B2 |
10002107 | Lanting | Jun 2018 | B2 |
10006859 | Ashrafi | Jun 2018 | B2 |
10012704 | Coar | Jul 2018 | B2 |
10013657 | Bourassa | Jul 2018 | B2 |
10014859 | Abdo | Jul 2018 | B2 |
10020438 | Yazdani | Jul 2018 | B2 |
10031887 | Raymond | Jul 2018 | B2 |
10037493 | Harris | Jul 2018 | B2 |
10042805 | Naaman | Aug 2018 | B2 |
10044638 | Dadashikelayeh | Aug 2018 | B2 |
10050630 | Reagor | Aug 2018 | B2 |
10056540 | Abraham | Aug 2018 | B2 |
10056908 | Rigetti | Aug 2018 | B2 |
10062828 | Abdo | Aug 2018 | B2 |
10062829 | Abdo | Aug 2018 | B1 |
10068180 | Amin | Sep 2018 | B2 |
10068181 | Rigetti | Sep 2018 | B1 |
10068184 | Hertzberg | Sep 2018 | B1 |
10074056 | Epstein | Sep 2018 | B2 |
10074792 | Ferguson | Sep 2018 | B1 |
10074793 | Abdo | Sep 2018 | B2 |
10084436 | Goto | Sep 2018 | B2 |
10084454 | Braun | Sep 2018 | B1 |
10097143 | Abdo | Oct 2018 | B2 |
10097151 | Thom | Oct 2018 | B2 |
10097186 | Epstein | Oct 2018 | B1 |
10097281 | Vernik | Oct 2018 | B1 |
10103730 | Abdo | Oct 2018 | B1 |
10108071 | Abdo | Oct 2018 | B2 |
10121754 | Oliver | Nov 2018 | B2 |
10122351 | Naaman | Nov 2018 | B1 |
10127500 | Abdo | Nov 2018 | B2 |
10133959 | Ahn | Nov 2018 | B2 |
10133984 | Clarke | Nov 2018 | B2 |
10134972 | Oliver | Nov 2018 | B2 |
10140248 | Maassen van den Brink | Nov 2018 | B2 |
10140404 | Rigetti | Nov 2018 | B2 |
10141493 | Tuckerman | Nov 2018 | B2 |
10141928 | Abdo | Nov 2018 | B2 |
10147865 | Tahan | Dec 2018 | B1 |
10158343 | Keane | Dec 2018 | B1 |
10161870 | Ashrafi | Dec 2018 | B2 |
10164606 | Keane | Dec 2018 | B1 |
10169714 | Chow | Jan 2019 | B2 |
10170680 | Abraham | Jan 2019 | B2 |
10170681 | Rosenblatt | Jan 2019 | B1 |
10171077 | Abdo | Jan 2019 | B2 |
10176432 | Abdo | Jan 2019 | B2 |
10177297 | Marcus | Jan 2019 | B2 |
10187065 | Kerman | Jan 2019 | B2 |
10192168 | Rigetti | Jan 2019 | B2 |
10197497 | Kolkowitz | Feb 2019 | B2 |
10199553 | Oliver | Feb 2019 | B1 |
10209192 | Ashrafi | Feb 2019 | B2 |
10210460 | Abdo | Feb 2019 | B2 |
10211798 | Abdo | Feb 2019 | B2 |
10229355 | Ronagh | Mar 2019 | B2 |
10229366 | Gambetta | Mar 2019 | B2 |
10230038 | Abdo | Mar 2019 | B2 |
10235634 | Chen | Mar 2019 | B1 |
10235635 | Abdo | Mar 2019 | B1 |
10236432 | Abdo | Mar 2019 | B2 |
10242968 | Das | Mar 2019 | B2 |
10243132 | Rosenblatt | Mar 2019 | B1 |
10250271 | Goto | Apr 2019 | B2 |
10255557 | Epstein | Apr 2019 | B2 |
10256206 | Falcon | Apr 2019 | B2 |
10256392 | Brink | Apr 2019 | B1 |
10262276 | Puri | Apr 2019 | B2 |
10262727 | Przybysz | Apr 2019 | B2 |
10263170 | Brink | Apr 2019 | B1 |
10268622 | Hilton | Apr 2019 | B2 |
10268968 | Abraham | Apr 2019 | B2 |
10275422 | Israel | Apr 2019 | B2 |
10275556 | Sarpeshkar | Apr 2019 | B2 |
10275718 | Kerman | Apr 2019 | B2 |
10276771 | Abdo | Apr 2019 | B2 |
10276772 | Abdo | Apr 2019 | B2 |
10281278 | Moxley, III | May 2019 | B2 |
10282675 | Bloom | May 2019 | B2 |
10283693 | Kerman | May 2019 | B2 |
10283694 | Yohannes | May 2019 | B2 |
10289960 | Chow | May 2019 | B2 |
10290798 | Harris | May 2019 | B2 |
10291227 | Abdo | May 2019 | B2 |
10304004 | Chow | May 2019 | B2 |
10304005 | Chow | May 2019 | B2 |
10305015 | Brink | May 2019 | B1 |
10311369 | Epstein | Jun 2019 | B2 |
10318880 | Pereverzev | Jun 2019 | B2 |
10318881 | Rose | Jun 2019 | B2 |
10319896 | Falcon | Jun 2019 | B2 |
10320331 | Abdo | Jun 2019 | B1 |
10320383 | Abdo | Jun 2019 | B2 |
10326071 | Uchaykin | Jun 2019 | B2 |
10332023 | Mezzacapo | Jun 2019 | B2 |
10332024 | Scheer | Jun 2019 | B2 |
10333046 | Abdo | Jun 2019 | B2 |
10333047 | Gilbert | Jun 2019 | B2 |
10333048 | Barkeshli | Jun 2019 | B2 |
10339239 | Oberg | Jul 2019 | B2 |
10340438 | Rosenblatt | Jul 2019 | B2 |
10345678 | Abdo | Jul 2019 | B2 |
10346348 | Hastings | Jul 2019 | B2 |
10346349 | Maassen van den Brink | Jul 2019 | B2 |
10346508 | Amin | Jul 2019 | B2 |
10346760 | Mohseni | Jul 2019 | B2 |
10346761 | Clarke | Jul 2019 | B2 |
10347813 | Abdo | Jul 2019 | B2 |
10348245 | Abdo | Jul 2019 | B1 |
10352992 | Zeng | Jul 2019 | B1 |
10353844 | Naaman | Jul 2019 | B2 |
10354198 | Filipp | Jul 2019 | B1 |
10355193 | Rosenblatt | Jul 2019 | B2 |
10355677 | Miller | Jul 2019 | B1 |
10366340 | Przybysz | Jul 2019 | B2 |
10367132 | Krogstrup | Jul 2019 | B2 |
10367133 | Tahan | Jul 2019 | B1 |
10374612 | Sinclair | Aug 2019 | B1 |
10379174 | Hahn | Aug 2019 | B2 |
10379420 | Wang | Aug 2019 | B1 |
10380494 | Abraham | Aug 2019 | B2 |
10380495 | Leek | Aug 2019 | B2 |
10380496 | Elsherbini | Aug 2019 | B2 |
10381541 | Das | Aug 2019 | B2 |
10381542 | Chang | Aug 2019 | B2 |
10389336 | Miller | Aug 2019 | B1 |
10396269 | Oliver | Aug 2019 | B2 |
10396782 | Abdo | Aug 2019 | B2 |
10396801 | Kerman | Aug 2019 | B2 |
10398031 | Abdo | Aug 2019 | B2 |
10403809 | Krogstrup | Sep 2019 | B2 |
10404214 | Szöcs | Sep 2019 | B2 |
10411321 | Mueller | Sep 2019 | B2 |
10417574 | Babbush | Sep 2019 | B2 |
10418540 | Orcutt | Sep 2019 | B2 |
10423888 | Hertzberg | Sep 2019 | B1 |
10424711 | Schoelkopf, III | Sep 2019 | B2 |
10424712 | Schoelkopf, III | Sep 2019 | B2 |
10424713 | Rosenblatt | Sep 2019 | B2 |
10444148 | Ashrafi | Oct 2019 | B2 |
10452991 | Ganzhorn | Oct 2019 | B1 |
10453894 | Ladizinsky | Oct 2019 | B2 |
10454015 | Lanting | Oct 2019 | B2 |
10454016 | Fong | Oct 2019 | B2 |
10460796 | Mukhanov | Oct 2019 | B1 |
10461385 | Sliwa | Oct 2019 | B2 |
10467543 | Macready | Nov 2019 | B2 |
10467544 | Filipp | Nov 2019 | B2 |
10467545 | Harris | Nov 2019 | B2 |
10468578 | Elsherbini | Nov 2019 | B2 |
10468740 | Minev | Nov 2019 | B2 |
10468793 | Petroff | Nov 2019 | B2 |
10475983 | Rosenblatt | Nov 2019 | B1 |
10482388 | Jock | Nov 2019 | B1 |
10483980 | Sete | Nov 2019 | B2 |
10488469 | Martinis | Nov 2019 | B2 |
10489477 | Lanting | Nov 2019 | B2 |
10490600 | Freedman | Nov 2019 | B2 |
10491178 | Naaman | Nov 2019 | B2 |
10491221 | McKay | Nov 2019 | B1 |
10496933 | Karzig | Dec 2019 | B1 |
10496934 | Rigetti | Dec 2019 | B2 |
10497853 | Mutus | Dec 2019 | B2 |
10510015 | Mohseni | Dec 2019 | B2 |
10510943 | Topaloglu | Dec 2019 | B1 |
10527746 | Hansen | Jan 2020 | B2 |
10528885 | Chow | Jan 2020 | B2 |
10528886 | Boothby | Jan 2020 | B2 |
10528887 | Chen | Jan 2020 | B2 |
10535013 | Abdo | Jan 2020 | B2 |
10535809 | Vodrahalli | Jan 2020 | B1 |
10540603 | Naaman | Jan 2020 | B2 |
10540604 | Papageorge | Jan 2020 | B1 |
10541659 | Abdo | Jan 2020 | B2 |
10546992 | Fuhrer | Jan 2020 | B2 |
10546993 | Ferguson | Jan 2020 | B2 |
10552755 | Lanting | Feb 2020 | B2 |
10552757 | Amin | Feb 2020 | B2 |
10553775 | Goto | Feb 2020 | B2 |
10554207 | Herr | Feb 2020 | B1 |
10560103 | Reagor | Feb 2020 | B2 |
10565515 | Lampert | Feb 2020 | B2 |
10567100 | Abdo | Feb 2020 | B2 |
10571530 | Hansen | Feb 2020 | B2 |
10572816 | Vavilov | Feb 2020 | B1 |
10578891 | Schmeing | Mar 2020 | B1 |
10581394 | Abdo | Mar 2020 | B2 |
10586908 | Rosen | Mar 2020 | B2 |
10586909 | Das | Mar 2020 | B2 |
10586911 | Sandberg | Mar 2020 | B1 |
10593858 | Brink | Mar 2020 | B2 |
10593879 | Schrade | Mar 2020 | B2 |
10599988 | Thom | Mar 2020 | B2 |
10599990 | Leek | Mar 2020 | B2 |
10608044 | Herr | Mar 2020 | B1 |
10614372 | Mohseni | Apr 2020 | B2 |
10615223 | Rosenblatt | Apr 2020 | B2 |
10615783 | Powell, III | Apr 2020 | B2 |
10621140 | Raymond | Apr 2020 | B2 |
10621502 | Solgun | Apr 2020 | B2 |
10622977 | Naaman | Apr 2020 | B2 |
10622998 | Najafi-Yazdi | Apr 2020 | B1 |
10628752 | Abdo | Apr 2020 | B2 |
10628753 | Kelly | Apr 2020 | B2 |
10629978 | Abdo | Apr 2020 | B2 |
10635988 | Lutchyn | Apr 2020 | B2 |
10635989 | Blais | Apr 2020 | B2 |
10637142 | Tran | Apr 2020 | B1 |
10637479 | Hamilton | Apr 2020 | B2 |
10643143 | Bloom | May 2020 | B2 |
10644217 | Rosenblatt | May 2020 | B2 |
10644809 | Vernik | May 2020 | B1 |
10650319 | Medford | May 2020 | B2 |
10650320 | Chen | May 2020 | B2 |
10650322 | Temme | May 2020 | B1 |
10650323 | Epstein | May 2020 | B2 |
10651361 | Brink | May 2020 | B2 |
10651808 | Egan | May 2020 | B2 |
10657198 | Amin | May 2020 | B2 |
10657455 | Barzegar | May 2020 | B2 |
10657456 | Kharzeev | May 2020 | B1 |
10658424 | Oliver | May 2020 | B2 |
10665635 | Sandberg | May 2020 | B1 |
10665701 | Freedman | May 2020 | B2 |
10665769 | Caudillo | May 2020 | B2 |
10665918 | Mueller | May 2020 | B2 |
10671559 | Mohseni | Jun 2020 | B2 |
10671937 | Yarkoni | Jun 2020 | B2 |
10677953 | Stetson | Jun 2020 | B2 |
10686007 | George | Jun 2020 | B2 |
10686115 | Abdo | Jun 2020 | B2 |
10691633 | Maassen van den Brink | Jun 2020 | B2 |
10692010 | Freedman | Jun 2020 | B2 |
10693566 | Sliwa | Jun 2020 | B2 |
10700256 | Ladizinsky | Jun 2020 | B2 |
10700257 | Jinka | Jun 2020 | B2 |
10705163 | Barry | Jul 2020 | B2 |
10706366 | Scheer | Jul 2020 | B2 |
10707402 | Rosenblatt | Jul 2020 | B2 |
10707812 | Abdo | Jul 2020 | B2 |
10707873 | Katam | Jul 2020 | B2 |
10712408 | Pham | Jul 2020 | B2 |
10713584 | Mohseni | Jul 2020 | B2 |
10715083 | Abdo | Jul 2020 | B2 |
10719775 | Kerman | Jul 2020 | B2 |
10719776 | Kelly | Jul 2020 | B1 |
10720562 | Krogstrup | Jul 2020 | B2 |
10720563 | Jeffrey | Jul 2020 | B1 |
10720887 | Abdo | Jul 2020 | B2 |
10725131 | Clerk | Jul 2020 | B2 |
10726351 | Li | Jul 2020 | B1 |
10726353 | Ashrafi | Jul 2020 | B2 |
10735003 | Kerman | Aug 2020 | B2 |
10740688 | Selvanayagam | Aug 2020 | B2 |
10741742 | David | Aug 2020 | B2 |
10741744 | Moodera | Aug 2020 | B2 |
10748078 | Filipp | Aug 2020 | B2 |
10748079 | Boothby | Aug 2020 | B2 |
10748082 | Rigetti | Aug 2020 | B2 |
10748960 | Michalak | Aug 2020 | B2 |
10748961 | Michalak | Aug 2020 | B2 |
10749095 | Ferguson | Aug 2020 | B2 |
10749096 | Przybysz | Aug 2020 | B2 |
10755190 | Tcaciuc | Aug 2020 | B2 |
10755194 | Mohseni | Aug 2020 | B2 |
10756004 | Elsherbini | Aug 2020 | B1 |
10756712 | Braun | Aug 2020 | B2 |
10763420 | Yoscovits | Sep 2020 | B2 |
10769545 | Amin | Sep 2020 | B2 |
10769546 | Rigetti | Sep 2020 | B1 |
10775173 | Moxley, III | Sep 2020 | B2 |
10776709 | Shen | Sep 2020 | B2 |
10784432 | Rosenblatt | Sep 2020 | B2 |
10784569 | Ashrafi | Sep 2020 | B2 |
10789123 | Ioffe | Sep 2020 | B2 |
10789329 | Lanting | Sep 2020 | B2 |
10789541 | Mohseni | Sep 2020 | B2 |
10790566 | Gumann | Sep 2020 | B2 |
10797684 | Benz | Oct 2020 | B1 |
10803396 | Yoscovits | Oct 2020 | B2 |
10804874 | Abdo | Oct 2020 | B2 |
10810506 | Zota | Oct 2020 | B1 |
10810507 | Temme | Oct 2020 | B2 |
10811276 | Megrant | Oct 2020 | B2 |
10811588 | Olivadese | Oct 2020 | B2 |
10813219 | Abdo | Oct 2020 | B2 |
10817463 | DeBenedictis | Oct 2020 | B1 |
10817796 | Macready | Oct 2020 | B2 |
10819281 | Goto | Oct 2020 | B2 |
10826845 | Dadashikelayeh | Nov 2020 | B2 |
10832155 | Lechner | Nov 2020 | B2 |
10832156 | Chen | Nov 2020 | B2 |
10833121 | Rosenblatt | Nov 2020 | B2 |
10833242 | Orcutt | Nov 2020 | B2 |
10833243 | Tolpygo | Nov 2020 | B1 |
10833680 | McKay | Nov 2020 | B2 |
10839305 | Ian | Nov 2020 | B2 |
10839306 | Mezzacapo | Nov 2020 | B2 |
10840295 | Sandberg | Nov 2020 | B2 |
10847705 | Lampert | Nov 2020 | B2 |
10852346 | Zeng | Dec 2020 | B1 |
10852366 | Ferguson | Dec 2020 | B2 |
10858239 | Painter | Dec 2020 | B2 |
10858240 | Painter | Dec 2020 | B2 |
10859641 | Petrashov | Dec 2020 | B2 |
10868540 | Herr | Dec 2020 | B2 |
10872021 | Tezak | Dec 2020 | B1 |
10879202 | Lewandowski | Dec 2020 | B1 |
10879446 | Caudillo | Dec 2020 | B2 |
10884033 | Przybysz | Jan 2021 | B2 |
10885459 | Biamonte | Jan 2021 | B2 |
10886049 | Strong | Jan 2021 | B2 |
10886454 | Rosenblatt | Jan 2021 | B2 |
10891554 | Harris | Jan 2021 | B2 |
10892751 | Abdo | Jan 2021 | B2 |
10901062 | Walsworth | Jan 2021 | B2 |
10903411 | Marcus | Jan 2021 | B2 |
10903809 | White | Jan 2021 | B2 |
10914969 | Schmeing | Feb 2021 | B2 |
10915832 | Mohseni | Feb 2021 | B2 |
10916690 | Adiga | Feb 2021 | B2 |
10916821 | Painter | Feb 2021 | B2 |
10917096 | Mukhanov | Feb 2021 | B1 |
10922381 | Amin | Feb 2021 | B2 |
10922617 | Babbush | Feb 2021 | B2 |
10922619 | Mohseni | Feb 2021 | B2 |
10924095 | McKay | Feb 2021 | B1 |
10929576 | Ronagh | Feb 2021 | B2 |
10937941 | Abraham | Mar 2021 | B2 |
10938346 | Berkley | Mar 2021 | B2 |
10942804 | Kerman | Mar 2021 | B2 |
10943180 | Abdo | Mar 2021 | B2 |
10944362 | Abdo | Mar 2021 | B2 |
10946219 | Tahar | Mar 2021 | B2 |
10949769 | Chen | Mar 2021 | B2 |
10950299 | Mukhanov | Mar 2021 | B1 |
10950654 | Kelly | Mar 2021 | B2 |
10950778 | Graninger | Mar 2021 | B2 |
10956267 | Kapit | Mar 2021 | B2 |
10957841 | Megrant | Mar 2021 | B2 |
10958274 | Najafi-Yazdi | Mar 2021 | B2 |
10964997 | Schuster | Mar 2021 | B2 |
10969443 | Martinis | Apr 2021 | B2 |
10971672 | Olivadese | Apr 2021 | B2 |
10972190 | Henningsen | Apr 2021 | B2 |
10978425 | White | Apr 2021 | B2 |
10978632 | Kallaher | Apr 2021 | B2 |
10984336 | Herr | Apr 2021 | B2 |
10985308 | Vodrahalli | Apr 2021 | B1 |
10985701 | Abdo | Apr 2021 | B1 |
10989767 | Ferguson | Apr 2021 | B2 |
10990017 | Burkett | Apr 2021 | B2 |
10991755 | Ladizinsky | Apr 2021 | B2 |
10996979 | Bishop | May 2021 | B2 |
10998869 | Miano | May 2021 | B2 |
11002677 | Ashrafi | May 2021 | B2 |
11010145 | Smith | May 2021 | B1 |
11010683 | Amin | May 2021 | B2 |
11011693 | Lampert | May 2021 | B2 |
11017289 | Crawford | May 2021 | B2 |
11017310 | Chu | May 2021 | B2 |
11018290 | David | May 2021 | B2 |
11031537 | Harris | Jun 2021 | B2 |
11038095 | Huang | Jun 2021 | B2 |
11050009 | Topaloglu | Jun 2021 | B2 |
11050010 | Jinka | Jun 2021 | B2 |
11055625 | Kenawy | Jul 2021 | B2 |
11057000 | Abdo | Jul 2021 | B2 |
11064637 | Sterling | Jul 2021 | B2 |
11070210 | Reagor | Jul 2021 | B2 |
11079354 | Chen | Aug 2021 | B2 |
11083807 | Ashrafi | Aug 2021 | B2 |
11088312 | Schueffelgen | Aug 2021 | B2 |
11093440 | Maassen van den Brink | Aug 2021 | B2 |
11100418 | Bunyk | Aug 2021 | B2 |
11106980 | Kapit | Aug 2021 | B2 |
11108398 | Sete | Aug 2021 | B2 |
11112842 | Smith | Sep 2021 | B1 |
11120357 | Zeng | Sep 2021 | B2 |
11127893 | Johnson | Sep 2021 | B2 |
11133450 | Mutus | Sep 2021 | B2 |
11133451 | Mutus | Sep 2021 | B2 |
11138511 | Yarkoni | Oct 2021 | B2 |
11152471 | Teo | Oct 2021 | B1 |
11156460 | Moxley, III | Oct 2021 | B2 |
11164103 | Bloom | Nov 2021 | B2 |
11164104 | Ashrafi | Nov 2021 | B2 |
11164677 | Harris | Nov 2021 | B1 |
11170317 | Chow | Nov 2021 | B2 |
11170318 | Ashrafi | Nov 2021 | B2 |
11170846 | Bosman | Nov 2021 | B2 |
11176082 | Novotny | Nov 2021 | B2 |
11177428 | Jinka | Nov 2021 | B2 |
11177912 | Elsherbini | Nov 2021 | B2 |
11183989 | Thorbeck | Nov 2021 | B1 |
11188843 | Barzegar | Nov 2021 | B2 |
11194573 | Smith | Dec 2021 | B1 |
11194659 | Versluis | Dec 2021 | B2 |
11197365 | Lucero | Dec 2021 | B2 |
11201274 | Abdo | Dec 2021 | B2 |
