System and method of flux bias for superconducting quantum circuits

Information

  • Patent Grant
  • 12087503
  • Patent Number
    12,087,503
  • Date Filed
    Saturday, June 11, 2022
    2 years ago
  • Date Issued
    Tuesday, September 10, 2024
    2 months ago
Abstract
Quantum computing systems require methods to control energies of qubits and couplers for quantum operations. Flux biasing of qubits and quantum couplers is provided for a superconducting quantum computer using single-flux-quantum (SFQ) technology. This method is applicable to a wide range of superconducting qubit structures and couplers, including transmons, fluxoniums, flux qubits, phase qubits and other superconducting qubits. This method enables arbitrary-amplitude time-varying flux biasing of qubits and couplers, due to a sequence of high-speed SFQ pulses. Several preferred embodiments are disclosed which provide high-fidelity control of fast single-qubit and multi-qubit operations.
Description
FIELD OF THE INVENTION

The present invention relates to the field of superconducting circuits, and more particularly superconducting circuits for application to quantum computing.


BACKGROUND OF THE INVENTION

Each patent, patent publication, and other cited reference cited herein is expressly incorporated herein by reference in its entirety for all purposes.


Superconducting integrated circuits based on Josephson junctions (JJs) are capable of operation with very low power and high speed, well beyond those possible using conventional semiconducting circuits. It has long been known that superconducting integrated circuits may be used for digital logic circuits based on single-flux-quantum (SFQ) pulses. These SFQ pulses are voltage pulses with time-integrated voltage of Φ0=h/2e=2.07 mV-ps, each comprising one fluxon of magnetic flux, corresponding typically to a pulse height about 1 mV and a pulse width about 2 ps. Several logic families based on SFQ pulses are known in the prior art, including Rapid Single Flux Quantum (RSFQ), Energy-Efficient RSFQ (EERSFQ), Reciprocal Quantum Logic (RQL), and Quantum Flux Parametron (QFP). Despite the word “quantum”, all of these logic families comprise classical digital computing with classical bits. See, for example, the following U.S. Pat. Nos. 8,571,614; 9,473,124; 9,853,645; 10,917,096; 10,528,886; 10,748,079; 7,969,178; 8,138,784; 9,646,682; 10,084,454.


Recently, superconducting integrated circuits comprised of a plurality of JJs have also been applied to true quantum computing using quantum bits (qubits), which may enable computations that are unachievable using classical computers. There are several types of superconducting qubits disclosed in the prior art, such as flux qubits, phase qubits, charge qubits, topological qubits, fluxonium qubits, and transmon qubits, among others. See, for example, US Patent and Published Application Nos.: U.S. Pat. Nos. 6,459,097; 6,504,172; 6,576,951; 6,627,915; 6,784,451; 6,838,694; 6,984,846; 7,268,576; 7,335,909; 7,843,209; 8,648,331; 8,654,578; 9,524,470; 9,685,935; 10,068,184; 10,176,432; 10,255,557; 10,256,392; 10,622,998; 10,789,123; 10,840,295; 10,949,769; and 2020/0280316.


Each qubit has an infinite number of different potential quantum-mechanical states. When the state of a qubit is physically measured, the measurement produces one of two different basis states resolved from the state of the qubit. Thus, a single qubit can represent a one, a zero, or any quantum superposition of those two qubit states; a pair of qubits can be in any quantum superposition of 4 orthogonal basis states; and three qubits can be in any superposition of 8 orthogonal basis states. The function that defines the quantum-mechanical states of a qubit is known as its wavefunction. The wavefunction also specifies the probability distribution of outcomes for a given measurement.


Although certain descriptions of qubits herein may describe such qubits in terms of their mathematical properties, each such qubit may be implemented in a physical medium in any of a variety of different ways. Examples of such physical media include superconducting material, trapped ions, photons, optical cavities, individual electrons trapped within quantum dots, point defects in solids (e.g., phosphorus donors in silicon or nitrogen-vacancy centers in diamond), molecules (e.g., alanine, vanadium complexes), or aggregations of any of the foregoing that exhibit qubit behavior, that is, comprising quantum states and transitions therebetween that can be controllably induced or detected.


For any given medium that implements a qubit, any of a variety of properties of that medium may be chosen to implement the qubit. For example, if electrons are chosen to implement qubits, then the x component of its spin degree of freedom may be chosen as the property of such electrons to represent the states of such qubits. Alternatively, the y component, or the z component of the spin degree of freedom may be chosen as the property of such electrons to represent the state of such qubits. This is merely a specific example of the general feature that for any physical medium that is chosen to implement qubits, there may be multiple physical degrees of freedom (e.g., the x, y, and z components in the electron spin example) that may be chosen to represent 0 and 1. For any particular degree of freedom, the physical medium may controllably be put in a state of superposition, and measurements may then be taken in the chosen degree of freedom to obtain readouts of qubit values.


Certain implementations of quantum computers, referred to as gate model quantum computers, comprise quantum gates. In contrast to classical gates, there is an infinite number of possible single-qubit quantum gates that change the state vector of a qubit. Changing the state of a qubit state vector typically is referred to as a single-qubit rotation, and may also be referred to herein as a state change or a single-qubit quantum-gate operation. A rotation, state change, or single-qubit quantum-gate operation may be represented mathematically by a unitary 2×2 matrix with complex elements. A rotation corresponds to a rotation of a qubit state within its Hilbert space, which may be conceptualized as a rotation of the Bloch sphere. (As is well-known to those having ordinary skill in the art, the Bloch sphere is a geometrical representation of the space of pure states of a qubit.) Multi-qubit gates alter the quantum state of a set of qubits. For example, two-qubit gates rotate the state of two qubits as a rotation in the four-dimensional Hilbert space of the two qubits. A Hilbert space is an abstract vector space possessing the structure of an inner product that allows length and angle to be measured. Furthermore, Hilbert spaces are complete: there are enough limits in the space to allow the techniques of calculus to be used.