11210600 | Von Salis | Dec 2021 | B2 |
11223005 | Sandberg | Jan 2022 | B2 |
11223355 | Smith | Jan 2022 | B2 |
11238131 | Hamze | Feb 2022 | B2 |
11258415 | Shainline | Feb 2022 | B2 |
11271533 | Narla | Mar 2022 | B2 |
11281524 | Egger | Mar 2022 | B1 |
11283002 | Shainline | Mar 2022 | B2 |
11289639 | Gilbert | Mar 2022 | B2 |
11294986 | Mezzacapo | Apr 2022 | B2 |
11295225 | Hoskinson | Apr 2022 | B2 |
11302856 | Lescanne | Apr 2022 | B2 |
11307242 | Zeng | Apr 2022 | B1 |
11309478 | David | Apr 2022 | B2 |
11313925 | Zhou | Apr 2022 | B2 |
11321627 | Arriola | May 2022 | B1 |
11341425 | Tomaru | May 2022 | B2 |
11342493 | Oliver | May 2022 | B2 |
11346872 | Whiteley | May 2022 | B1 |
11348024 | Harris | May 2022 | B2 |
11348025 | Barends | May 2022 | B2 |
11348026 | Thom | May 2022 | B2 |
11348027 | Huang | May 2022 | B1 |
11356148 | Ashrafi | Jun 2022 | B2 |
11361240 | Roberts | Jun 2022 | B2 |
11362656 | Beck | Jun 2022 | B1 |
11367011 | Kelly | Jun 2022 | B2 |
11367012 | Abdo | Jun 2022 | B2 |
11374537 | Abdo | Jun 2022 | B2 |
11374554 | Sun | Jun 2022 | B2 |
11392848 | Clarke | Jul 2022 | B2 |
11403168 | Abdo | Aug 2022 | B2 |
11406583 | Mukhanov | Aug 2022 | B1 |
11409426 | Thom | Aug 2022 | B2 |
11411158 | Phung | Aug 2022 | B2 |
11411159 | White | Aug 2022 | B1 |
11415642 | Pellegrino | Aug 2022 | B2 |
11423115 | Lanting | Aug 2022 | B2 |
11424521 | Whittaker | Aug 2022 | B2 |
11429887 | Ferguson | Aug 2022 | B2 |
11430831 | Gumann | Aug 2022 | B2 |
11436398 | Noh | Sep 2022 | B2 |
11449784 | Sterling | Sep 2022 | B2 |
11455207 | Chamberland | Sep 2022 | B2 |
11456741 | Ahonen | Sep 2022 | B2 |
11468219 | Chamberland | Oct 2022 | B2 |
11469485 | Lauer | Oct 2022 | B2 |
11476836 | Goto | Oct 2022 | B1 |
11481669 | Rolfe | Oct 2022 | B2 |
11482656 | Neill | Oct 2022 | B2 |
11482657 | Topaloglu | Oct 2022 | B2 |
11488050 | Shah | Nov 2022 | B2 |
11494681 | Peterson | Nov 2022 | B1 |
11494683 | Amin | Nov 2022 | B2 |
11501195 | Rose | Nov 2022 | B2 |
11501196 | Frisch | Nov 2022 | B2 |
11507875 | Bauer | Nov 2022 | B2 |
11508896 | Yohannes | Nov 2022 | B1 |
11514223 | Molavi | Nov 2022 | B2 |
11515851 | Vesterinen | Nov 2022 | B2 |
11526463 | Maassen van den Brink | Dec 2022 | B2 |
11531924 | Chen | Dec 2022 | B2 |
11536780 | Beck | Dec 2022 | B2 |
11545974 | Phung | Jan 2023 | B2 |
11552238 | Shabani | Jan 2023 | B2 |
11552239 | Abdo | Jan 2023 | B2 |
11562284 | Ryan | Jan 2023 | B1 |
11567762 | Smith | Jan 2023 | B1 |
11567887 | Black | Jan 2023 | B2 |
11569205 | White | Jan 2023 | B2 |
11569428 | Roberts | Jan 2023 | B2 |
11573259 | Zeng | Feb 2023 | B1 |
11580436 | Chamberland | Feb 2023 | B2 |
11586448 | Lauer | Feb 2023 | B2 |
11586702 | Shehab | Feb 2023 | B2 |
11593698 | Bloom | Feb 2023 | B2 |
11599819 | Abdo | Mar 2023 | B2 |
11600588 | Yao | Mar 2023 | B1 |
11605772 | Olivadese | Mar 2023 | B2 |
11615336 | Oliver | Mar 2023 | B2 |
11616187 | Graninger | Mar 2023 | B2 |
11620560 | McKay | Apr 2023 | B2 |
11620561 | Novotny | Apr 2023 | B2 |
11621386 | Hart | Apr 2023 | B2 |
11626227 | Choi | Apr 2023 | B2 |
11626555 | Finck | Apr 2023 | B2 |
11646734 | Marakov | May 2023 | B1 |
11651263 | Martinis | May 2023 | B2 |
11658660 | Finck | May 2023 | B1 |
11664570 | Underwood | May 2023 | B2 |
11664801 | Finck | May 2023 | B1 |
11672187 | Holmes | Jun 2023 | B2 |
11675222 | Karinou | Jun 2023 | B2 |
11677402 | Sete | Jun 2023 | B2 |
11678590 | Schueffelgen | Jun 2023 | B2 |
11681940 | King | Jun 2023 | B2 |
11683996 | Hart | Jun 2023 | B2 |
11687819 | Jin | Jun 2023 | B2 |
11694106 | McKay | Jul 2023 | B2 |
11695417 | Winik | Jul 2023 | B1 |
11695418 | Archambault | Jul 2023 | B2 |
11699091 | Woods | Jul 2023 | B2 |
11700777 | Rosenblatt | Jul 2023 | B2 |
11701441 | Ashrafi | Jul 2023 | B2 |
11704012 | Thom | Jul 2023 | B2 |
11704586 | Thom | Jul 2023 | B2 |
11708595 | Chen | Jul 2023 | B2 |
11714142 | Phung | Aug 2023 | B2 |
11717475 | Mukhanov | Aug 2023 | B1 |
11727295 | Hart | Aug 2023 | B2 |
11727296 | Pereverzev | Aug 2023 | B2 |
11727297 | Stehlik | Aug 2023 | B2 |
11728772 | Abdo | Aug 2023 | B2 |
11730066 | Johnson | Aug 2023 | B2 |
11734387 | Mezzacapo | Aug 2023 | B2 |
11735291 | Stober | Aug 2023 | B2 |
11736122 | Yoder | Aug 2023 | B1 |
11737376 | Frattini | Aug 2023 | B2 |
11741279 | Campbell | Aug 2023 | B2 |
11742831 | Goto | Aug 2023 | B2 |
11748650 | Huang | Sep 2023 | B2 |
11750175 | Kumph | Sep 2023 | B2 |
11751489 | Finck | Sep 2023 | B2 |
11755940 | Jin | Sep 2023 | B2 |
11757467 | Knee | Sep 2023 | B2 |
11764780 | Yamaguchi | Sep 2023 | B2 |
11765986 | Topaloglu | Sep 2023 | B2 |
11769069 | Jin | Sep 2023 | B2 |
11774522 | Beck | Oct 2023 | B2 |
11775711 | Marthaler | Oct 2023 | B2 |
11778928 | Hyyppä | Oct 2023 | B2 |
11786616 | Ashrafi | Oct 2023 | B2 |
11789812 | Lauer | Oct 2023 | B2 |
11790259 | Harris | Oct 2023 | B2 |
11790261 | Rosenthal | Oct 2023 | B2 |
11791818 | Mundhada | Oct 2023 | B2 |
11797874 | Bunyk | Oct 2023 | B2 |
11803441 | Chen | Oct 2023 | B2 |
11812671 | Rosenblatt | Nov 2023 | B2 |
11816536 | Biamonte | Nov 2023 | B2 |
11823997 | Thomas | Nov 2023 | B2 |
11829753 | Smith | Nov 2023 | B1 |
11836574 | Amin | Dec 2023 | B2 |
11839164 | Swenson | Dec 2023 | B2 |
11846590 | Wang | Dec 2023 | B2 |
11856871 | Lanting | Dec 2023 | B2 |
11863279 | Jamieson | Jan 2024 | B2 |
11868847 | Stehlik | Jan 2024 | B2 |
11875222 | Reagor | Jan 2024 | B1 |
11876512 | Beck | Jan 2024 | B1 |
11879950 | Swenson | Jan 2024 | B2 |
11880742 | Suttle | Jan 2024 | B2 |
11886092 | Spence | Jan 2024 | B2 |
11900219 | Ryan | Feb 2024 | B1 |
11901957 | Henningsen | Feb 2024 | B2 |
11906877 | Mukhanov | Feb 2024 | B2 |
11908756 | Abraham | Feb 2024 | B2 |
11917928 | Gao | Feb 2024 | B2 |
11922276 | Barends | Mar 2024 | B2 |
11928004 | Earnest-Noble | Mar 2024 | B2 |
11929711 | Bardin | Mar 2024 | B2 |
11930721 | Ladizinsky | Mar 2024 | B2 |
11937516 | Topaloglu | Mar 2024 | B2 |
20010020701 | Zagoskin | Sep 2001 | A1 |
20010023943 | Zagoskin | Sep 2001 | A1 |
20010025012 | Tarutani | Sep 2001 | A1 |
20010035524 | Zehe | Nov 2001 | A1 |
20010040447 | Tanaka | Nov 2001 | A1 |
20010055669 | Schultz | Dec 2001 | A1 |
20010055775 | Schultz | Dec 2001 | A1 |
20020060635 | Gupta | May 2002 | A1 |
20020066936 | Maris | Jun 2002 | A1 |
20020075057 | Tanaka | Jun 2002 | A1 |
20020095765 | Zhou | Jul 2002 | A1 |
20020097047 | Odawara | Jul 2002 | A1 |
20020102674 | Anderson | Aug 2002 | A1 |
20020105948 | Glomb | Aug 2002 | A1 |
20020115571 | Yokosawa | Aug 2002 | A1 |
20020117467 | Tanda | Aug 2002 | A1 |
20020117656 | Amin | Aug 2002 | A1 |
20020117738 | Amin | Aug 2002 | A1 |
20020119243 | Schultz | Aug 2002 | A1 |
20020121636 | Amin | Sep 2002 | A1 |
20020128156 | Morooka | Sep 2002 | A1 |
20020130313 | Zagoskin | Sep 2002 | A1 |
20020130315 | Zagoskin | Sep 2002 | A1 |
20020152810 | Couture | Oct 2002 | A1 |
20020169079 | Suzuki | Nov 2002 | A1 |
20020177529 | Ustinov | Nov 2002 | A1 |
20020177769 | Orbach | Nov 2002 | A1 |
20020179937 | Ivanov | Dec 2002 | A1 |
20020179939 | Ivanov | Dec 2002 | A1 |
20020180006 | Franz | Dec 2002 | A1 |
20020188578 | Amin | Dec 2002 | A1 |
20020190381 | Herr | Dec 2002 | A1 |
20030011398 | Herr | Jan 2003 | A1 |
20030016010 | Kandori | Jan 2003 | A1 |
20030016069 | Furuta | Jan 2003 | A1 |
20030017949 | Akimitsu | Jan 2003 | A1 |
20030027724 | Rose | Feb 2003 | A1 |
20030028338 | Hidaka | Feb 2003 | A1 |
20030038285 | Amin | Feb 2003 | A1 |
20030039138 | Herr | Feb 2003 | A1 |
20030040440 | Wire | Feb 2003 | A1 |
20030042481 | Tzalenchuk | Mar 2003 | A1 |
20030054960 | Bedard | Mar 2003 | A1 |
20030057441 | Ivanov | Mar 2003 | A1 |
20030058026 | Johnson | Mar 2003 | A1 |
20030068832 | Koval | Apr 2003 | A1 |
20030071246 | Grigorov | Apr 2003 | A1 |
20030071258 | Zagoskin | Apr 2003 | A1 |
20030076251 | Gupta | Apr 2003 | A1 |
20030077224 | Pines | Apr 2003 | A1 |
20030094606 | Newns | May 2003 | A1 |
20030098455 | Amin | May 2003 | A1 |
20030102470 | Il'ichev et al. | Jun 2003 | A1 |
20030107033 | Tzalenchuk | Jun 2003 | A1 |
20030111659 | Tzalenchuk | Jun 2003 | A1 |
20030111661 | Tzalenchuk | Jun 2003 | A1 |
20030115401 | Herr | Jun 2003 | A1 |
20030121028 | Coury | Jun 2003 | A1 |
20030134089 | Schultz | Jul 2003 | A1 |
20030141868 | Bakharev | Jul 2003 | A1 |
20030146429 | Tzalenchuk | Aug 2003 | A1 |
20030146430 | Tzalenchuk | Aug 2003 | A1 |
20030146746 | Bakharev | Aug 2003 | A1 |
20030169041 | Coury | Sep 2003 | A1 |
20030169142 | Vicci | Sep 2003 | A1 |
20030173498 | Blais | Sep 2003 | A1 |
20030173997 | Blais | Sep 2003 | A1 |
20030183935 | Herr | Oct 2003 | A1 |
20030189203 | Talroze | Oct 2003 | A1 |
20030193097 | Il'ichev et al. | Oct 2003 | A1 |
20030199395 | Zhou | Oct 2003 | A1 |
20030207766 | Esteve | Nov 2003 | A1 |
20030224944 | Il'ichev et al. | Dec 2003 | A1 |
20030230732 | Sasaki | Dec 2003 | A1 |
20040000666 | Lidar | Jan 2004 | A1 |
20040012388 | Pedersen | Jan 2004 | A1 |
20040012407 | Amin | Jan 2004 | A1 |
20040014077 | Schultz | Jan 2004 | A1 |
20040016918 | Amin | Jan 2004 | A1 |
20040022332 | Gupta | Feb 2004 | A1 |
20040027125 | Clarke | Feb 2004 | A1 |
20040077503 | Blais | Apr 2004 | A1 |
20040095803 | Ustinov | May 2004 | A1 |
20040098443 | Omelyanchouk | May 2004 | A1 |
20040099861 | Shoji | May 2004 | A1 |
20040104410 | Gilbert | Jun 2004 | A1 |
20040119061 | Wu | Jun 2004 | A1 |
20040120299 | Kidiyarova-Shevchenko | Jun 2004 | A1 |
20040126304 | Zhao | Jul 2004 | A1 |
20040130311 | Humphreys | Jul 2004 | A1 |
20040134967 | Moeckly | Jul 2004 | A1 |
20040135139 | Koval | Jul 2004 | A1 |
20040140537 | Il'ichev et al. | Jul 2004 | A1 |
20040145366 | Baudenbacher | Jul 2004 | A1 |
20040150458 | Gupta | Aug 2004 | A1 |
20040154704 | Schultz | Aug 2004 | A1 |
20040165454 | Amin | Aug 2004 | A1 |
20040167036 | Amin | Aug 2004 | A1 |
20040170047 | Amin | Sep 2004 | A1 |
20040173787 | Blais | Sep 2004 | A1 |
20040173792 | Blais | Sep 2004 | A1 |
20040173793 | Blais | Sep 2004 | A1 |
20040201400 | Herr | Oct 2004 | A1 |
20040223380 | Hato | Nov 2004 | A1 |
20040232405 | Horibe | Nov 2004 | A1 |
20040232912 | Tsukamoto | Nov 2004 | A1 |
20040239319 | Tralshawala | Dec 2004 | A1 |
20040266497 | Reagor | Dec 2004 | A1 |
20040266627 | Moeckly | Dec 2004 | A1 |
20050001209 | Hilton | Jan 2005 | A1 |
20050023518 | Herr | Feb 2005 | A1 |
20050029512 | Hato | Feb 2005 | A1 |
20050035368 | Bunyk | Feb 2005 | A1 |
20050040843 | Eaton | Feb 2005 | A1 |
20050043185 | Suzuki | Feb 2005 | A1 |
20050045869 | Talroze | Mar 2005 | A1 |
20050045872 | Newns | Mar 2005 | A1 |
20050047245 | Furuta | Mar 2005 | A1 |
20050052181 | Lam | Mar 2005 | A1 |
20050057248 | Woods | Mar 2005 | A1 |
20050062131 | Murduck | Mar 2005 | A1 |
20050074220 | Rey | Apr 2005 | A1 |
20050078022 | Hirano | Apr 2005 | A1 |
20050082519 | Amin | Apr 2005 | A1 |
20050088174 | Lee | Apr 2005 | A1 |
20050098773 | Vion | May 2005 | A1 |
20050101489 | Blais | May 2005 | A1 |
20050106313 | Lee | May 2005 | A1 |
20050107262 | Tanaka | May 2005 | A1 |
20050109879 | Patterson | May 2005 | A1 |
20050116719 | Fardmanesh | Jun 2005 | A1 |
20050123674 | Stasiak | Jun 2005 | A1 |
20050134262 | Clarke | Jun 2005 | A1 |
20050143791 | Hameroff | Jun 2005 | A1 |
20050149002 | Wang | Jul 2005 | A1 |
20050149169 | Wang | Jul 2005 | A1 |
20050162302 | Omelyanchouk | Jul 2005 | A1 |
20050171421 | Eden | Aug 2005 | A1 |
20050184284 | Burkard | Aug 2005 | A1 |
20050197254 | Stasiak | Sep 2005 | A1 |
20050202572 | Seki | Sep 2005 | A1 |
20050206376 | Matthews | Sep 2005 | A1 |
20050215436 | Takano | Sep 2005 | A1 |
20050224784 | Amin | Oct 2005 | A1 |
20050231196 | Tarutani | Oct 2005 | A1 |
20050241394 | Clark | Nov 2005 | A1 |
20050243708 | Bunyk | Nov 2005 | A1 |
20050250651 | Amin | Nov 2005 | A1 |
20050255680 | Rokhvarger | Nov 2005 | A1 |
20050256007 | Amin | Nov 2005 | A1 |
20060022671 | Levin | Feb 2006 | A1 |
20060049891 | Crete | Mar 2006 | A1 |
20060079402 | Akimitsu | Apr 2006 | A1 |
20060091881 | Clarke | May 2006 | A1 |
20060095220 | Vrba | May 2006 | A1 |
20060097746 | Amin | May 2006 | A1 |
20060097747 | Amin | May 2006 | A1 |
20060104889 | Harutyunyan | May 2006 | A1 |
20060145694 | Oppenlander | Jul 2006 | A1 |
20060147154 | Thom | Jul 2006 | A1 |
20060148514 | Reagor | Jul 2006 | A1 |
20060164081 | Ganther | Jul 2006 | A1 |
20060176054 | Clarke | Aug 2006 | A1 |
20060186881 | Tilbrook | Aug 2006 | A1 |
20060220641 | Pannetier | Oct 2006 | A1 |
20060225165 | Maassen van den Brink | Oct 2006 | A1 |
20060237660 | Sasaki | Oct 2006 | A1 |
20060247131 | Horibe | Nov 2006 | A1 |
20060248618 | Berkley | Nov 2006 | A1 |
20060255987 | Nagasawa | Nov 2006 | A1 |
20060290553 | Furuta | Dec 2006 | A1 |
20070007956 | Min | Jan 2007 | A1 |
20070018643 | Clarke | Jan 2007 | A1 |
20070038067 | Kandori | Feb 2007 | A1 |
20070049097 | Hirano | Mar 2007 | A1 |
20070052441 | Taguchi | Mar 2007 | A1 |
20070069339 | Hato | Mar 2007 | A1 |
20070075729 | Kirichenko | Apr 2007 | A1 |
20070075752 | Kirichenko | Apr 2007 | A1 |
20070077906 | Kirichenko | Apr 2007 | A1 |
20070080341 | MacReady | Apr 2007 | A1 |
20070085534 | Seki | Apr 2007 | A1 |
20070096730 | Meyer | May 2007 | A1 |
20070114994 | Kobayashi | May 2007 | A1 |
20070116629 | Harutyunyan | May 2007 | A1 |
20070158791 | Wakana | Jul 2007 | A1 |
20070167723 | Park | Jul 2007 | A1 |
20070174227 | Johnson | Jul 2007 | A1 |
20070180586 | Amin | Aug 2007 | A1 |
20070194225 | Zorn | Aug 2007 | A1 |
20070197900 | Baudenbacher | Aug 2007 | A1 |
20070212794 | Tsukamoto | Sep 2007 | A1 |
20070236245 | Bedard | Oct 2007 | A1 |
20070241746 | Kim | Oct 2007 | A1 |
20070241747 | Morley | Oct 2007 | A1 |
20070254375 | Tsukamoto | Nov 2007 | A1 |
20070263432 | Pertti | Nov 2007 | A1 |
20070293160 | Gupta | Dec 2007 | A1 |
20070295954 | Burkard | Dec 2007 | A1 |
20080001599 | Wu | Jan 2008 | A1 |
20080024126 | Sasaki | Jan 2008 | A1 |
20080047367 | Choi | Feb 2008 | A1 |
20080048762 | Inamdar | Feb 2008 | A1 |
20080048902 | Rylov | Feb 2008 | A1 |
20080051291 | Tanaka | Feb 2008 | A1 |
20080051292 | Wakana | Feb 2008 | A1 |
20080052055 | Rose | Feb 2008 | A1 |
20080065573 | Macready | Mar 2008 | A1 |
20080074110 | Mito | Mar 2008 | A1 |
20080074113 | Clarke | Mar 2008 | A1 |
20080084898 | Miyaho | Apr 2008 | A1 |
20080086438 | Amin | Apr 2008 | A1 |
20080100175 | Clark | May 2008 | A1 |
20080101444 | Gupta | May 2008 | A1 |
20080101501 | Gupta | May 2008 | A1 |
20080101503 | Gupta | May 2008 | A1 |
20080107213 | Gupta | May 2008 | A1 |
20080108503 | Simizu | May 2008 | A1 |
20080109500 | Macready | May 2008 | A1 |
20080116448 | Kitaev | May 2008 | A1 |
20080116449 | Macready | May 2008 | A1 |
20080122434 | Chieh | May 2008 | A1 |
20080146449 | Lesueur | Jun 2008 | A1 |
20080162613 | Amin | Jul 2008 | A1 |
20080176750 | Rose | Jul 2008 | A1 |
20080186064 | Kirichenko | Aug 2008 | A1 |
20080215850 | Berkley | Sep 2008 | A1 |
20080218519 | Coury | Sep 2008 | A1 |
20080231353 | Filippov | Sep 2008 | A1 |
20080238531 | Harris | Oct 2008 | A1 |
20080258753 | Harris | Oct 2008 | A1 |
20080260257 | Rose | Oct 2008 | A1 |
20080274898 | Johnson | Nov 2008 | A1 |
20080284413 | Tsukamoto | Nov 2008 | A1 |
20080313114 | Rose | Dec 2008 | A1 |
20080313430 | Bunyk | Dec 2008 | A1 |
20090002014 | Gupta | Jan 2009 | A1 |
20090008632 | Bunyk | Jan 2009 | A1 |
20090014714 | Koch | Jan 2009 | A1 |
20090015317 | Vincenzo | Jan 2009 | A1 |
20090033369 | Baumgardner | Feb 2009 | A1 |
20090034657 | Nikolova | Feb 2009 | A1 |
20090057652 | Nevirkovets | Mar 2009 | A1 |
20090070402 | Rose | Mar 2009 | A1 |
20090072828 | Penanen | Mar 2009 | A1 |
20090073017 | Kim | Mar 2009 | A1 |
20090075825 | Rose | Mar 2009 | A1 |
20090077001 | Macready | Mar 2009 | A1 |
20090078931 | Berkley | Mar 2009 | A1 |
20090078932 | Amin | Mar 2009 | A1 |
20090082209 | Bunyk | Mar 2009 | A1 |
20090102580 | Uchaykin | Apr 2009 | A1 |
20090121215 | Choi | May 2009 | A1 |
20090122508 | Uchaykin | May 2009 | A1 |
20090143665 | Seki | Jun 2009 | A1 |
20090153180 | Herr | Jun 2009 | A1 |
20090153381 | Kirichenko | Jun 2009 | A1 |
20090167342 | van den Brink | Jul 2009 | A1 |
20090168286 | Berkley | Jul 2009 | A1 |
20090173936 | Bunyk | Jul 2009 | A1 |
20090189633 | Bedard | Jul 2009 | A1 |
20090192041 | Johansson | Jul 2009 | A1 |
20090206871 | Baumgardner | Aug 2009 | A1 |
20090227044 | Dosev | Sep 2009 | A1 |
20090233798 | Maeda | Sep 2009 | A1 |
20090237106 | Kirichenko | Sep 2009 | A1 |
20090244958 | Bulzacchelli | Oct 2009 | A1 |
20090256561 | Ledbetter | Oct 2009 | A1 |
20090261319 | Maekawa | Oct 2009 | A1 |
20090267635 | Herr | Oct 2009 | A1 |
20090274609 | Harutyunyan | Nov 2009 | A1 |
20090289638 | Farinelli | Nov 2009 | A1 |
20090299947 | Amin | Dec 2009 | A1 |
20090302844 | Saito | Dec 2009 | A1 |
20090319757 | Berkley | Dec 2009 | A1 |
20090321720 | Rose | Dec 2009 | A1 |
20090322374 | Przybysz | Dec 2009 | A1 |
20090324484 | Harutyunyan | Dec 2009 | A1 |
20100006825 | Wakana | Jan 2010 | A1 |
20100026447 | Keefe | Feb 2010 | A1 |
20100026537 | Kirichenko | Feb 2010 | A1 |
20100033206 | Herr | Feb 2010 | A1 |
20100033252 | Herr | Feb 2010 | A1 |
20100066576 | Kirichenko | Mar 2010 | A1 |
20100085827 | Thom | Apr 2010 | A1 |
20100094796 | Roetteler | Apr 2010 | A1 |
20100097056 | Lam | Apr 2010 | A1 |
20100102904 | Kusmartsev | Apr 2010 | A1 |
20100109638 | Berns | May 2010 | A1 |
20100109669 | Penanen | May 2010 | A1 |
20100133514 | Bunyk | Jun 2010 | A1 |
20100148841 | Kirichenko | Jun 2010 | A1 |
20100148853 | Harris | Jun 2010 | A1 |
20100157552 | Thom | Jun 2010 | A1 |
20100164536 | Herr | Jul 2010 | A1 |
20100176840 | Bedard | Jul 2010 | A1 |
20100182039 | Baumgardner | Jul 2010 | A1 |
20100194466 | Yorozu | Aug 2010 | A1 |
20100207622 | Finkler | Aug 2010 | A1 |
20100207657 | Herr | Aug 2010 | A1 |
20100237899 | Herr | Sep 2010 | A1 |
20100239489 | Harutyunyan | Sep 2010 | A1 |
20100281885 | Black | Nov 2010 | A1 |
20100301855 | Hyde | Dec 2010 | A1 |
20100301856 | Hyde | Dec 2010 | A1 |
20100301857 | Hyde | Dec 2010 | A1 |
20100303731 | Hyde | Dec 2010 | A1 |
20100303733 | Hyde | Dec 2010 | A1 |
20100306142 | Amin | Dec 2010 | A1 |
20100327861 | Nagasaka | Dec 2010 | A1 |
20100327865 | Nagasaka | Dec 2010 | A1 |
20100330704 | Nakahama | Dec 2010 | A1 |
20110009274 | Uchaykin | Jan 2011 | A1 |
20110010412 | Macready | Jan 2011 | A1 |
20110018612 | Harris | Jan 2011 | A1 |
20110022820 | Bunyk | Jan 2011 | A1 |
20110031994 | Berkley | Feb 2011 | A1 |
20110047201 | Macready | Feb 2011 | A1 |
20110054236 | Yang | Mar 2011 | A1 |
20110054876 | Biamonte | Mar 2011 | A1 |
20110055520 | Berkley | Mar 2011 | A1 |
20110057169 | Harris | Mar 2011 | A1 |
20110060710 | Amin | Mar 2011 | A1 |
20110060711 | Macready | Mar 2011 | A1 |
20110060780 | Berkley | Mar 2011 | A1 |
20110063016 | Tanaka | Mar 2011 | A1 |
20110065585 | Lanting | Mar 2011 | A1 |
20110065586 | Maibaum | Mar 2011 | A1 |
20110068789 | Hwang | Mar 2011 | A1 |
20110089405 | Ladizinsky | Apr 2011 | A1 |
20110098623 | Zhang | Apr 2011 | A1 |
20110102068 | Bouchiat | May 2011 | A1 |
20110133770 | Przybysz | Jun 2011 | A1 |
20110152104 | Farinelli | Jun 2011 | A1 |
20110175061 | Berkley | Jul 2011 | A1 |
20110175062 | Farinelli | Jul 2011 | A1 |
20110175628 | Kohlstedt | Jul 2011 | A1 |
20110210738 | Penanen | Sep 2011 | A1 |
20110231462 | Macready | Sep 2011 | A1 |
20110238607 | Coury | Sep 2011 | A1 |
20110241765 | Pesetski | Oct 2011 | A1 |
20110254583 | Herr | Oct 2011 | A1 |
20110267878 | Herr | Nov 2011 | A1 |
20110285393 | Zakosarenko | Nov 2011 | A1 |
20110287941 | Bonderson | Nov 2011 | A1 |
20110288823 | Gupta | Nov 2011 | A1 |
20110298489 | van den Brink | Dec 2011 | A1 |
20120005456 | Berkley | Jan 2012 | A1 |
20120012818 | Wakana | Jan 2012 | A1 |
20120023053 | Harris | Jan 2012 | A1 |
20120028806 | Bonderson | Feb 2012 | A1 |
20120045136 | Rose | Feb 2012 | A1 |
20120053059 | Hatsukade | Mar 2012 | A1 |
20120088674 | Faley | Apr 2012 | A1 |
20120094838 | Bunyk | Apr 2012 | A1 |
20120108434 | Bulzacchelli | May 2012 | A1 |
20120112168 | Bonderson | May 2012 | A1 |
20120135867 | Thom | May 2012 | A1 |
20120144159 | Pesetski | Jun 2012 | A1 |
20120157319 | Tsukamoto | Jun 2012 | A1 |
20120157321 | Kirichenko | Jun 2012 | A1 |
20120172233 | Uchaykin | Jul 2012 | A1 |
20120184445 | Mukhanov | Jul 2012 | A1 |
20120187378 | Bonderson | Jul 2012 | A1 |
20120187872 | Camacho de Bermúdez | Jul 2012 | A1 |
20120212375 | Depree, Iv | Aug 2012 | A1 |
20120215821 | Macready | Aug 2012 | A1 |
20120225411 | Puente | Sep 2012 | A1 |
20120238860 | Kim | Sep 2012 | A1 |
20120252678 | Kim | Oct 2012 | A1 |
20120254586 | Amin | Oct 2012 | A1 |
20120258861 | Bonderson | Oct 2012 | A1 |
20120265718 | Amin | Oct 2012 | A1 |
20120274494 | Kirichenko | Nov 2012 | A1 |
20120278057 | Biamonte | Nov 2012 | A1 |
20120302446 | Ryazanov | Nov 2012 | A1 |
20120314490 | Okhi | Dec 2012 | A1 |
20120319684 | Gambetta | Dec 2012 | A1 |
20120320668 | Lewis | Dec 2012 | A1 |
20120326130 | Maekawa | Dec 2012 | A1 |
20120326720 | Gambetta | Dec 2012 | A1 |
20130005580 | Bunyk | Jan 2013 | A1 |
20130007087 | van den Brink | Jan 2013 | A1 |
20130009677 | Naaman | Jan 2013 | A1 |
20130038330 | Hyde | Feb 2013 | A1 |
20130040818 | Herr | Feb 2013 | A1 |
20130043945 | McDermott | Feb 2013 | A1 |
20130048950 | Levy | Feb 2013 | A1 |
20130096825 | Mohanty | Apr 2013 | A1 |
20130117200 | Thom | May 2013 | A1 |
20130144925 | Macready | Jun 2013 | A1 |
20130190185 | Chavez | Jul 2013 | A1 |
20130201316 | Binder | Aug 2013 | A1 |
20130221960 | Nagasaka | Aug 2013 | A1 |
20130231249 | Black | Sep 2013 | A1 |
20130233077 | Chen | Sep 2013 | A1 |
20130245402 | Ziaie | Sep 2013 | A1 |
20130271142 | Penanen | Oct 2013 | A1 |
20130272453 | Gupta | Oct 2013 | A1 |
20130278265 | Kim | Oct 2013 | A1 |
20130278283 | Berkley | Oct 2013 | A1 |
20130282636 | Macready | Oct 2013 | A1 |
20130303379 | Bulzacchelli | Nov 2013 | A1 |
20130313526 | Harris | Nov 2013 | A1 |
20130324832 | Wu | Dec 2013 | A1 |
20140000630 | Ford | Jan 2014 | A1 |
20140025606 | Macready | Jan 2014 | A1 |
20140050475 | Bonderson | Feb 2014 | A1 |
20140097405 | Bunyk | Apr 2014 | A1 |
20140113828 | Gilbert | Apr 2014 | A1 |
20140175380 | Suzuki | Jun 2014 | A1 |
20140187427 | Macready | Jul 2014 | A1 |
20140203838 | Pesetski | Jul 2014 | A1 |
20140223224 | Berkley | Aug 2014 | A1 |
20140228222 | Berkley | Aug 2014 | A1 |
20140229705 | van den Brink | Aug 2014 | A1 |
20140229722 | Harris | Aug 2014 | A1 |
20140232400 | Kim | Aug 2014 | A1 |
20140235450 | Chow | Aug 2014 | A1 |
20140245249 | Macready | Aug 2014 | A1 |
20140246763 | Bunyk | Sep 2014 | A1 |
20140249033 | Orozco | Sep 2014 | A1 |
20140250288 | Roy | Sep 2014 | A1 |
20140253111 | Orozco | Sep 2014 | A1 |
20140264285 | Chow | Sep 2014 | A1 |
20140286465 | Gupta | Sep 2014 | A1 |
20140296076 | Okhi | Oct 2014 | A1 |
20140314419 | Paik | Oct 2014 | A1 |
20140315723 | Moyerman | Oct 2014 | A1 |
20140324933 | Macready | Oct 2014 | A1 |
20140329687 | Bunyk | Nov 2014 | A1 |
20140343397 | Kim | Nov 2014 | A1 |
20140344322 | Ranjbar | Nov 2014 | A1 |
20140354326 | Bonderson | Dec 2014 | A1 |
20140368234 | Chow | Dec 2014 | A1 |
20150006443 | Rose | Jan 2015 | A1 |
20150028970 | Chow | Jan 2015 | A1 |
20150032991 | Lanting | Jan 2015 | A1 |
20150032993 | Amin | Jan 2015 | A1 |
20150032994 | Chudak | Jan 2015 | A1 |
20150043273 | Naaman | Feb 2015 | A1 |
20150046681 | King | Feb 2015 | A1 |
20150078290 | Gupta | Mar 2015 | A1 |
20150087945 | Ziaie | Mar 2015 | A1 |
20150092465 | Herr | Apr 2015 | A1 |
20150094207 | Herr | Apr 2015 | A1 |
20150111754 | Harris | Apr 2015 | A1 |
20150119252 | Ladizinsky | Apr 2015 | A1 |
20150119253 | Yohannes | Apr 2015 | A1 |
20150143817 | Gervais | May 2015 | A1 |
20150161524 | Hamze | Jun 2015 | A1 |
20150178432 | Muller | Jun 2015 | A1 |
20150179913 | Pramanik | Jun 2015 | A1 |
20150179914 | Greer | Jun 2015 | A1 |
20150179915 | Greer | Jun 2015 | A1 |
20150179916 | Pramanik | Jun 2015 | A1 |
20150179918 | Greer | Jun 2015 | A1 |
20150184286 | Barabash | Jul 2015 | A1 |
20150187840 | Ladizinsky | Jul 2015 | A1 |
20150205759 | Israel | Jul 2015 | A1 |
20150212166 | Kandori | Jul 2015 | A1 |
20150219730 | Tsukamoto | Aug 2015 | A1 |
20150229343 | Gupta | Aug 2015 | A1 |
20150241481 | Narla | Aug 2015 | A1 |
20150242758 | Bonderson | Aug 2015 | A1 |
20150254571 | Miller | Sep 2015 | A1 |
20150260812 | Drake | Sep 2015 | A1 |
20150262073 | Lanting | Sep 2015 | A1 |
20150263260 | Thom | Sep 2015 | A1 |
20150263736 | Herr | Sep 2015 | A1 |
20150269124 | Hamze | Sep 2015 | A1 |
20150310350 | Niskanen | Oct 2015 | A1 |
20150318095 | Ishikawa | Nov 2015 | A1 |
20150332164 | Maassen van den Brink | Nov 2015 | A1 |
20150346291 | Lanting | Dec 2015 | A1 |
20150349780 | Naaman | Dec 2015 | A1 |
20150358022 | McDermott, III | Dec 2015 | A1 |
20150363708 | Amin | Dec 2015 | A1 |
20150379418 | Harris | Dec 2015 | A1 |
20160012346 | Biamonte | Jan 2016 | A1 |
20160012347 | King | Jan 2016 | A1 |
20160012882 | Bleloch | Jan 2016 | A1 |
20160013791 | Herr | Jan 2016 | A1 |
20160019468 | Bunyk | Jan 2016 | A1 |
20160023906 | Harutyunyan | Jan 2016 | A1 |
20160028402 | McCaughan | Jan 2016 | A1 |
20160028403 | McCaughan | Jan 2016 | A1 |
20160032904 | Kaplan | Feb 2016 | A1 |
20160034609 | Herr | Feb 2016 | A1 |
20160035404 | Ohki | Feb 2016 | A1 |
20160042294 | Macready | Feb 2016 | A1 |
20160045841 | Kaplan | Feb 2016 | A1 |
20160065693 | Rose | Mar 2016 | A1 |
20160071021 | Raymond | Mar 2016 | A1 |
20160071903 | Herr | Mar 2016 | A1 |
20160079968 | Strand | Mar 2016 | A1 |
20160085616 | Berkley | Mar 2016 | A1 |
20160087598 | Thom | Mar 2016 | A1 |
20160087599 | Naaman | Mar 2016 | A1 |
20160103192 | Reiner | Apr 2016 | A1 |
20160112031 | Abraham | Apr 2016 | A1 |
20160132785 | Amin | May 2016 | A1 |
20160139213 | Shams | May 2016 | A1 |
20160148112 | Kwon | May 2016 | A1 |
20160149111 | Cybart | May 2016 | A1 |
20160154068 | Barakat | Jun 2016 | A1 |
20160156357 | Miller | Jun 2016 | A1 |
20160164505 | Naaman | Jun 2016 | A1 |
20160191060 | McDermott, III | Jun 2016 | A1 |
20160197628 | Gupta | Jul 2016 | A1 |
20160221825 | Allen | Aug 2016 | A1 |
20160233405 | Crete | Aug 2016 | A1 |
20160233860 | Naaman | Aug 2016 | A1 |
20160254434 | McDermott, III | Sep 2016 | A1 |
20160267032 | Rigetti | Sep 2016 | A1 |
20160267964 | Herr | Sep 2016 | A1 |
20160283857 | Babbush | Sep 2016 | A1 |
20160292586 | Rigetti | Oct 2016 | A1 |
20160292587 | Rigetti | Oct 2016 | A1 |
20160296145 | Bajaj | Oct 2016 | A1 |
20160314407 | Bunyk | Oct 2016 | A1 |
20160321559 | Rose | Nov 2016 | A1 |
20160328208 | Tomaru | Nov 2016 | A1 |
20160335558 | Bunyk | Nov 2016 | A1 |
20160335559 | Pereverzev | Nov 2016 | A1 |
20160351306 | Faley | Dec 2016 | A1 |
20160371227 | Macready | Dec 2016 | A1 |
20160380636 | Abdo | Dec 2016 | A1 |
20170000375 | Demas | Jan 2017 | A1 |
20170017742 | Oberg | Jan 2017 | A1 |
20170017894 | Lanting | Jan 2017 | A1 |
20170039481 | Abdo | Feb 2017 | A1 |
20170045592 | Berggren | Feb 2017 | A1 |
20170045800 | Brandenburg | Feb 2017 | A1 |
20170062107 | Naaman | Mar 2017 | A1 |
20170069367 | Ohki | Mar 2017 | A1 |
20170069415 | Faley | Mar 2017 | A1 |
20170071082 | Sadleir | Mar 2017 | A1 |
20170077380 | Uchaykin | Mar 2017 | A1 |
20170077381 | Abdo | Mar 2017 | A1 |
20170078400 | Binder | Mar 2017 | A1 |
20170085231 | Abdo | Mar 2017 | A1 |
20170086281 | Avrahamy | Mar 2017 | A1 |
20170089961 | Abdo | Mar 2017 | A1 |
20170091647 | Abdo | Mar 2017 | A1 |
20170091649 | Clarke | Mar 2017 | A1 |
20170091650 | King | Mar 2017 | A1 |
20170098682 | Ladizinsky | Apr 2017 | A1 |
20170104491 | Shauck | Apr 2017 | A1 |
20170104493 | Goto | Apr 2017 | A1 |
20170104695 | Naaman | Apr 2017 | A1 |
20170109605 | Ahn | Apr 2017 | A1 |
20170116159 | Hamze | Apr 2017 | A1 |
20170116542 | Shim | Apr 2017 | A1 |
20170117901 | Carmean | Apr 2017 | A1 |
20170123171 | Goutzoulis | May 2017 | A1 |
20170133336 | Oliver | May 2017 | A1 |
20170133576 | Marcus | May 2017 | A1 |
20170133577 | Cybart | May 2017 | A1 |
20170138851 | Ashrafi | May 2017 | A1 |
20170141286 | Kerman | May 2017 | A1 |
20170141287 | Barkeshli | May 2017 | A1 |
20170141769 | Miller | May 2017 | A1 |
20170146618 | Leese De Escobar | May 2017 | A1 |
20170162778 | Harris | Jun 2017 | A1 |
20170163301 | Gupta | Jun 2017 | A1 |
20170168123 | Kandori | Jun 2017 | A1 |
20170177534 | Mohseni | Jun 2017 | A1 |
20170177751 | Macready | Jun 2017 | A1 |
20170178017 | Roy | Jun 2017 | A1 |
20170178018 | Tcaciuc | Jun 2017 | A1 |
20170184689 | Wang | Jun 2017 | A1 |
20170186934 | Kwon | Jun 2017 | A1 |
20170193388 | Filipp | Jul 2017 | A1 |
20170199036 | Moxley, III | Jul 2017 | A1 |
20170201224 | Strong | Jul 2017 | A1 |
20170212860 | Naaman | Jul 2017 | A1 |
20170228483 | Rigetti | Aug 2017 | A1 |
20170229167 | Reohr | Aug 2017 | A1 |
20170229631 | Abdo | Aug 2017 | A1 |
20170229632 | Abdo | Aug 2017 | A1 |
20170229633 | Abdo | Aug 2017 | A1 |
20170230050 | Rigetti | Aug 2017 | A1 |
20170237144 | Tobar | Aug 2017 | A1 |
20170241953 | Kagawa | Aug 2017 | A1 |
20170255629 | Thom | Sep 2017 | A1 |
20170255871 | Macready | Sep 2017 | A1 |
20170255872 | Hamze | Sep 2017 | A1 |
20170262765 | Bourassa | Sep 2017 | A1 |
20170265158 | Gupta | Sep 2017 | A1 |
20170265287 | Avrahamy | Sep 2017 | A1 |
20170276827 | Gulian | Sep 2017 | A1 |
20170286859 | Harris | Oct 2017 | A1 |
20170296169 | Yates | Oct 2017 | A1 |
20170296177 | Harris | Oct 2017 | A1 |
20170296178 | Miller | Oct 2017 | A1 |
20170296179 | Shelton, IV | Oct 2017 | A1 |
20170296180 | Harris | Oct 2017 | A1 |
20170296183 | Shelton, IV | Oct 2017 | A1 |
20170296184 | Harris | Oct 2017 | A1 |
20170296185 | Swensgard | Oct 2017 | A1 |
20170296189 | Vendely | Oct 2017 | A1 |
20170296213 | Swensgard | Oct 2017 | A1 |
20170300454 | Maassen van den Brink | Oct 2017 | A1 |
20170300808 | Ronagh | Oct 2017 | A1 |
20170300827 | Amin | Oct 2017 | A1 |
20170301444 | Doi | Oct 2017 | A1 |
20170323195 | Crawford | Nov 2017 | A1 |
20170324019 | Ware | Nov 2017 | A1 |
20170329883 | Oberg | Nov 2017 | A1 |
20170331899 | Binder | Nov 2017 | A1 |
20170337155 | Novotny | Nov 2017 | A1 |
20170344898 | Karimi | Nov 2017 | A1 |
20170345990 | Yohannes | Nov 2017 | A1 |
20170351974 | Rose | Dec 2017 | A1 |
20170359072 | Hamilton | Dec 2017 | A1 |
20170373044 | Das | Dec 2017 | A1 |
20170373369 | Abdo | Dec 2017 | A1 |
20170373658 | Thom | Dec 2017 | A1 |
20180012932 | Oliver | Jan 2018 | A1 |
20180013052 | Oliver | Jan 2018 | A1 |
20180013426 | Deurloo | Jan 2018 | A1 |
20180019737 | Goto | Jan 2018 | A1 |
20180025775 | Ambrose | Jan 2018 | A1 |
20180026633 | Naaman | Jan 2018 | A1 |
20180032893 | Epstein | Feb 2018 | A1 |
20180033944 | Ladizinsky | Feb 2018 | A1 |
20180034425 | Bell | Feb 2018 | A1 |
20180034912 | Binder | Feb 2018 | A1 |
20180040935 | Sliwa | Feb 2018 | A1 |
20180054201 | Reagor | Feb 2018 | A1 |
20180062765 | Puthoff | Mar 2018 | A1 |
20180067182 | Clerk | Mar 2018 | A1 |
20180076777 | Hofheinz | Mar 2018 | A1 |
20180090661 | McCaughan | Mar 2018 | A1 |
20180091115 | Abdo | Mar 2018 | A1 |
20180091141 | Abdo | Mar 2018 | A1 |
20180091142 | Abdo | Mar 2018 | A1 |
20180091143 | Abdo | Mar 2018 | A1 |
20180091440 | Dadashikelayeh | Mar 2018 | A1 |
20180092313 | Avrahamy | Apr 2018 | A1 |
20180101784 | Rolfe | Apr 2018 | A1 |
20180101786 | Boothby | Apr 2018 | A1 |
20180101787 | Abdo | Apr 2018 | A1 |
20180102166 | Braiman | Apr 2018 | A1 |
20180102469 | Das | Apr 2018 | A1 |
20180102470 | Das | Apr 2018 | A1 |
20180107092 | Abdo | Apr 2018 | A1 |
20180114568 | Burnett | Apr 2018 | A1 |
20180118573 | Harutyunyan | May 2018 | A1 |
20180123544 | Abdo | May 2018 | A1 |
20180124181 | Binder | May 2018 | A1 |
20180128739 | Ashrafi | May 2018 | A9 |
20180131376 | Ryan | May 2018 | A1 |
20180137428 | Abdo | May 2018 | A1 |
20180138987 | Sliwa | May 2018 | A1 |
20180145631 | Berkley | May 2018 | A1 |
20180145664 | Herr | May 2018 | A1 |
20180150579 | Sarpeshkar | May 2018 | A1 |
20180150760 | Sarpeshkar | May 2018 | A1 |
20180150761 | Sarpeshkar | May 2018 | A1 |
20180157775 | Ronagh | Jun 2018 | A1 |
20180164385 | Chesca | Jun 2018 | A1 |
20180188107 | Zen | Jul 2018 | A1 |
20180196780 | Amin | Jul 2018 | A1 |
20180198427 | Narla | Jul 2018 | A1 |
20180211158 | Shainline | Jul 2018 | A1 |
20180218279 | Lechner | Aug 2018 | A1 |
20180218280 | Harris | Aug 2018 | A1 |
20180218281 | Reinhardt | Aug 2018 | A1 |
20180219150 | Lanting | Aug 2018 | A1 |
20180225586 | Chow | Aug 2018 | A1 |
20180226974 | Harms | Aug 2018 | A1 |
20180226975 | Braun | Aug 2018 | A1 |
20180232652 | Curtis | Aug 2018 | A1 |
20180232653 | Selvanayagam | Aug 2018 | A1 |
20180232654 | Epstein | Aug 2018 | A1 |
20180240033 | Leek | Aug 2018 | A1 |
20180240034 | Harris | Aug 2018 | A1 |
20180240035 | Scheer | Aug 2018 | A1 |
20180246848 | Douglass | Aug 2018 | A1 |
20180247974 | Oliver | Aug 2018 | A1 |
20180248103 | Ivry | Aug 2018 | A1 |
20180248104 | Bouzdine | Aug 2018 | A1 |
20180260245 | Smith | Sep 2018 | A1 |
20180260729 | Abdo | Sep 2018 | A1 |
20180260731 | Zeng | Sep 2018 | A1 |
20180260732 | Bloom | Sep 2018 | A1 |
20180261752 | Ferguson | Sep 2018 | A1 |
20180267115 | Petrashov | Sep 2018 | A1 |
20180267116 | De Andrade | Sep 2018 | A1 |
20180267933 | Lanting | Sep 2018 | A1 |
20180275057 | Kolkowitz | Sep 2018 | A1 |
20180276550 | Yarkoni | Sep 2018 | A1 |
20180277733 | Abdo | Sep 2018 | A1 |
20180278693 | Binder | Sep 2018 | A1 |
20180278694 | Binder | Sep 2018 | A1 |
20180285761 | Gambetta | Oct 2018 | A1 |
20180287041 | Abdo | Oct 2018 | A1 |
20180294401 | Tuckerman | Oct 2018 | A1 |
20180294815 | Hamilton | Oct 2018 | A1 |
20180300286 | Raymond | Oct 2018 | A1 |
20180306716 | Ashrafi | Oct 2018 | A1 |
20180306723 | Ashrafi | Oct 2018 | A1 |
20180308007 | Amin | Oct 2018 | A1 |
20180308896 | Ladizinsky | Oct 2018 | A1 |
20180309452 | Kerman | Oct 2018 | A1 |
20180314968 | Biamonte | Nov 2018 | A1 |
20180314970 | Harris | Nov 2018 | A1 |
20180322408 | Chen | Nov 2018 | A1 |
20180323364 | Abdo | Nov 2018 | A1 |
20180330264 | Lanting | Nov 2018 | A1 |
20180330267 | Rigetti | Nov 2018 | A1 |
20180335683 | Abdo | Nov 2018 | A1 |
20180336153 | Naaman | Nov 2018 | A1 |
20180337138 | Luu | Nov 2018 | A1 |
20180342663 | Ferguson | Nov 2018 | A1 |
20180343304 | Binder | Nov 2018 | A1 |
20180348310 | Martinis | Dec 2018 | A1 |
20180350411 | Ware | Dec 2018 | A1 |
20180350749 | Abraham | Dec 2018 | A1 |
20180351521 | Abdo | Dec 2018 | A1 |
20180359718 | Gupta | Dec 2018 | A1 |
20180365587 | Barzegar | Dec 2018 | A1 |
20180366634 | Mutus | Dec 2018 | A1 |
20180373995 | Tomaru | Dec 2018 | A1 |
20180373996 | Amin | Dec 2018 | A1 |
20180375790 | Dadashikelayeh | Dec 2018 | A1 |
20180375940 | Binder | Dec 2018 | A1 |
20190005403 | Blais | Jan 2019 | A1 |
20190006572 | Falcon | Jan 2019 | A1 |
20190007051 | Sete | Jan 2019 | A1 |
20190013065 | Przybysz | Jan 2019 | A1 |
20190019098 | Przybysz | Jan 2019 | A1 |
20190019099 | Hoskinson | Jan 2019 | A1 |
20190019938 | Braun | Jan 2019 | A1 |
20190034819 | Ian | Jan 2019 | A1 |
20190036515 | Naaman | Jan 2019 | A1 |
20190042964 | Elsherbini | Feb 2019 | A1 |
20190042967 | Yoscovits | Feb 2019 | A1 |
20190042968 | Lampert | Feb 2019 | A1 |
20190043822 | Falcon | Feb 2019 | A1 |
20190043919 | George | Feb 2019 | A1 |
20190044044 | Lampert | Feb 2019 | A1 |
20190044046 | Caudillo | Feb 2019 | A1 |
20190044047 | Elsherbini | Feb 2019 | A1 |
20190044051 | Caudillo | Feb 2019 | A1 |
20190044668 | Elsherbini | Feb 2019 | A1 |
20190058105 | Pais | Feb 2019 | A1 |
20190065889 | Ahn | Feb 2019 | A1 |
20190065981 | Chen | Feb 2019 | A1 |
20190065982 | Clarke | Feb 2019 | A1 |
20190070438 | Tahar | Mar 2019 | A1 |
20190073439 | Sarpeshkar | Mar 2019 | A1 |
20190074808 | Petroff | Mar 2019 | A1 |
20190079145 | Leese De Escobar | Mar 2019 | A1 |
20190081629 | Reagor | Mar 2019 | A1 |
20190082997 | Lee | Mar 2019 | A1 |
20190087385 | Maassen van den Brink | Mar 2019 | A1 |
20190095811 | Antonio | Mar 2019 | A1 |
20190098090 | Binder | Mar 2019 | A1 |
20190102691 | Chow | Apr 2019 | A1 |
20190104614 | Abdo | Apr 2019 | A1 |
20190109904 | Binder | Apr 2019 | A1 |
20190121834 | Tomaru | Apr 2019 | A1 |
20190122133 | Zohren | Apr 2019 | A1 |
20190123743 | Abdo | Apr 2019 | A1 |
20190123744 | Abdo | Apr 2019 | A1 |
20190128808 | Ashrafi | May 2019 | A1 |
20190131511 | Clarke | May 2019 | A1 |
20190131683 | Abdo | May 2019 | A1 |
20190131944 | Naaman | May 2019 | A1 |
20190147359 | Chen | May 2019 | A1 |
20190149139 | Braun | May 2019 | A1 |
20190156237 | Epstein | May 2019 | A1 |
20190156238 | Abdo | May 2019 | A1 |
20190158098 | Kerman | May 2019 | A1 |
20190164077 | Roberts | May 2019 | A1 |
20190164959 | Thomas | May 2019 | A1 |
20190165245 | Rosenblatt | May 2019 | A1 |
20190165246 | Rosenblatt | May 2019 | A1 |
20190182995 | Sterling | Jun 2019 | A1 |
20190187075 | Jach | Jun 2019 | A1 |
20190188596 | Ipek | Jun 2019 | A1 |
20190188597 | Chen | Jun 2019 | A1 |
20190190463 | Smith | Jun 2019 | A1 |
20190204372 | Astafiev | Jul 2019 | A1 |
20190204753 | Burkett | Jul 2019 | A1 |
20190207076 | Schneider | Jul 2019 | A1 |
20190212147 | Moxley, III | Jul 2019 | A1 |
20190214561 | Schrade | Jul 2019 | A1 |
20190214971 | Keane | Jul 2019 | A1 |
20190215952 | Lucero | Jul 2019 | A1 |
20190220771 | Boothby | Jul 2019 | A1 |
20190227439 | Megrant | Jul 2019 | A1 |
20190228331 | Harris | Jul 2019 | A1 |
20190229094 | White | Jul 2019 | A1 |
20190229690 | White | Jul 2019 | A1 |
20190236476 | Pereverzev | Aug 2019 | A1 |
20190237648 | Przybysz | Aug 2019 | A1 |
20190238137 | Powell, III | Aug 2019 | A1 |
20190245538 | Abdo | Aug 2019 | A1 |
20190245544 | Herr | Aug 2019 | A1 |
20190251466 | Mezzacapo | Aug 2019 | A1 |
20190252754 | Mueller | Aug 2019 | A1 |
20190259931 | Megrant | Aug 2019 | A1 |
20190266508 | Bunyk | Aug 2019 | A1 |
20190266510 | Yarkoni | Aug 2019 | A1 |
20190267154 | Sheng | Aug 2019 | A1 |
20190267532 | David | Aug 2019 | A1 |
20190267692 | Roberts | Aug 2019 | A1 |
20190273196 | Marcus | Sep 2019 | A1 |
20190273197 | Roberts | Sep 2019 | A1 |
20190288174 | Cybart | Sep 2019 | A1 |
20190288176 | Yoscovits | Sep 2019 | A1 |
20190288178 | Cybart | Sep 2019 | A1 |
20190288367 | Schuster | Sep 2019 | A1 |
20190294025 | Brandenburg | Sep 2019 | A1 |
20190294991 | Filipp | Sep 2019 | A1 |
20190296214 | Yoscovits | Sep 2019 | A1 |
20190296743 | Pedram | Sep 2019 | A1 |
20190302107 | Kauffman | Oct 2019 | A1 |
20190302194 | Lemay | Oct 2019 | A1 |
20190303242 | Kapit | Oct 2019 | A1 |
20190303788 | Kelly | Oct 2019 | A1 |
20190305037 | Michalak | Oct 2019 | A1 |
20190305038 | Michalak | Oct 2019 | A1 |
20190305206 | Harris | Oct 2019 | A1 |
20190317167 | LaBorde | Oct 2019 | A1 |
20190317978 | Amin | Oct 2019 | A1 |
20190321039 | Harris | Oct 2019 | A1 |
20190324941 | Maassen van den Brink | Oct 2019 | A1 |
20190326501 | Gilbert | Oct 2019 | A1 |
20190339339 | Berggren | Nov 2019 | A1 |
20190341540 | Megrant | Nov 2019 | A1 |
20190343002 | Abdo | Nov 2019 | A1 |
20190343003 | Abdo | Nov 2019 | A1 |
20190347576 | Von Salis | Nov 2019 | A1 |
20190348597 | Pais | Nov 2019 | A1 |
20190354890 | Scheer | Nov 2019 | A1 |
20190362260 | Leek | Nov 2019 | A1 |
20190362780 | Burnett | Nov 2019 | A1 |
20190363239 | Yoscovits | Nov 2019 | A1 |
20190363688 | Egan | Nov 2019 | A1 |
20190369171 | Swenson | Dec 2019 | A1 |
20190370679 | Curtis | Dec 2019 | A1 |
20190370680 | Novotny | Dec 2019 | A1 |
20190372192 | Mueller | Dec 2019 | A1 |
20190378874 | Rosenblatt | Dec 2019 | A1 |
20190385088 | Naaman | Dec 2019 | A1 |
20190385673 | Bosman | Dec 2019 | A1 |
20190391214 | Ferguson | Dec 2019 | A1 |
20190392344 | Kelly | Dec 2019 | A1 |
20190392878 | Murduck | Dec 2019 | A1 |
20200000468 | Shelton, IV | Jan 2020 | A1 |
20200006421 | Ladizinsky | Jan 2020 | A1 |
20200006620 | Mutus | Jan 2020 | A1 |
20200006621 | Mutus | Jan 2020 | A1 |
20200008800 | Shelton, IV | Jan 2020 | A1 |
20200012961 | Kelly | Jan 2020 | A1 |
20200018803 | Lemay | Jan 2020 | A1 |
20200027030 | Freedman | Jan 2020 | A1 |
20200027502 | Berggren | Jan 2020 | A1 |
20200027971 | Freedman | Jan 2020 | A1 |
20200028480 | Abdo | Jan 2020 | A1 |
20200028512 | Reohr | Jan 2020 | A1 |
20200036330 | Abdo | Jan 2020 | A1 |
20200036331 | Abdo | Jan 2020 | A1 |
20200036332 | Abdo | Jan 2020 | A1 |
20200036333 | Abdo | Jan 2020 | A1 |
20200041410 | Ashrafi | Feb 2020 | A1 |
20200044137 | Gen | Feb 2020 | A1 |
20200044632 | Powell, III | Feb 2020 | A1 |
20200044656 | Herr | Feb 2020 | A1 |
20200046348 | Shelton, IV | Feb 2020 | A1 |
20200049776 | Wood | Feb 2020 | A1 |
20200050958 | Bloom | Feb 2020 | A1 |
20200050961 | Abdo | Feb 2020 | A1 |
20200052183 | Shainline | Feb 2020 | A1 |
20200052359 | Painter | Feb 2020 | A1 |
20200058702 | Kelly | Feb 2020 | A1 |
20200064412 | Martinis | Feb 2020 | A1 |
20200065696 | Chow | Feb 2020 | A1 |
20200074345 | Solgun | Mar 2020 | A1 |
20200075093 | Naaman | Mar 2020 | A1 |
20200075832 | Burchard | Mar 2020 | A1 |
20200075833 | Topaloglu | Mar 2020 | A1 |
20200075834 | Topaloglu | Mar 2020 | A1 |
20200078015 | Miller | Mar 2020 | A1 |
20200081075 | Leese de Escobar | Mar 2020 | A1 |
20200081076 | Leese de Escobar | Mar 2020 | A1 |
20200083424 | Sandberg | Mar 2020 | A1 |
20200090738 | Naaman | Mar 2020 | A1 |
20200091396 | Ferguson | Mar 2020 | A1 |
20200091397 | Iwanaka | Mar 2020 | A1 |
20200091867 | Goto | Mar 2020 | A1 |
20200106444 | Herr | Apr 2020 | A1 |
20200106445 | Kerman | Apr 2020 | A1 |
20200111016 | Boothby | Apr 2020 | A1 |
20200111944 | Moodera | Apr 2020 | A1 |
20200112310 | Najafi-Yazdi | Apr 2020 | A1 |
20200118026 | Ashrafi | Apr 2020 | A1 |
20200119251 | Yohannes | Apr 2020 | A1 |
20200119254 | Jinka | Apr 2020 | A1 |
20200119737 | Hamilton | Apr 2020 | A1 |
20200120812 | Abdo | Apr 2020 | A1 |
20200125625 | Lanting | Apr 2020 | A1 |
20200127678 | Inamdar | Apr 2020 | A1 |
20200134503 | Lupton | Apr 2020 | A1 |
20200136008 | Gingrich | Apr 2020 | A1 |
20200136626 | Rylov | Apr 2020 | A1 |
20200138434 | Miller | May 2020 | A1 |
20200138437 | Vendely | May 2020 | A1 |
20200144476 | Huang | May 2020 | A1 |
20200152696 | Rosenblatt | May 2020 | A1 |
20200152851 | Lanting | May 2020 | A1 |
20200152853 | Rosenblatt | May 2020 | A1 |
20200152854 | Sandberg | May 2020 | A1 |
20200156955 | Rieken | May 2020 | A1 |
20200160205 | Leipold | May 2020 | A1 |
20200161446 | Anderson | May 2020 | A1 |
20200161531 | Olivadese | May 2020 | A1 |
20200162047 | Bell | May 2020 | A1 |
20200162078 | Mckay | May 2020 | A1 |
20200166586 | Lemay | May 2020 | A1 |
20200167683 | Frisch | May 2020 | A1 |
20200167684 | Frisch | May 2020 | A1 |
20200167685 | Thom | May 2020 | A1 |
20200176409 | Lucero | Jun 2020 | A1 |
20200176662 | Dayton | Jun 2020 | A1 |
20200183768 | Berkley | Jun 2020 | A1 |
20200184364 | Abdo | Jun 2020 | A1 |
20200186132 | Braun | Jun 2020 | A1 |
20200204181 | Sete | Jun 2020 | A1 |
20200220064 | Graninger | Jul 2020 | A1 |
20200228208 | Henningsen | Jul 2020 | A1 |
20200234171 | Chu | Jul 2020 | A1 |
20200235277 | Jinka | Jul 2020 | A1 |
20200242452 | Tschirhart | Jul 2020 | A1 |
20200242501 | Babbush | Jul 2020 | A1 |
20200242503 | Chen | Jul 2020 | A1 |
20200243132 | Loving | Jul 2020 | A1 |
20200243133 | Gingrich | Jul 2020 | A1 |
20200250567 | Yu | Aug 2020 | A1 |
20200250569 | Kelly | Aug 2020 | A1 |
20200250570 | Barzegar | Aug 2020 | A1 |
20200251419 | Abraham | Aug 2020 | A1 |
20200257644 | Mohseni | Aug 2020 | A1 |
20200258003 | Rigetti | Aug 2020 | A1 |
20200259066 | Braeuninger-Weimer | Aug 2020 | A1 |
20200259483 | Wise | Aug 2020 | A1 |
20200264130 | Chen | Aug 2020 | A1 |
20200264213 | Przybysz | Aug 2020 | A1 |
20200265334 | Haider | Aug 2020 | A1 |
20200266234 | Boothby | Aug 2020 | A1 |
20200272910 | Kapit | Aug 2020 | A1 |
20200272929 | McKay | Aug 2020 | A1 |
20200274049 | Ambrose | Aug 2020 | A1 |
20200274050 | Ladizinsky | Aug 2020 | A1 |
20200274929 | Binder | Aug 2020 | A1 |
20200278308 | Kalenychenko | Sep 2020 | A1 |
20200279013 | Amin | Sep 2020 | A1 |
20200279184 | Kenawy | Sep 2020 | A1 |
20200279186 | Ferguson | Sep 2020 | A1 |
20200279990 | Burkett | Sep 2020 | A1 |
20200280316 | Reagor | Sep 2020 | A1 |
20200280607 | Binder | Sep 2020 | A1 |
20200284855 | Fisher | Sep 2020 | A1 |
20200284859 | Bertet | Sep 2020 | A1 |
20200287118 | Herr | Sep 2020 | A1 |
20200287122 | Rosenblatt | Sep 2020 | A1 |
20200287540 | Smith | Sep 2020 | A1 |
20200287550 | Rylov | Sep 2020 | A1 |
20200293486 | Maassen van den Brink | Sep 2020 | A1 |
20200293938 | Solgun | Sep 2020 | A1 |
20200294401 | Kerecsen | Sep 2020 | A1 |
20200294557 | Ware | Sep 2020 | A1 |
20200299146 | Zhao | Sep 2020 | A1 |
20200301874 | Shainline | Sep 2020 | A1 |
20200311591 | Bernoudy | Oct 2020 | A1 |
20200320420 | Hart | Oct 2020 | A1 |
20200320424 | Yarkoni | Oct 2020 | A1 |
20200320426 | Amin | Oct 2020 | A1 |
20200321506 | Kelly | Oct 2020 | A1 |
20200321508 | Hart | Oct 2020 | A1 |
20200328339 | Shabani | Oct 2020 | A1 |
20200333263 | Abdo | Oct 2020 | A1 |
20200335683 | David | Oct 2020 | A1 |
20200342296 | Wynn | Oct 2020 | A1 |
20200345873 | Ashrafi | Nov 2020 | A1 |
20200349326 | King | Nov 2020 | A1 |
20200350083 | Sorbom | Nov 2020 | A1 |
20200350880 | Miano | Nov 2020 | A1 |
20200356889 | Amin | Nov 2020 | A1 |
20200356890 | Ashrafi | Nov 2020 | A1 |
20200358187 | Tran | Nov 2020 | A1 |
20200359501 | Abdo | Nov 2020 | A1 |
20200362384 | Chen | Nov 2020 | A1 |
20200363206 | Moxley, III | Nov 2020 | A1 |
20200364600 | Elsherbini | Nov 2020 | A1 |
20200365397 | Megrant | Nov 2020 | A1 |
20200371974 | Boothby | Nov 2020 | A1 |
20200372094 | Shehab | Nov 2020 | A1 |
20200373351 | Roberts | Nov 2020 | A1 |
20200373475 | Rufenacht | Nov 2020 | A1 |
20200379768 | Berkley | Dec 2020 | A1 |
20200380396 | Raymond | Dec 2020 | A1 |
20200381608 | Olivadese | Dec 2020 | A1 |
20200381609 | Megrant | Dec 2020 | A1 |
20200394524 | Vainsencher | Dec 2020 | A1 |
20200394548 | Das | Dec 2020 | A1 |
20200395405 | Barends | Dec 2020 | A1 |
20200396008 | Henningsen | Dec 2020 | A1 |
20200401649 | Lanting | Dec 2020 | A1 |
20200401922 | Clarke | Dec 2020 | A1 |
20200403137 | Lampert | Dec 2020 | A1 |
20200411937 | Whittaker | Dec 2020 | A1 |
20200411938 | Mannhart | Dec 2020 | A1 |
20210005249 | Naaman | Jan 2021 | A1 |
20210013391 | Johnson | Jan 2021 | A1 |
20210018575 | Mitchell | Jan 2021 | A1 |
20210019223 | Chamberland | Jan 2021 | A1 |
20210019646 | Sterling | Jan 2021 | A1 |
20210019647 | Macready | Jan 2021 | A1 |
20210021245 | Frattini | Jan 2021 | A1 |
20210028343 | McCaughan | Jan 2021 | A1 |
20210028345 | Hart | Jan 2021 | A1 |
20210033683 | Ferguson | Feb 2021 | A1 |
20210035004 | Herr | Feb 2021 | A1 |
20210035005 | Martinis | Feb 2021 | A1 |
20210036206 | Neill | Feb 2021 | A1 |
20210043824 | Yan | Feb 2021 | A1 |
20210047913 | Santamarina | Feb 2021 | A1 |
20210056454 | Bloom | Feb 2021 | A1 |
20210056455 | Shehab | Feb 2021 | A1 |
20210057135 | Choi | Feb 2021 | A1 |
20210057484 | Rosenblatt | Feb 2021 | A1 |
20210057631 | Swenson | Feb 2021 | A1 |
20210066570 | Luethi | Mar 2021 | A1 |
20210068320 | Bogorin | Mar 2021 | A1 |
20210073667 | Harris | Mar 2021 | A1 |
20210075860 | Binder | Mar 2021 | A1 |
20210075861 | Binder | Mar 2021 | A1 |
20210083167 | Jespersen | Mar 2021 | A1 |
20210083168 | Rosenblatt | Mar 2021 | A1 |
20210083676 | Herr | Mar 2021 | A1 |
20210085316 | Harris | Mar 2021 | A1 |
20210085317 | Miller | Mar 2021 | A1 |
20210085675 | Zheng | Mar 2021 | A1 |
20210089954 | Kapit | Mar 2021 | A1 |
20210091062 | Boothby | Mar 2021 | A1 |
20210099129 | Abdo | Apr 2021 | A1 |
20210099201 | Winick | Apr 2021 | A1 |
20210103012 | Yasui | Apr 2021 | A1 |
20210103018 | Biber | Apr 2021 | A1 |
20210110290 | Jin | Apr 2021 | A1 |
20210110291 | Abdo | Apr 2021 | A1 |
20210110868 | Gingrich | Apr 2021 | A1 |
20210116499 | Yamamoto | Apr 2021 | A1 |
20210125096 | Puri | Apr 2021 | A1 |
20210132969 | Smith | May 2021 | A1 |
20210133385 | Molavi | May 2021 | A1 |
20210142215 | Rigetti | May 2021 | A1 |
20210152127 | Abdo | May 2021 | A1 |
20210157877 | Mezzacapo | May 2021 | A1 |
20210159384 | Abdo | May 2021 | A1 |
20210166133 | Ronagh | Jun 2021 | A1 |
20210167272 | Jinka | Jun 2021 | A1 |
20210184329 | Schuster | Jun 2021 | A1 |
20210190885 | Swenson | Jun 2021 | A1 |
20210192380 | Jin | Jun 2021 | A1 |
20210193270 | Stober | Jun 2021 | A1 |
20210209498 | Jin | Jul 2021 | A1 |
20210226113 | David | Jul 2021 | A1 |
20210226635 | Mukhanov | Jul 2021 | A1 |
20210232739 | Marthaler | Jul 2021 | A1 |
20210233617 | Niroula | Jul 2021 | A1 |
20210233896 | White | Jul 2021 | A1 |
20210234084 | Abdo | Jul 2021 | A1 |
20210234086 | Lescanne | Jul 2021 | A1 |
20210234087 | Topaloglu | Jul 2021 | A1 |
20210241143 | Amin | Aug 2021 | A1 |
20210241159 | Heinsoo | Aug 2021 | A1 |
20210241160 | Amin | Aug 2021 | A1 |
20210247329 | Wang | Aug 2021 | A1 |
20210256412 | Chen | Aug 2021 | A1 |
20210257969 | Bardin | Aug 2021 | A1 |
20210257995 | Sun | Aug 2021 | A1 |
20210258010 | Smith | Aug 2021 | A9 |
20210263643 | Thom | Aug 2021 | A1 |
20210265964 | Miano | Aug 2021 | A1 |
20210271545 | Abdo | Sep 2021 | A1 |
20210272008 | Oliver | Sep 2021 | A1 |
20210279134 | Versluis | Sep 2021 | A1 |
20210279627 | Bauer | Sep 2021 | A1 |
20210287124 | Ronagh | Sep 2021 | A1 |
20210288611 | Abdo | Sep 2021 | A1 |
20210289020 | Rolfe | Sep 2021 | A1 |
20210294680 | Palmer Da Silva | Sep 2021 | A1 |
20210297056 | Abdo | Sep 2021 | A1 |
20210302513 | Perelshtein | Sep 2021 | A1 |
20210304050 | Harris | Sep 2021 | A1 |
20210305374 | Teo | Sep 2021 | A1 |
20210305480 | Holmes | Sep 2021 | A1 |
20210314069 | Henningsen | Oct 2021 | A1 |
20210326737 | Jin | Oct 2021 | A1 |
20210330825 | Ashrafi | Oct 2021 | A1 |
20210341411 | Chen | Nov 2021 | A1 |
20210342161 | Lauer | Nov 2021 | A1 |
20210342289 | Maassen van den Brink | Nov 2021 | A1 |
20210342729 | Scheer | Nov 2021 | A1 |
20210343923 | Oliver | Nov 2021 | A1 |
20210350266 | Hassel | Nov 2021 | A1 |
20210374590 | Biamonte | Dec 2021 | A1 |
20210375516 | Sterling | Dec 2021 | A1 |
20210384404 | Finck | Dec 2021 | A1 |
20210384406 | Huang | Dec 2021 | A1 |
20210390440 | Shah | Dec 2021 | A1 |
20210399044 | Gumann | Dec 2021 | A1 |
20210399200 | Gen | Dec 2021 | A1 |
20210406746 | Stehlik | Dec 2021 | A1 |
20220014192 | Ahonen | Jan 2022 | A1 |
20220018801 | Chen | Jan 2022 | A1 |
20220019929 | Bunyk | Jan 2022 | A1 |
20220020913 | Harris | Jan 2022 | A1 |
20220044143 | Jin | Feb 2022 | A1 |
20220045416 | Naaman | Feb 2022 | A1 |
20220054669 | Ashrafi | Feb 2022 | A1 |
20220059919 | Underwood | Feb 2022 | A1 |
20220065954 | Beck | Mar 2022 | A1 |
20220066279 | Spence | Mar 2022 | A1 |
20220076154 | Wang | Mar 2022 | A1 |
20220083488 | Black | Mar 2022 | A1 |
20220084085 | Rigetti | Mar 2022 | A1 |
20220092152 | Hamze | Mar 2022 | A1 |
20220092461 | Bloom | Mar 2022 | A1 |
20220092462 | Huai | Mar 2022 | A1 |
20220093500 | Thomas | Mar 2022 | A1 |
20220093501 | Thomas | Mar 2022 | A1 |
20220094029 | Richman | Mar 2022 | A1 |
20220094320 | Vesterinen | Mar 2022 | A1 |
20220094338 | Kumph | Mar 2022 | A1 |
20220094341 | Pellerano | Mar 2022 | A1 |
20220094358 | Phung | Mar 2022 | A1 |
20220101171 | Chen | Mar 2022 | A1 |
20220103172 | Mundhada | Mar 2022 | A1 |
20220108200 | Suttle | Apr 2022 | A1 |
20220115577 | Beck | Apr 2022 | A1 |
20220121978 | Woods | Apr 2022 | A1 |
20220123048 | Swenson | Apr 2022 | A1 |
20220123449 | Lauer | Apr 2022 | A1 |
20220129779 | Moores | Apr 2022 | A1 |
20220138611 | Siddiqi | May 2022 | A1 |
20220140223 | Gao | May 2022 | A1 |
20220147859 | Zhang | May 2022 | A1 |
20220155391 | Juchem | May 2022 | A1 |
20220156441 | Campbell | May 2022 | A1 |
20220156443 | Chamberland | May 2022 | A1 |
20220156444 | Noh | May 2022 | A1 |
20220156620 | McDermott, III | May 2022 | A1 |
20220156621 | Arrangoiz Arriola | May 2022 | A1 |
20220156622 | Putterman | May 2022 | A1 |
20220164694 | Rosenthal | May 2022 | A1 |
20220178995 | Chamberland | Jun 2022 | A1 |
20220179732 | Egger | Jun 2022 | A1 |
20220180236 | Hann | Jun 2022 | A1 |
20220181534 | Plourde | Jun 2022 | A1 |
20220187388 | Phung | Jun 2022 | A1 |
20220188381 | Mezzacapo | Jun 2022 | A1 |
20220188683 | Goetz | Jun 2022 | A1 |
20220190027 | Hyyppä | Jun 2022 | A1 |
20220199886 | Phung | Jun 2022 | A1 |
20220207402 | Lechner | Jun 2022 | A1 |
20220207403 | Kapit | Jun 2022 | A1 |
20220207404 | Boothby | Jun 2022 | A1 |
20220209844 | Jamieson | Jun 2022 | A1 |
20220215282 | Amin | Jul 2022 | A1 |
20220215283 | Neill | Jul 2022 | A1 |
20220222567 | Reagor | Jul 2022 | A1 |
20220223778 | Kutsaev | Jul 2022 | A1 |
20220230760 | Harris | Jul 2022 | A1 |
20220230761 | Harris | Jul 2022 | A1 |
20220231690 | Sete | Jul 2022 | A1 |
20220236593 | Karinou | Jul 2022 | A1 |
20220236623 | Mukhanov | Jul 2022 | A1 |
20220237489 | Li | Jul 2022 | A1 |
20220237495 | Yohannes | Jul 2022 | A1 |
20220245497 | Zeng | Aug 2022 | A1 |
20220245501 | Li | Aug 2022 | A1 |
20220246677 | Kelly | Aug 2022 | A1 |
20220261680 | Hasegawa | Aug 2022 | A1 |
20220263007 | Lanting | Aug 2022 | A1 |
20220263483 | Koh | Aug 2022 | A1 |
20220269968 | Noguchi | Aug 2022 | A1 |
20220269970 | Zhou | Aug 2022 | A1 |
20220277214 | Kelly | Sep 2022 | A1 |
20220300844 | Stehlik | Sep 2022 | A1 |
20220308134 | Perelshtein | Sep 2022 | A2 |
20220309373 | Huang | Sep 2022 | A1 |
20220311120 | Schuster | Sep 2022 | A1 |
20220318660 | Hasegawa | Oct 2022 | A1 |
20220327410 | Chamberland | Oct 2022 | A1 |
20220335320 | Thom | Oct 2022 | A1 |
20220343201 | Lechner | Oct 2022 | A1 |
20220366291 | Ni | Nov 2022 | A1 |
20220367090 | Pixley | Nov 2022 | A1 |
20220374755 | Didier | Nov 2022 | A1 |
20220374756 | Doherty | Nov 2022 | A1 |
20220376161 | Goto | Nov 2022 | A1 |
20220383179 | Maksymov | Dec 2022 | A1 |
20220391081 | Thom | Dec 2022 | A1 |
20220393089 | Yohannes | Dec 2022 | A1 |
20220398482 | Marthaler | Dec 2022 | A1 |
20220399145 | Kirichenko | Dec 2022 | A1 |
20220399890 | Archambault | Dec 2022 | A1 |
20220405649 | Rastunkov | Dec 2022 | A1 |
20220407482 | De Lange | Dec 2022 | A1 |
20220414513 | Niroula | Dec 2022 | A1 |
20220414517 | Sete | Dec 2022 | A1 |
20220416392 | Lauer | Dec 2022 | A1 |
20230003813 | Tanaka | Jan 2023 | A1 |
20230004850 | Oreg | Jan 2023 | A1 |
20230004851 | Harris | Jan 2023 | A1 |
20230006324 | Whittaker | Jan 2023 | A1 |
20230006626 | Naaman | Jan 2023 | A1 |
20230008279 | Tillemann-Dick | Jan 2023 | A1 |
20230009670 | Tillemann-Dick | Jan 2023 | A1 |
20230010205 | Sank | Jan 2023 | A1 |
20230010758 | Tillemann-Dick | Jan 2023 | A1 |
20230010920 | Tillemann-Dick | Jan 2023 | A1 |
20230011913 | Henriksen | Jan 2023 | A1 |
20230012324 | Tillemann-Dick | Jan 2023 | A1 |
20230020389 | Davis | Jan 2023 | A1 |
20230021319 | Jin | Jan 2023 | A1 |
20230022450 | Gilbert | Jan 2023 | A1 |
20230023319 | Poccia | Jan 2023 | A1 |
20230026518 | Burchard | Jan 2023 | A1 |
20230040584 | Baker | Feb 2023 | A1 |
20230043001 | Neill | Feb 2023 | A1 |
20230044102 | Anderson | Feb 2023 | A1 |
20230044874 | Goto | Feb 2023 | A1 |
20230059903 | Shiokawa | Feb 2023 | A1 |
20230068284 | Phung | Mar 2023 | A1 |
20230068621 | Beck | Mar 2023 | A1 |
20230073224 | Schuster | Mar 2023 | A1 |
20230080126 | Chamberland | Mar 2023 | A1 |
20230085177 | Shehab | Mar 2023 | A1 |
20230094612 | Chen | Mar 2023 | A1 |
20230101616 | Volkmann | Mar 2023 | A1 |
20230103370 | Lahabi | Apr 2023 | A1 |
20230104058 | Hopfmueller | Apr 2023 | A1 |
20230106489 | Harris | Apr 2023 | A1 |
20230115065 | Fischbacher | Apr 2023 | A1 |
20230127101 | Yamaguchi | Apr 2023 | A1 |
20230142623 | Leroux | May 2023 | A1 |
20230142878 | Yamaji | May 2023 | A1 |
20230143506 | Johnson | May 2023 | A1 |
20230153199 | Lauer | May 2023 | A1 |
20230153667 | Kandala | May 2023 | A1 |
20230153669 | McKay | May 2023 | A1 |
20230155593 | Abdo | May 2023 | A1 |
20230155594 | Camirand Lemyre | May 2023 | A1 |
20230162080 | Kikuchi | May 2023 | A1 |
20230163737 | Vesterinen | May 2023 | A1 |
20230163762 | Yamaji | May 2023 | A1 |
20230170889 | Underwood | Jun 2023 | A1 |
20230172076 | Xi | Jun 2023 | A1 |
20230172077 | Finck | Jun 2023 | A1 |
20230176935 | Earnest-Noble | Jun 2023 | A1 |
20230178519 | White | Jun 2023 | A1 |
20230179205 | Finck | Jun 2023 | A1 |
20230180631 | Finck | Jun 2023 | A1 |
20230186132 | Safavi-Naeini | Jun 2023 | A1 |
20230189665 | Swenson | Jun 2023 | A1 |
20230189666 | Noguchi | Jun 2023 | A1 |
20230196156 | Chen | Jun 2023 | A1 |
20230196163 | Mamin | Jun 2023 | A1 |
20230197539 | Abraham | Jun 2023 | A1 |
20230198555 | Phung | Jun 2023 | A1 |
20230207507 | Yao | Jun 2023 | A1 |
20230216495 | Yamaji | Jul 2023 | A1 |
20230225224 | Abdo | Jul 2023 | A1 |
20230239054 | Nissilä | Jul 2023 | A1 |
20230240154 | Oh | Jul 2023 | A1 |
20230255123 | Holmes | Aug 2023 | A1 |
20230270019 | De Lange | Aug 2023 | A1 |
20230276719 | Ma | Aug 2023 | A1 |
20230289400 | Carroll | Sep 2023 | A1 |
20230289641 | Palmer | Sep 2023 | A1 |
20230289642 | Carroll | Sep 2023 | A1 |
20230291419 | Yoder | Sep 2023 | A1 |
20230297869 | Paul | Sep 2023 | A1 |
20230299791 | Yoder | Sep 2023 | A1 |
20230309419 | Kikuchi | Sep 2023 | A1 |
20230316117 | Martinis | Oct 2023 | A1 |
20230318601 | Yamaji | Oct 2023 | A1 |
20230325700 | Jin | Oct 2023 | A1 |
20230337553 | Yohannes | Oct 2023 | A1 |
20230341488 | Apostolos | Oct 2023 | A1 |
20230351232 | Stehlik | Nov 2023 | A1 |
20230353127 | Goto | Nov 2023 | A1 |
20230359918 | Phung | Nov 2023 | A1 |
20230360736 | Stober | Nov 2023 | A1 |
20230363293 | Miyata | Nov 2023 | A1 |
20230368059 | McKay | Nov 2023 | A1 |
20230368063 | Chancellor | Nov 2023 | A1 |
20230368065 | Koike Akino | Nov 2023 | A1 |
20230370069 | Amin | Nov 2023 | A1 |
20230371404 | Hyyppä | Nov 2023 | A1 |
20230385668 | Thom | Nov 2023 | A1 |
20230394342 | Bloom | Dec 2023 | A1 |
20230400510 | Whittaker | Dec 2023 | A1 |
20230401475 | Finck | Dec 2023 | A1 |
20230401476 | Finck | Dec 2023 | A1 |
20230409942 | Sete | Dec 2023 | A1 |
20230409945 | Miller, Jr. | Dec 2023 | A1 |
20230409946 | Schwaller | Dec 2023 | A1 |
20230418706 | Lauer | Dec 2023 | A1 |
20230419143 | Ding | Dec 2023 | A1 |
20230419154 | Lechner | Dec 2023 | A1 |
20230422635 | Shabani | Dec 2023 | A1 |
20240008372 | Sterling | Jan 2024 | A1 |
20240012749 | Simmons | Jan 2024 | A1 |
20240013082 | Ding | Jan 2024 | A1 |
20240013088 | Kapit | Jan 2024 | A1 |
20240019514 | Neufeld | Jan 2024 | A1 |
20240020562 | Miano | Jan 2024 | A1 |
20240028537 | Mariella | Jan 2024 | A1 |
20240028938 | Berkley | Jan 2024 | A1 |
20240029902 | Weggel | Jan 2024 | A1 |
20240029903 | Ford | Jan 2024 | A1 |
20240030912 | Beck | Jan 2024 | A1 |
20240038723 | Nah | Feb 2024 | A1 |
20240046132 | Kumph | Feb 2024 | A1 |
20240047277 | Burkett | Feb 2024 | A1 |
20240049609 | Li | Feb 2024 | A1 |
20240054379 | Hodson | Feb 2024 | A1 |
20240057485 | Altomare | Feb 2024 | A1 |
20240062088 | Heya | Feb 2024 | A1 |
20240062089 | Igarashi | Feb 2024 | A1 |
20240069079 | Shi | Feb 2024 | A1 |
20240070502 | Ethier-Majcher | Feb 2024 | A1 |
20240070510 | Tsai | Feb 2024 | A1 |
20240070513 | Shi | Feb 2024 | A1 |
20240072796 | Ockeloen-Korppi | Feb 2024 | A1 |
20240077524 | Kong | Mar 2024 | A1 |
20240078460 | Finck | Mar 2024 | A1 |
20240086748 | Bunyk | Mar 2024 | A1 |
20240086751 | Finck | Mar 2024 | A1 |
20240090348 | Yang | Mar 2024 | A1 |
20240095564 | Underwood | Mar 2024 | A1 |
Number | Date | Country |
---|---|---|
WO-2016000836 | Jan 2016 | WO |
Entry |
---|
Quantum Computing Circuits and Devices, Travis S. Humble and Himanshu Thapliyal and Edgard Munoz-Coreas and Fahd A. Mohiyaddin and Ryan S. Bennink, 2018, https://arxiv.org/abs/1804.10648 (Year: 2018). |
Abrams, Deanna M., Nicolas Didier, Blake R. Johnson, Marcus P. da Silva, and Colm A. Ryan. “Implementation of the XY interaction family with calibration of a single pulse.” arXiv preprint arXiv: 1912.04424 (2019). |
Abrams, Deanna M., Nicolas Didier, Shane A. Caldwell, Blake R. Johnson, and Colm A. Ryan. “Methods for measuring magnetic flux crosstalk between tunable transmons.” Physical Review Applied 12, No. 6 (2019): 064022. |
Ahmad, Meraj, Christos Giagkoulovits, Sergey Danilin, Martin Weides, and Hadi Heidari. “Scalable Cryoelectronics for Superconducting Qubit Control and Readout.” Advanced Intelligent Systems (2022): 2200079. |
Allman, Michael S., Fabio Altomare, Jed D. Whittaker, Katarina Cicak, Dale Li, Adam Sirois, Joshua Strong, John D. Teufel, and Raymond W. Simmonds. “rf-Squid-mediated coherent tunable coupling between a superconducting phase qubit and a lumped-element resonator.” Physical review letters 104, No. 17 (2010): 177004. |
Amparo, Denis, Mustafa Eren Çelik, Sagnik Nath, Joao P. Cerqueira, and Amol Inamdar. “Timing characterization for RSFQ cell library.” IEEE Transactions on Applied Superconductivity 29, No. 5 (2019): 1-9. |
Antonov, I. V., R. S. Shaikhaidarov, V. N. Antonov, and O. V. Astafiev. “Superconducting ‘twin’qubit.” Physical Review B 102, No. 11 (2020): 115422. |
Ash-Saki, Abdullah, Mahabubul Alam, and Swaroop Ghosh. “Experimental characterization, modeling, and analysis of crosstalk in a quantum computer.” IEEE Transactions on Quantum Engineering 1 (2020): 1-6. |
Aumentado, Jose. “Superconducting parametric amplifiers: The state of the art in Josephson parametric amplifiers.” IEEE Microwave Magazine 21, No. 8 (2020): 45-59. |
Bækkegaard, Thomas, L. B. Kristensen, Niels JS Loft, Christian Kraglund Andersen, David Petrosyan, and Nikolaj T. Zinner. “Realization of efficient quantum gates with a superconducting qubit-qutrit circuit.” Scientific reports 9, No. 1 (2019): 1-10. |
Bairamkulov, Rassul, Tahereh Jabbari, and Eby G. Friedman. “QuCTS-single-flux quantum clock tree synthesis.” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 41, No. 10 (2021): 3346-3358. |
Bardin, Joseph C. “Analog/Mixed-Signal Integrated Circuits for Quantum Computing.” In 2020 IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium (BCICTS), pp. 1-8. IEEE, 2020. |
Bardin, Joseph C., Daniel Sank, Ofer Naaman, and Evan Jeffrey. “Quantum computing: An introduction for microwave engineers.” IEEE Microwave Magazine 21, No. 8 (2020): 24-44. |
Bardin, Joseph C., Evan Jeffrey, Erik Lucero, Trent Huang, Ofer Naaman, Rami Barends, Ted White et al. “29.1 A 28nm bulk-CMOS 4-to-8GHz 2mW cryogenic pulse modulator for scalable quantum computing.” In 2019 IEEE International Solid-State Circuits Conference-(ISSCC), pp. 456-458. IEEE, 2019. |
Barends, Rami, C. M. Quintana, A. G. Petukhov, Yu Chen, Dvir Kafri, Kostyantyn Kechedzhi, Roberto Collins et al. “Diabatic gates for frequency-tunable superconducting qubits.” Physical Review Letters 123, No. 21 (2019): 210501. |
Barends, Rami, Julian Kelly, Anthony Megrant, Daniel Sank, Evan Jeffrey, Yu Chen, Yi Yin et al. “Coherent Josephson qubit suitable for scalable quantum integrated circuits.” Physical review letters 111, No. 8 (2013): 080502. |
Berke, Christoph, Evangelos Varvelis, Simon Trebst, Alexander Altland, and David P. DiVincenzo. “Transmon platform for quantum computing challenged by chaotic fluctuations.” arXiv preprint arXiv:2012.05923 (2020). |
Berke, Christoph, Evangelos Varvelis, Simon Trebst, Alexander Altland, and David P. DiVincenzo. “Transmon platform for quantum computing challenged by chaotic fluctuations.” Nature communications 13, No. 1 (2022): 2495. |
Berkley, A. J., M. W. Johnson, P. Bunyk, R. Harris, J. Johansson, T. Lanting, E. Ladizinsky, E. Tolkacheva, M. H. S. Amin, and G. Rose. “A scalable readout system for a superconducting adiabatic quantum optimization system.” Superconductor Science and Technology 23, No. 10 (2010): 105014. |
Besedin, Il'ya Stanislavovich, Gleb Petrovich Fedorov, A. Yu Dmitriev, and Valerii Vladimirovich Ryazanov. “Superconducting qubits in Russia.” Quantum Electronics 48, No. 10 (2018): 880. |
Bhattacharyya, Shaman, and Somnath Bhattacharyya. “Demonstrating geometric phase acquisition in multi-path tunnel systems using a near-term quantum computer.” Journal of Applied Physics 130, No. 3 (2021): 034901. |
Bocko, Mark F., Andrea M. Herr, and Marc J. Feldman. “Prospects for quantum coherent computation using superconducting electronics.” IEEE Transactions on Applied Superconductivity 7, No. 2 (1997): 3638-3641. |
Boixo, Sergio, Tameem Albash, Federico M. Spedalieri, Nicholas Chancellor, and Daniel A. Lidar. “Experimental signature of programmable quantum annealing.” Nature communications 4, No. 1 (2013): 2067. |
Boutin, Samuel, David M. Toyli, Aditya V. Venkatramani, Andrew W. Eddins, Irfan Siddiqi, and Alexandre Blais. “Effect of higher-order nonlinearities on amplification and squeezing in Josephson parametric amplifiers.” Physical Review Applied 8, No. 5 (2017): 054030. |
Brink, Markus, Jerry M. Chow, Jared Hertzberg, Easwar Magesan, and Sami Rosenblatt. “Device challenges for near term superconducting quantum processors: frequency collisions.” In 2018 IEEE International Electron Devices Meeting (IEDM), pp. 6-1. IEEE, 2018. |
Brock, Darren K. “RSFQ technology: Circuits and systems.” International journal of high speed electronics and systems 11, No. 01 (2001): 307-362. |
Brock, Darren K., Elie K. Track, and John M. Rowell. “Superconductor ICs: the 100-GHz second generation.” IEEE spectrum 37, No. 12 (2000): 40-46. |
Bunyk, Paul I., Emile M. Hoskinson, Mark W. Johnson, Elena Tolkacheva, Fabio Altomare, Andrew J. Berkley, Richard Harris et al. “Architectural considerations in the design of a superconducting quantum annealing processor.” IEEE Transactions on Applied Superconductivity 24, No. 4 (2014): 1-10. |
Bunyk, Paul, Konstantin Likharev, and Dmitry Zinoviev. “RSFQ technology: Physics and devices.” International journal of high speed electronics and systems 11, No. 01 (2001): 257-305. |
Cai, T-Q., X-Y. Han, Y-K. Wu, Y-L. Ma, J-H. Wang, Z-L. Wang, H-Y. Zhang, H-Y. Wang, Y-P. Song, and L-M. Duan. “Impact of Spectators on a Two-Qubit Gate in a Tunable Coupling Superconducting Circuit.” Physical Review Letters 127, No. 6 (2021): 060505. |
Caldwell, S. A., N. Didier, C. A. Ryan, E. A. Sete, A. Hudson, P. Karalekas, R. Manenti et al. “Parametrically activated entangling gates using transmon qubits.” Physical Review Applied 10, No. 3 (2018): 034050. |
Castellano, Maria Gabriella, Fabio Chiarello, Roberto Leoni, Guido Torrioli, Pasquale Carelli, Carlo Cosmelli, Marilena Di Bucchianico, Francesco Mattioli, Stefano Poletto, and Daniela Simeone. “A new flux/phase qubit with integrated readout.” IEEE transactions on applied superconductivity 15, No. 2 (2005): 849- 851. |
Castellano, Maria Gabriella, Leif Grönberg, Pasquale Carelli, Fabio Chiarello, Carlo Cosmelli, Roberto Leoni, Stefano Poletto, Guido Torrioli, Juha Hassel, and Panu Helistö. “Characterization of a fabrication process for the integration of superconducting qubits and rapid-single-flux-quantum circuits.” Superconductor Science and Technology 19, No. 8 (2006): 860. |
Çelik, Mustafa Eren, Timur V. Filippov, Anubhav Sahu, Dmitri E. Kirichenko, Saad M. Sarwana, A. Erik Lehmann, and Deepnarayan Gupta. “Fast RSFQ and ERSFQ parallel counters.” IEEE Transactions on Applied Superconductivity 30, No. 7 (2020): 1-4. |
Chávez-Garcia, José M., Firat Solgun, Jared B. Hertzberg, Oblesh Jinka, Markus Brink, and Baleegh Abdo. “Weakly flux-tunable superconducting qubit.” Physical Review Applied 18, No. 3 (2022): 034057. |
Christensen, B. G., C. D. Wilen, A. Opremcak, J. Nelson, F. Schlenker, C. H. Zimonick, L. Faoro et al. “Anomalous charge noise in superconducting qubits.” Physical Review B 100, No. 14 (2019): 140503. |
Coffey, Mark W. “Quantum computing based on a superconducting quantum interference device: Exploiting the flux basis.” Journal of Modern Optics 49, No. 14-15 (2002): 2389-2398. |
Cosmelli, C., M. G. Castellano, F. Chiarello, R. Leoni, D. Simeone, G. Torrioli, and P. Carelli. “Controllable flux coupling for the integration of flux qubits.” arXiv preprint cond-mat/0403690 (2004). |
Crankshaw, Donald Shane. “Measurement and on-chip control of a niobium persistent current qubit.” PhD diss., Massachusetts Institute of Technology, 2003. |
De Albornoz, Alejandro Cros Carrillo, John Taylor, and Vlad C{hacek over (a)}rare. “Time-optimal implementations of quantum algorithms.” Physical Review A 100, No. 3 (2019): 032329. |
Di Paolo, Agustin, Catherine Leroux, Thomas M. Hazard, Kyle Serniak, Simon Gustavsson, Alexandre Blais, and William D. Oliver. “Extensible circuit-QED architecture via amplitude-and frequency-variable microwaves.” arXiv preprint arXiv:2204.08098 (2022). |
Dickson, Neil G., M. William Johnson, M. H. Amin, R. Harris, F. Altomare, Andrew J. Berkley, P. Bunyk et al. “Thermally assisted quantum annealing of a 16-qubit problem.” Nature communications 4, No. 1 (2013): 1903. |
Dragoman, Mircea, and Daniela Dragoman. “Quantum Computing.” In Atomic-Scale Electronics Beyond CMOS, pp. 157-186. Springer, Cham, 2021. |
en.wikipedia.org/wiki/Frequency-locked_loop. |
en.wikipedia.org/wiki/Phase-locked_loop. |
Espinós, Hilario, Iván Panadero, Juan José García-Ripoll, and Erik Torrontegui. “Quantum control of tunable-coupling transmons using dynamical invariants of motion.” arXiv preprint arXiv:2205.06555 (2022). |
Fedorov, Kirill G., Anastasia V. Shcherbakova, Michael J. Wolf, Detlef Beckmann, and Alexey V. Ustinov. “Fluxon readout of a superconducting qubit.” Physical review letters 112, No. 16 (2014): 160502. |
Feng, Guanru, Shi-Yao Hou, Hongyang Zou, Wei Shi, Sheng Yu, Zikai Sheng, Xin Rao et al. “SpinQ Triangulum: a commercial three-qubit desktop quantum computer.” arXiv preprint arXiv:2202.02983 (2022). |
Filippenko, L. V., V. K. Kaplunenko, M. I. Khabipov, V. P. Koshelets, K. K. Likharev, O. A. Mukhanov, S. V. Rylov, V. K. Semenov, and A. N. Vystavkin, “Experimental Implementation of Analog-to-Digital Converter Based on the Reversible Ripple Counter,” IEEE Trans. Magn., vol. MAG-27, No. 2, pp. 2464-2467, Mar. 1991. |
Fong, Kin Chung, Evan Walsh, Gil-Ho Lee, Dmitri Efetov, Jesse Crossno, Leonardo Ranzani, Thomas Ohki, Philip Kim, and Dirk Englund. “Graphene Josephson Junction Microwave Detector.” In APS March Meeting Abstracts, vol. 2017, pp. S51-S011. 2017. |
Foss-Feig, Michael, Stephen Ragole, Andrew Potter, Joan Dreiling, Caroline Figgatt, John Gaebler, Alex Hall et al. “Entanglement from Tensor Networks on a Trapped-Ion Quantum Computer.” Physical Review Letters 128, No. 15 (2022): 150504. |
Gaj, Kris, Quentin P. Herr, Victor Adler, Darren K. Brock, Eby G. Friedman, and Marc J. Feldman. “Toward a systematic design methodology for large multigigahertz rapid single flux quantum circuits.” IEEE Transactions on Applied Superconductivity 9, No. 3 (1999): 4591-4606. |
Gamel, Omar. “Entangled Bloch spheres: Bloch matrix and two-qubit state space.” Physical Review A 93, No. 6 (2016): 062320. |
Ganzhorn, Marc, Daniel J. Egger, Panagiotis Barkoutsos, Pauline Ollitrault, Gian Salis, Nikolaj Moll, M. Roth et al. “Gate-efficient simulation of molecular eigenstates on a quantum computer.” Physical Review Applied 11, No. 4 (2019): 044092. |
García-Ripoll, J. J., A. Ruiz-Chamorro, and E. Torrontegui. “Quantum control of transmon superconducting qubits.” arXiv preprint arXiv:2002.10320 (2020). |
García-Ripoll, Juan José, Andrés Ruiz-Chamorro, and E. Torrontegui. “Quantum Control of Frequency-Tunable Transmon Superconducting Qubits.” Physical Review Applied 14, No. 4 (2020): 044035. |
Giustino, Feliciano, Jin Hong Lee, Felix Trier, Manuel Bibes, Stephen M. Winter, Roser Valentí, Young-Woo Son et al. “The 2021 quantum materials roadmap.” Journal of Physics: Materials 3, No. 4 (2021): 042006. |
Graham, T. M., Y. Song, J. Scott, C. Poole, L. Phuttitarn, K. Jooya, P. Eichler et al. “Demonstration of multi-qubit entanglement and algorithms on a programmable neutral atom quantum computer.” arXiv preprint arXiv:2112.14589 (2021). |
Graham, T. M., Y. Song, J. Scott, C. Poole, L. Phuttitarn, K. Jooya, P. Eichler et al. “Multi-qubit entanglement and algorithms on a neutral-atom quantum computer.” Nature 604, No. 7906 (2022): 457-462. |
Granata, C., B. Ruggiero, M. Russo, A. Vettoliere, V. Corato, and P. Silvestrini. “Josephson devices for controllable flux qubit and interqubit coupling.” Applied Physics Letters 87, No. 17 (2005). |
Groszkowski, Peter, Austin G. Fowler, Felix Motzoi, and Frank K. Wilhelm. “Tunable coupling between three qubits as a building block for a superconducting quantum computer.” Physical Review B 84, No. 14 (2011): 144516. |
Hahn, Henning, Giorgio Zarantonello, Marius Schulte, Amado Bautista-Salvador, Klemens Hammerer, and Christian Ospelkaus. “Integrated 9Be+ multi-qubit gate device for the ion-trap quantum computer.” npj Quantum Information 5, No. 1 (2019): 1-5. |
Han, X. Y., T. Q. Cai, X. G. Li, Y. K. Wu, Y. W. Ma, Y. L. Ma, J. H. Wang, H. Y. Zhang, Y. P. Song, and L. M. Duan. “Error analysis in suppression of unwanted qubit interactions for a parametric gate in a tunable superconducting circuit.” Physical Review A 102, No. 2 (2020): 022619. |
Harris, R., A. J. Berkley, M. W. Johnson, P. Bunyk, S. Govorkov, M. C. Thom, S. Uchaikin et al. “Sign-and magnitude-tunable coupler for superconducting flux qubits.” Physical review letters 98, No. 17 (2007): 177001. |
Harris, R., J. Johansson, A. J. Berkley, M. W. Johnson, T. Lanting, Siyuan Han, P. Bunyk et al. “Experimental demonstration of a robust and scalable flux qubit.” Physical Review B 81, No. 13 (2010): 134510. |
Harris, R., T. Lanting, A. J. Berkley, J. Johansson, M. W. Johnson, P. Bunyk, E. Ladizinsky, N. Ladizinsky, T. Oh, and Siyuan Han. “Compound Josephson-junction coupler for flux qubits with minimal crosstalk.” Physical Review B 80, No. 5 (2009): 052506. |
Harris, Richard, Mark W. Johnson, T. Lanting, A. J. Berkley, J. Johansson, P. Bunyk, E. Tolkacheva et al. “Experimental investigation of an eight-qubit unit cell in a superconducting optimization processor.” Physical Review B 82, No. 2 (2010): 024511. |
Harris, Richard, Yuki Sato, Andrew J. Berkley, M. Reis, Fabio Altomare, M. H. Amin, Kelly Boothby et al. “Phase transitions in a programmable quantum spin glass simulator.” Science 361, No. 6398 (2018): 162-165. |
Hatridge, Michael, Vijayaraghava . R., “Basics of quantum measurement with quantum Light”, PowerPoint Presentation, U. Pittsburgh (2018). |
Hayakawa, Hisao, Nobuyuki Yoshikawa, Shinichi Yorozu, and Akira Fujimaki. “Superconducting digital electronics.” Proceedings of the IEEE 92, No. 10 (2004): 1549-1563. |
He, Yongcheng, Jianshe Liu, Changhao Zhao, Rutian Huang, Genting Dai, and Wei Chen. “Control System of Superconducting Quantum Computers.” Journal of Superconductivity and Novel Magnetism (2022): 1-21. |
Hill, Charles D., Muhammad Usman, and Lloyd CL Hollenberg. “An exchange-based surface-code quantum computer architecture in silicon.” ar Xiv preprint arXiv:2107.11981 (2021). |
Hornibrook, J. M., J. I. Colless, ID Conway Lamb, S. J. Pauka, H. Lu, A. C. Gossard, J. D. Watson et al. “Cryogenic control architecture for large-scale quantum computing.” Physical Review Applied 3, No. 2 (2015): 024010. |
Hou, Shi-Yao, Guanru Feng, Zipeng Wu, Hongyang Zou, Wei Shi, Jinfeng Zeng, Chenfeng Cao et al. “SpinQ Gemini: a desktop quantum computer for education and research.” arXiv preprint arXiv:2101.10017 (2021). |
Huang, Ziwen, Yao Lu, Eliot Kapit, David I. Schuster, and Jens Koch. “Universal stabilization of single-qubit states using a tunable coupler.” Physical Review A 97, No. 6 (2018): 062345. |
Humble, Travis S., Himanshu Thapliyal, Edgard Munoz-Coreas, Fahd A. Mohiyaddin, and Ryan S. Bennink. “Quantum computing circuits and devices.” IEEE Design & Test 36, No. 3 (2019): 69-94. |
Hutchings, M. D., Jared B. Hertzberg, Yebin Liu, Nicholas T. Bronn, George A. Keefe, Markus Brink, Jerry M. Chow, and B. L. T. Plourde. “Tunable superconducting qubits with flux-independent coherence.” Physical Review Applied 8, No. 4 (2017): 044003. |
Ilves, Jesper, Shingo Kono, Yoshiki Sunada, Shota Yamazaki, Minkyu Kim, Kazuki Koshino, and Yasunobu Nakamura. “On-demand generation and characterization of a microwave time-bin qubit.” npj Quantum Information 6, No. 1 (2020): 1-7. |
Ireland, Jane, Oliver Kieler, Johannes Kohlmann, Helge Malmbekk, Jonathan M. Williams, Ralf Behr, Bjornar Karlsen et al. “Josephson arbitrary waveform system with optoelectronic drive.” In 2017 16th International Superconductive Electronics Conference (ISEC), pp. 1-4. IEEE, 2017. |
Jin, Lijing. “Implementing High-fidelity Two-Qubit Gates in Superconducting Coupler Architecture with Novel Parameter Regions.” arXiv preprint arXiv:2105.13306 (2021). |
Johnson, M. W., P. Bunyk, F. Maibaum, E. Tolkacheva, A. J. Berkley, E. M. Chapple, R. Harris et al. “A scalable control system for a superconducting adiabatic quantum optimization processor.” Superconductor Science and Technology 23, No. 6 (2010): 065004. |
Johnson, Philip R., Frederick W. Strauch, Alex J. Dragt, James R. Anderson, Christopher J. Lobb, and Frederick C. Wellstood. “Quantum control of superconducting phase qubits.” In Quantum Information and Computation II, vol. 5436, pp. 232-241. International Society for Optics and Photonics, 2004. |
Johnson, Philip R., Frederick W. Strauch, Alex J. Dragt, James R. Anderson, Christopher J. Lobb, and Frederick C. Wellstood. “Quantum control of superconducting phase qubits.” In Quantum Information and Computation II, vol. 5436, pp. 232-241. SPIE, 2004. |
Kafri, Dvir, Chris Quintana, Yu Chen, Alireza Shabani, John M. Martinis, and Hartmut Neven. “Tunable inductive coupling of superconducting qubits in the strongly nonlinear regime.” Physical Review A 95, No. 5 (2017): 052333. |
Kaivarainen, Alex, and Bo Lehnert. “Two Extended New Approaches to Vacuum, Matter and Fields.” ar Xiv preprint physics/0112027 (2001). |
Karlsen, Bjørnar. “Optically operated pulse-driven Josephson junction arrays and range extension using voltage dividers and buffer amplifiers.” (2019); Karlsen, Bjørnar. “Optically operated pulse-driven Josephson junction arrays and range extension using voltage dividers and buffer amplifiers.” (2019). |
Kelly, Julian, Rami Barends, Brooks Campbell, Yu Chen, Zijun Chen, Ben Chiaro, Andrew Dunsworth et al. “Optimal quantum control using randomized benchmarking.” Physical review letters 112, No. 24 (2014): 240504. |
Khabipov, M. I., D. V. Balashov, F. Maibaum, A. B. Zorin, V. A. Oboznov, V. V. Bolginov, A. N. Rossolenko, and V. V. Ryazanov. “A single flux quantum circuit with a ferromagnet-based Josephson π-junction.” Superconductor Science and Technology 23, No. 4 (2010): 045032. |
Kim, Dohun, Zhan Shi, C. B. Simmons, D. R. Ward, J. R. Prance, Teck Seng Koh, John King Gamble et al. “Quantum control and process tomography of a semiconductor quantum dot hybrid qubit.” Nature 511, No. 7507 (2014): 70-74. |
King, Andrew D., Juan Carrasquilla, Jack Raymond, Isil Ozfidan, Evgeny Andriyash, Andrew Berkley, Mauricio Reis et al. “Observation of topological phenomena in a programmable lattice of 1,800 qubits.” Nature 560, No. 7719 (2018): 456-460. |
Kito, Nobutaka, and Kazuyoshi Takagi. “An RSFQ flexible-precision multiplier utilizing bit-level processing.” In Journal of Physics: Conference Series, vol. 1975, No. 1, p. 012025. IOP Publishing, 2021. |
Klenov, N. V., A. V. Kuznetsov, I. I. Soloviev, S. V. Bakurskiy, M. V. Denisenko, and A. M. Satanin. “Flux qubit interaction with rapid single-flux quantum logic circuits: Control and readout.” Low Temperature Physics 43, No. 7 (2017): 789-798. |
Kono, Shingo, Kazuki Koshino, Yutaka Tabuchi, Atsushi Noguchi, and Yasunobu Nakamura. “Quantum non-demolition detection of an itinerant microwave photon.” Nature Physics 14, No. 6 (2018): 546-549. |
Krantz, Philip, Morten Kjaergaard, Fei Yan, Terry P. Orlando, Simon Gustavsson, and William D. Oliver. “A quantum engineer's guide to superconducting qubits.” Applied physics reviews 6, No. 2 (2019). |
Krantz, Philip, Morten Kjaergaard, Fei Yan, Terry P. Orlando, Simon Gustavsson, and William D. Oliver. “A quantum engineer's guide to superconducting qubits.” Applied Physics Reviews 6, No. 2 (2019): 021318. |
Landig, Andreas J., Jonne V. Koski, Pasquale Scarlino, Clemens Müller, José C. Abadillo-Uriel, Benedikt Kratochwil, Christian Reichl et al. “Virtual-photon-mediated spin-qubit-transmon coupling.” Nature communications 10, No. 1 (2019): 1-7. |
Lanting, Trevor, Anthony J. Przybysz, A. Yu Smirnov, Federico M. Spedalieri, Mohammad H. Amin, Andrew J. Berkley, Richard Harris et al. “Entanglement in a quantum annealing processor.” Physical Review X 4, No. 2 (2014): 021041. |
Larsen, Thorvald Wadum, Karl David Petersson, Ferdinand Kuemmeth, Thomas Sand Jespersen, Peter Krogstrup, Jesper Nygård, and Charles M. Marcus. “Semiconductor-nanowire-based superconducting qubit.” Physical review letters 115, No. 12 (2015): 127001. |
Leonard Jr, Edward, Matthew A. Beck, J. Nelson, Brad G. Christensen, Ted Thorbeck, Caleb Howington, Alexander Opremcak et al. “Digital coherent control of a superconducting qubit.” Physical Review Applied 11, No. 1 (2019): 014009. |
Li, Kangbo, R. McDermott, and Maxim G. Vavilov. “Hardware-efficient qubit control with single-flux-quantum pulse sequences.” Physical Review Applied 12, No. 1 (2019): 014044. |
Li, X., T. Cai, H. Yan, Z. Wang, X. Pan, Y. Ma, W. Cai et al. “Tunable coupler for realizing a controlled-phase gate with dynamically decoupled regime in a superconducting circuit.” Physical Review Applied 14, No. 2 (2020): 024070. |
Liebermann, Per J., and Frank K. Wilhelm. “Optimal qubit control using single-flux quantum pulses.” Physical Review Applied 6, No. 2 (2016): 024022. |
Likharev, Konstantin K., Oleg A. Mukhanov, and Vasilii K. Semenov. “Resistive single flux quantum logic for the Josephson-junction digital technology.” Squid 85 (1985): 1103-1108. |
Lin, Shi-Zeng. “Josephson effect between a two-band superconductor with s++ or s±pairing symmetry and a conventional s-wave superconductor.” Physical Review B 86, No. 1 (2012): 014510. |
Liu, Chenxu, Maria Mucci, Xi Cao, Michael Hatridge, and David Pekker. “Theory of an on-chip Josephson quantum micromaser.” Bulletin of the American Physical Society 65 (2020). |
Lu, Yao, Srivatsan Chakram, Ngainam Leung, Nathan Earnest, Ravi K. Naik, Ziwen Huang, Peter Groszkowski, Eliot Kapit, Jens Koch, and David I. Schuster. “Universal stabilization of a parametrically coupled qubit.” Physical review letters 119, No. 15 (2017): 150502. |
Lüders, Carolin, and Marc Aßmann. “Distinguishing intrinsic photon correlations from external noise with frequency-resolved homodyne detection.” Scientific Reports 10, No. 1 (2020): 1-11. |
Machnes, Shai, Elie Assémat, David Tannor, and Frank K. Wilhelm. “Tunable, flexible, and efficient optimization of control pulses for practical qubits.” Physical review letters 120, No. 15 (2018): 150401. |
Mali{hacek over (s)}, Momir, P. Kl Barkoutsos, Marc Ganzhorn, Stefan Filipp, Daniel J. Egger, Sara Bonella, and Ivano Tavernelli. “Local control theory for superconducting qubits.” Physical Review A 99, No. 5 (2019): 052316. |
Marques, J. F., B. M. Varbanov, M. S. Moreira, Hany Ali, Nandini Muthusubramanian, Christos Zachariadis, Francesco Battistel et al. “Logical-qubit operations in an error-detecting surface code.” Nature Physics 18, No. 1 (2022): 80-86. |
Massoli, Fabio Valerio, Lucia Vadicamo, Giuseppe Amato, and Fabrizio Falchi. “A leap among quantum computing and quantum neural networks: A survey.” ACM Computing Surveys 55, No. 5 (2022): 1-37. |
McConkey, T. G., J. H. Béjanin, C. T. Earnest, C. R. H. McRae, Z. Pagel, J. R. Rinehart, and M. Mariantoni. “Mitigating leakage errors due to cavity modes in a superconducting quantum computer.” Quantum Science and Technology 3, No. 3 (2018): 034004. |
McCourt, Trevor, Charles Neill, Kenny Lee, Chris Quintana, Yu Chen, Julian Kelly, V. N. Smelyanskiy et al. “Learning Noise via Dynamical Decoupling of Entangled Qubits.” arXiv preprint arXiv:2201.11173 (2022). |
McDermott, R., and M. G. Vavilov. “Accurate qubit control with single flux quantum pulses.” Physical Review Applied 2, No. 1 (2014): 014007. |
McDermott, R., M. G. Vavilov, B. L. T. Plourde, F. K. Wilhelm, P. J. Liebermann, O. A. Mukhanov, and T. A. Ohki. “Quantum-classical interface based on single flux quantum digital logic.” Quantum science and technology 3, No. 2 (2018): 024004. |
McKay, David C., Christopher J. Wood, Sarah Sheldon, Jerry M. Chow, and Jay M. Gambetta. “Efficient Z gates for quantum computing.” Physical Review A 96, No. 2 (2017): 022330. |
McKay, David C., Stefan Filipp, Antonio Mezzacapo, Easwar Magesan, Jerry M. Chow, and Jay M. Gambetta. “Tunable coupling between fixed-frequency superconducting transmon qubits, Part II: Implementing a two-qubit XX-90 gate.” In APS March Meeting Abstracts, vol. 2016, pp. F48-008. 2016. |
Miano, Alessandro, and Oleg A. Mukhanov. “Symmetric traveling wave parametric amplifier.” IEEE Transactions on Applied Superconductivity 29, No. 5 (2019): 1-6. |
Mukhanov, Oleg A, A. Kirichenko, C. Howington, J. Walter, M. Hutchings, I. Vernik, D. Yohannes, K. Dodge, A. Ballard, B. L.T. Plourde, A. Opremcak, C.-H. Liu, R. McDermott, “Scalable Quantum Computing Infrastructure Based on Superconducting Electronics,” 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA (2019): 31.2.1-31.2.4. |
Mukhanov, Oleg A. “Energy-efficient single flux quantum technology.” IEEE Transactions on Applied Superconductivity 21, No. 3 (2011): 760-769. |
Mundada, Pranav, Gengyan Zhang, Thomas Hazard, and Andrew Houck. “Suppression of qubit crosstalk in a tunable coupling superconducting circuit.” Physical Review Applied 12, No. 5 (2019): 054023. |
Murch, K. W., S. J. Weber, Christopher Macklin, and Irfan Siddiqi. “Observing single quantum trajectories of a superconducting quantum bit.” Nature 502, No. 7470 (2013): 211-214. |
Naaman, Ofer, J. A. Strong, D. G. Ferguson, J. Egan, N. Bailey, and R. T. Hinkey. “Josephson junction microwave modulators for qubit control.” Journal of Applied Physics 121, No. 7 (2017): 073904. |
Naaman, Ofer, Joshua Strong, David Ferguson, Jonathan Egan, Nancyjane Bailey, and Robert Hinkey. “Josephson Junction Microwave Modulators.” In 2018 IEEE/MTT-S International Microwave Symposium-IMS, pp. 1003-1005. IEEE, 2018. |
Nägele, Maximilian, Christian Schweizer, Federico Roy, and Stefan Filipp. “Effective non-local parity-dependent couplings in qubit chains.” arXiv preprint arXiv:2203.07331 (2022). |
Nakahara, K., H. Nagaishi, H. Hasegawa, S. Kominami, H. Yamada, and T. Nishino. “Optical input/output interface system for Josephson junction integrated circuits.” IEEE transactions on applied superconductivity 4, No. 4 (1994): 223-227. |
Negîrneac, V., H. Ali, N. Muthusubramanian, F. Battistel, R. Sagastizabal, M. S. Moreira, J. F. Marques, W. J. Vlothuizen, M. Beekman, C. Zachariadis, N. Haider, A. Bruno, and L. DiCarlo, “High-fidelity controlled-Z gate with maximal intermediate leakage operating at the speed limit in a superconducting quantum processor,” Phys. Rev. Letters 126 (2021): 220502. |
Nguyen, Long Bao. “Toward the Fluxonium Quantum Processor.” PhD diss., University of Maryland, College Park, 2020. |
Niskanen, A. O., Khalil Harrabi, F. Yoshihara, Y. Nakamura, S. Lloyd, and Jaw Shen Tsai. “Quantum coherent tunable coupling of superconducting qubits.” Science 316, No. 5825 (2007): 723-726. |
Ohki, Thomas A., Michael Wulf, and Marc J. Feldman. “Low-Jc rapid single flux quantum (RSFQ) qubit control circuit.” IEEE transactions on applied superconductivity 17, No. 2 (2007): 154-157. |
Ohzeki, Masayuki, Akira Miki, Masamichi J. Miyama, and Masayoshi Terabe. “Control of automated guided vehicles without collision by quantum annealer and digital devices.” Frontiers in Computer Science 1 (2019): 9. |
Opremcak, A., I. V. Pechenezhskiy, C. Howington, B. G. Christensen, M. A. Beck, E. Leonard Jr, J. Suttle et al. “Measurement of a superconducting qubit with a microwave photon counter.” Science 361, No. 6408 (2018): 1239-1242. |
Pasandi, Ghasem, and Massoud Pedram. “An efficient pipelined architecture for superconducting single flux quantum logic circuits utilizing dual clocks.” IEEE Transactions on Applied Superconductivity 30, No. 2 (2019): 1-12. |
Pasieka, Aron, David W. Kribs, Raymond Laflamme, and Rajesh Pereira. “On the geometric interpretation of single qubit quantum operations on the Bloch sphere.” Acta applicandae mathematicae 108 (2009): 697-707. |
Patra, Bishnu, Jeroen PG van Dijk, Sushil Subramanian, Andrea Corna, Xiao Xue, Charles Jeon, Farhana Sheikh et al. “19.1 a scalable cryo-CMOS 2-to-20GHz digitally intensive controller for 4× 32 frequency multiplexed spin qubits/transmons in 22nm FinFET technology for quantum computers.” In 2020 IEEE International Solid-State Circuits Conference-(ISSCC), pp. 304-306. IEEE, 2020. |
Pezzagna, Sébastien, and Jan Meijer. “Quantum computer based on color centers in diamond.” Applied Physics Reviews 8, No. 1 (2021): 011308. |
Pitalúa-García, Damián. “Spacetime symmetries and the qubit Bloch ball: A physical derivation of finite-dimensional quantum theory and the number of spatial dimensions.” Physical Review A 104, No. 3 (2021): 032220. |
Planat, Luca, Arpit Ranadive, Rémy Dassonneville, Javier Puertas Martínez, Sébastien Léger, Cécile Naud, Olivier Buisson, Wiebke Hasch-Guichard, Denis M. Basko, and Nicolas Roch. “Photonic-crystal Josephson traveling-wave parametric amplifier.” Physical Review X 10, No. 2 (2020): 021021. |
Qiao, Yuanxin, and Zhaoxian Yu. “Geometric Phase in a Quantum Computation with Josephson Qubits Using a Current-Biased Information Bus.” (2018). Advances in Condensed Matter Physics, 2018, 7(1), 7-11 Published Online Feb. 2018 in Hans. http://www.hanspub.org/journal/cmp https://doi.org/10.12677/cmp.2018.71002Coffey, Mark W. “Quantum computing based on a superconducting quantum interference device: Exploiting the flux basis.” Journal of Modern Optics 49, No. 14-15 (2002): 2389-2398. |
Qu, Pei-Yao, Guang-Ming Tang, Jia-Hong Yang, Xiao-Chun Ye, Dong-Rui Fan, Zhi-Min Zhang, and Ning-Hui Sun. “Design of an 8-bit Bit-Parallel RSFQ Microprocessor.” IEEE Transactions on Applied Superconductivity 30, No. 7 (2020): 1-6. |
Quintana, Chris, Yu Chen, D. Sank, D. Kafri, A. Megrant, T. C. White, A. Shabani et al. “Coplanar waveguide flux qubit suitable for quantum annealing.” In APS March Meeting Abstracts, vol. 2016, pp. K48-010. 2016. |
Radparvar, Masoud. Digital Squid Magnetometers for Read-out of Detectors and Magnetic Particles. No. Phase II SBIR Final Report. Hypres, Inc., Elmsford, NY (United States), 2016. |
Rol, M. A., F. Battistel, F. K. Malinowski, C. C. Bultink, B. M. Tarasinski, R. Vollmer, N. Haider et al. “A fast, low-leakage, high-fidelity two-qubit gate for a programmable superconducting quantum computer.” arXiv preprint arXiv: 1903.02492 (2019). |
Rønnow, Troels F., Zhihui Wang, Joshua Job, Sergio Boixo, Sergei V. Isakov, David Wecker, John M. Martinis, Daniel A. Lidar, and Matthias Troyer. “Defining and detecting quantum speedup.” science 345, No. 6195 (2014): 420-424. |
Rosenberg, D., D. Kim, R. Das, D. Yost, S. Gustavsson, D. Hover, P. Krantz et al. “3D integrated superconducting qubits.” npj quantum information 3, No. 1 (2017): 42. |
Salmon, Neil A. “A quantum Bell Test homodyne interferometer at ambient temperature for millimetre wave entangled photons.” In Quantum Information Science and Technology IV, vol. 10803, p. 108030I. International Society for Optics and Photonics, 2018. |
Schrade, Constantin, and Liang Fu. “Majorana superconducting qubit.” Physical Review Letters 121, No. 26 (2018): 267002. |
Sete, Eyob A., Matthew J. Reagor, Nicolas Didier, and Chad T. Rigetti. “Charge-and flux-insensitive tunable superconducting qubit.” Physical Review Applied 8, No. 2 (2017): 024004. |
Sheldon, Sarah, Easwar Magesan, Jerry M. Chow, and Jay M. Gambetta. “Procedure for systematically tuning up cross-talk in the cross-resonance gate.” Physical Review A 93, No. 6 (2016): 060302. |
Shukla, Ashish, Dmitry Kirichenko, Timur Filippov, Anubhav Sahu, Mustafa Eren Celik, Mingoo Seok, and Deepnarayan Gupta. “Pulse Interfaces and Current Management Techniques for Serially Biased RSFQ Circuits.” IEEE Transactions on Applied Superconductivity (2022). |
Sirois, Adam, Manuel Castellanos-Beltran, Anna Fox, Samuel Benz, and Peter Hopkins. “Josephson Microwave Sources Applied to Quantum Information Systems.” IEEE Transactions on Quantum Engineering (2020). |
Sivak, V. V., Shyam Shankar, Gangqiang Liu, Jose Aumentado, and M. H. Devoret. “Josephson array-mode parametric amplifier.” Physical Review Applied 13, No. 2 (2020): 024014. |
Soloviev, Igor I., Nikolay V. Klenov, Sergey V. Bakurskiy, Mikhail Yu Kupriyanov, Alexander L. Gudkov, and Anatoli S. Sidorenko. “Beyond Moore's technologies: operation principles of a superconductor alternative.” Beilstein journal of nanotechnology 8, No. 1 (2017): 2689-2710. |
Song, Chao, Kai Xu, Hekang Li, Yu-Ran Zhang, Xu Zhang, Wuxin Liu, Qiujiang Guo et al. “Generation of multicomponent atomic Schrödinger cat states of up to 20 qubits.” Science 365, No. 6453 (2019): 574-577. |
Stassi, Roberto, Mauro Cirio, and Franco Nori. “Scalable quantum computer with superconducting circuits in the ultrastrong coupling regime.” npj Quantum Information 6, No. 1 (2020): 1-6. |
Stenger, John, Gilad Ben-Shach, David Pekker, and Nicholas T. Bronn. “Simulating spectroscopic detection of Majorana zero modes with a superconducting quantum computer.” arXiv preprint arXiv:2202.12910 (2022). |
Sung, Youngkyu, Leon Ding, Jochen Braumüller, Antti Vepsäläinen, Bharath Kannan, Morten Kjaergaard, Ami Greene et al. “Realization of High-Fidelity CZ and Z Z-Free iSWAP Gates with a Tunable Coupler.” Physical Review X 11, No. 2 (2021): 021058. |
Tolpygo, Sergey K. “Superconductor digital electronics: Scalability and energy efficiency issues.” Low Temperature Physics 42, No. 5 (2016): 361-379. |
Tolpygo, Sergey K., and Vasili K. Semenov. “Increasing integration scale of superconductor electronics beyond one million Josephson junctions.” In Journal of Physics: Conference Series, vol. 1559, No. 1, p. 012002. IOP Publishing, 2020. |
Tolpygo, Sergey K., Vladimir Bolkhovsky, Terence J. Weir, Alex Wynn, Daniel E. Oates, Leonard M. Johnson, and Mark A. Gouker. “Advanced fabrication processes for superconducting very large-scale integrated circuits.” IEEE Transactions on Applied Superconductivity 26, No. 3 (2016): 1-10. |
Uilhoorn, Willemijntje. “Hybrid Josephson junction-based quantum devices in magnetic field.” (2021). Delft University of Technology. |
Uilhoorn, Willemijntje. “Hybrid Josephson junction-based quantum devices in magnetic field.” (2021). Propositions accompanying the dissertation. Delft University of Technology. |
Van Den Brink, Alec Maassen, A. J. Berkley, and M. Yalowsky. “Mediated tunable coupling of flux qubits.” New Journal of Physics 7, No. 1 (2005): 230. |
Van der Ploeg, S. H. W., A. Izmalkov, Alec Maassen van den Brink, U. Hübner, M. Grajcar, E. Il'Ichev, H-G. Meyer, and A. M. Zagoskin. “Controllable coupling of superconducting flux qubits.” Physical review letters 98, No. 5 (2007): 057004. |
Van Zeghbroeck, B. “Optical data communication between Josephson-junction circuits and room-temperature electronics.” IEEE transactions on applied superconductivity 3, No. 1 (1993): 2881-2884. |
Venturelli, Davide, Salvatore Mandrà, Sergey Knysh, Bryan O'Gorman, Rupak Biswas, and Vadim Smelyanskiy. “Quantum optimization of fully connected spin glasses.” Physical Review X 5, No. 3 (2015): 031040. |
Versluis, Richard, Stefano Poletto, Nader Khammassi, Brian Tarasinski, Nadia Haider, David J. Michalak, Alessandro Bruno, Koen Bertels, and Leonardo DiCarlo. “Scalable quantum circuit and control for a superconducting surface code.” Physical Review Applied 8, No. 3 (2017): 034021. |
Volkmann, Mark H., Anubhav Sahu, Coenrad J. Fourie, and Oleg A. Mukhanov. “Implementation of energy efficient single flux quantum digital circuits with sub-aJ/bit operation.” Superconductor Science and Technology 26, No. 1 (2012): 015002. |
Vrajitoarea, Andrei, Ziwen Huang, Peter Groszkowski, Jens Koch, and Andrew A. Houck. “Quantum control of an oscillator using a stimulated Josephson nonlinearity.” Nature Physics 16, No. 2 (2020): 211-217. |
Wang, Joel, Daniel Rodan Legrain, Charlotte Boettcher, Landry Bretheau, Daniel Campbell, Bharath Kannan, David Kim et al. “Quantum coherent control of graphene-based transmon qubit.” In APS March Meeting Abstracts, vol. 2019, pp. C29-C010. 2019. |
Wendin, Göran. “Quantum information processing with superconducting circuits: a review.” Reports on Progress in Physics 80, No. 10 (2017): 106001. |
Winkel, Patrick, Ivan Takmakov, Dennis Rieger, Luca Planat, Wiebke Hasch-Guichard, Lukas Grünhaupt, Nataliya Maleeva et al. “Nondegenerate parametric amplifiers based on dispersion-engineered josephson-junction arrays.” Physical Review Applied 13, No. 2 (2020): 024015. |
Wu, Xian, Spencer L. Tomarken, N. Anders Petersson, Luis A. Martinez, Yaniv J. Rosen, and Jonathan L. DuBois. “High-fidelity software-defined quantum logic on a superconducting qudit.” Physical Review Letters 125, No. 17 (2020): 170502. |
Wulschner, Friedrich, Jan Goetz, Fabian R. Koessel, Elisabeth Hoffmann, Alexander Baust, Peter Eder, Michael Fischer et al. “Tunable coupling of transmission-line microwave resonators mediated by an rf SQUID.” EPJ Quantum Technology 3, No. 1 (2016): 1-10. |
Xin, Tao, Shilin Huang, Sirui Lu, Keren Li, Zhihuang Luo, Zhangqi Yin, Jun Li, Dawei Lu, Guilu Long, and Bei Zeng. “NMRCloudQ: a quantum cloud experience on a nuclear magnetic resonance quantum computer.” Science Bulletin 63, No. 1 (2018): 17-23. |
Xu, Huikai, Weiyang Liu, Zhiyuan Li, Jiaxiu Han, Jingning Zhang, Kehuan Linghu, Yongchao Li et al. “Realization of adiabatic and diabatic CZ gates in superconducting qubits coupled with a tunable coupler.” Chinese Physics B 30, No. 4 (2021): 044212. |
Xu, Xuexin, and M. H. Ansari. “Parasitic-free gate: A protected switch between idle and entangled states.” ar Xiv preprint arXiv:2202.05208 (2022). |
Xu, Yuan, Ji Chu, Jiahao Yuan, Jiawei Qiu, Yuxuan Zhou, Libo Zhang, Xinsheng Tan et al. “High-fidelity, high-scalability two-qubit gate scheme for superconducting qubits.” Physical Review Letters 125, No. 24 (2020): 240503. |
Yamae, Taiki, Naoki Takeuchi, and Nobuyuki Yoshikawa. “Binary counters using adiabatic quantum-flux-parametron logic.” IEEE Transactions on Applied Superconductivity 31, No. 2 (2020): 1-5. |
Yamanashi, Yuki, Sotaro Nakaishi, Akira Sugiyama, Naoki Takeuchi, and Nobuyuki Yoshikawa. “Design methodology of single-flux-quantum flip-flops composed of both 0-and π-shifted Josephson junctions.” Superconductor Science and Technology 31, No. 10 (2018): 105003. |
Yamanashi, Yuki, Takanobu Nishigai, and Nobuyuki Yoshikawa. “Study of LR-loading technique for low-power single flux quantum circuits.” IEEE Transactions on applied superconductivity 17, No. 2 (2007): 150-153. |
Yan, Fei, Philip Krantz, Youngkyu Sung, Morten Kjaergaard, Daniel L. Campbell, Terry P. Orlando, Simon Gustavsson, and William D. Oliver. “Tunable coupling scheme for implementing high-fidelity two-qubit gates.” Physical Review Applied 10, No. 5 (2018): 054062. |
Yang, Chui-Ping, Qi-Ping Su, Shi-Biao Zheng, and Siyuan Han. “One-step transfer or exchange of arbitrary multipartite quantum states with a single-qubit coupler.” Physical Review B 92, No. 5 (2015): 054509. |
Yeninas, Steven. “Tunnel-diode resonator and nuclear magnetic resonance studies of low-dimensional magnetic and superconducting systems.” Ph.D. Dissertation Iowa State University (2013). |
Yohannes, D., M. Renzullo, J. Vivalda, A. C. Jacobs, M. Yu, J. Walter, A. F. Kirichenko, I. V. Vernik, and O. A. Mukhanov. “High density fabrication process for single flux quantum circuits.” Applied Physics Letters 122, No. 21 (2023). |
Yoshikawa, Nobuyuki. “Superconducting digital electronics for controlling quantum computing systems.” IEICE Transactions on Electronics 102, No. 3 (2019): 217-223. |
Youssefi, Amir, Itay Shomroni, Yash J. Joshi, Nathan R. Bernier, Anton Lukashchuk, Philipp Uhrich, Liu Qiu, and Tobias J. Kippenberg. “A cryogenic electro-optic interconnect for superconducting devices.” Nature Electronics (2021): 1-7. |
Zajac, D. M., J. Stehlik, D. L. Underwood, T. Phung, J. Blair, S. Carnevale, D. Klaus et al. “Spectator errors in tunable coupling architectures.” arXiv preprint arXiv:2108.11221 (2021). |
Zhang, Helin, Srivatsan Chakram, Tanay Roy, Nathan Earnest, Yao Lu, Ziwen Huang, Daniel Weiss, Jens Koch, and David I. Schuster, “Universal fast flux control of a coherent, low-frequency qubit,” Phys. Rev. X 11 (2021): 011010. |
Zhang, Xian-Peng, Li-Tuo Shen, Zhang-Qi Yin, Luyan Sun, Huai-Zhi Wu, and Zhen-Biao Yang. “Multi-Resonator-Assisted Multi-Qubit Resetting in a Network.” arXiv preprint arXiv:1604.08393 (2016). |
Zhou, Jian, Sai Li, Guo-Zhu Pan, Gang Zhang, Tao Chen, and Zheng-Yuan Xue. “Nonadiabatic geometric quantum gates that are insensitive to qubit-frequency drifts.” Physical Review A 103, No. 3 (2021): 032609. |
Zhu, Daoquan, Tuomas Jaako, Qiongyi He, and Peter Rabl. “Quantum computing with superconducting circuits in the picosecond regime.” Physical Review Applied 16, No. 1 (2021): 014024. |
Zhu, Na. “Integrated Cavity Magnonics.” PhD diss., Yale University, 2020. |
Bardin, Joseph C., Evan Jeffrey, Erik Lucero, Trent Huang, Ofer Naaman, Rami Barends, Ted White et al. “29.1 A 28nm bulk-CMOS 4-to-8GHz 2mW cryogenic pulse modulator for scalable quantum computing.” In 2019 IEEE International Solid-State Circuits Conference-(ISSCC), pp. 456-458. IEEE, 2019. |
Niskanen, A. O., K. Harrabi, F. Yoshihara, Y. Nakamura, S. Lloyd, and Jaw Shen Tsai. “Quantum coherent tunable coupling of superconducting qubits.” Science 316, No. 5825 (2007): 723-726. |
Quintana, Chris, Yu Chen, D. Sank, D. Kafri, A. Megrant, T. C. White, A. Shabani et al. “Coplanar waveguide flux qubit suitable for quantum annealing.” In APS March Meeting Abstracts, vol. 2016, pp. K48-K010. 2016. |
Uilhoorn, Willemijntje. “Hybrid Josephson junction-based quantum devices in magnetic field.” (2021). |
Zhu, Daoquan, Tuomas Jaako, Qiongyi He, and Peter Rabl. “Quantum computing with superconducting circuits in the picosecond regime.” arXiv preprint arXiv:2101.05810 (2021). |
Number | Date | Country | |
---|---|---|---|
20220399145 A1 | Dec 2022 | US |
Number | Date | Country | |
---|---|---|---|
63209937 | Jun 2021 | US |