A quantum circuit may be specified as a sequence of quantum gates. The term “quantum gate,” may refer to the application of a gate control signal (defined below) to one or more qubits to cause those qubits to undergo certain physical transformations and thereby to implement a logical gate operation. To conceptualize a quantum circuit, the matrices corresponding to the component quantum gates may be multiplied together in the order specified by the gate sequence to produce a 2n×2n complex matrix representing the same overall state change on n qubits. A quantum circuit may thus be expressed as a single resultant operator. However, designing a quantum circuit in terms of constituent gates allows the design to conform to a standard set of gates, and thus enable greater ease of deployment. A quantum circuit thus corresponds to a design for actions taken upon the physical components of a quantum computer.


A given variational quantum circuit may be parameterized in a suitable device-specific manner. More generally, the quantum gates making up a quantum circuit may have an associated plurality of tuning parameters. For example, in embodiments based on optical switching, tuning parameters may correspond to the angles of individual optical elements.


In certain embodiments of quantum circuits, the quantum circuit includes both one or more gates and one or more measurement operations. Quantum computers implemented using such quantum circuits are referred to herein as implementing “measurement feedback.” For example, a quantum computer implementing measurement feedback may execute the gates in a quantum circuit and then measure only a subset (i.e., fewer than all) of the qubits in the quantum computer, and then decide which gate(s) to execute next based on the outcome(s) of the measurement(s). In particular, the measurement(s) may indicate a degree of error in the gate operation(s), and the quantum computer may decide which gate(s) to execute next based on the degree of error. The quantum computer may then execute the gate(s) indicated by the decision. This process of executing gates, measuring a subset of the qubits, and then deciding which gate(s) to execute next may be repeated any number of times. Measurement feedback may be useful for performing quantum error correction, but is not limited to use in performing quantum error correction. For every quantum circuit, there is an error-corrected implementation of the circuit with or without measurement feedback.


Each superconducting qubit is characterized by a ground quantum state and an excited quantum state, separated by an energy E, such that E=hf. The transition between the ground and excited states is mediated by a narrowband microwave signal with frequency f that is typically of order 10 GHz. Such a microwave signal may have a shaped envelope with a width that may be of order 100 cycles, which may sometimes be referred to as a “microwave pulse”. However, such a “microwave pulse” is quite different from the SFQ pulse mentioned above, which has broadband spectral content up to hundreds of GHz. Most prior-art control systems are based on these narrowband microwave pulses; see U.S. Pat. Nos. 7,932,514; 8,294,138; 8,872,360; 10,572,816; and 10,650,319.


It is known in the prior art that any quantum computing system will require an interface with a classical computer for control and readout. In most of the prior art, the classical control computer may comprise a conventional semiconductor computer at room temperature, with control lines down to the cryogenic qubits. However, it may be advantageous to employ cryogenic control circuits close to the quantum computer, for at least the first stage of control of the quantum computer. Such a control system in close proximity to the quantum computer would reduce latency, enabling more rapid and flexible control of the quantum computer. Furthermore, superconducting quantum computing requires ultra-low temperatures about 0.01 K, typically using a helium dilution refrigerator, where the available cooling capacity is very small. A major heat load in a cryogenic computer comprises the set of input/output (I/O) lines, which would become impractically large for a quantum computer of a significant scale. Including a local source of classical control circuits could reduce the number of I/O lines, thus making a large-scale system more practical, provided that the dissipation of the cryogenic classical control circuits is also very small.


Some prior art discloses use of conventional semiconductor circuits at cryogenic temperatures to control the cryogenic qubits. See, for example, US Patent and Published Application Nos: U.S. Pat. No. 10,671,559; 2020/0394548; and 2020/0160205. However, the power levels for semiconductor control circuits are generally far higher than is compatible with the deep cryogenic environment of the quantum computer.


One type of superconducting circuit that may be used to control superconducting qubits is an inductive circuit that applies magnetic flux, including circuits based on superconducting quantum interference devices or SQUIDs. See, for example, US Patent and Published Application Nos: U.S. Pat. Nos. 7,847,615; 7,932,514; 8,854,074; 9,996,801; 10,665,635; 10,969,443; and 2021/0033683. These control methods are generally quite slow.


Although all superconducting logic circuits are low in dissipation, some variants are especially low in energy, such as those identified as ERSFQ, eSFQ, RQL, and QFP. These are based on SFQ pulses, which is quite different from the resonant narrowband microwave signal that is more commonly used. Such a circuit may be placed close to the superconducting qubits, given a common cryogenic environment and low-power dissipation. There have been several previous proposals for SFQ logic circuits to control or read out superconducting qubits. For example, a properly timed train of SFQ pulses may be used to induce a quantum transition in a superconducting qubit, or to measure the quantum state of a qubit. See, for example, U.S. Pat. Nos. 7,969,178; 8,138,784; 8,508,280; 9,425,804; 9,787,312; 10,726,351; and 10,748,079.


While SFQ pulses are themselves quite fast, the prior art does not teach methods for rapid, programmable SFQ control of over the very large number of qubits that will be needed for a practical quantum computer. In particular, the prior art does not teach methods to tune the parameters of the various qubits and the couplings between them, using SFQ circuits.


Quantum computers (QC), comprising qubits promise exponential speed-up in solving certain problems. A qubit can be implemented in a physical system with two distinct energy levels representing the |0) and |1) states, e.g., the up and down spin states of an electron. The qubit states can be manipulated with microwave pulses, whose frequency f matches the energy level spacing E=hf. Qubit operations can be represented as rotations in the Bloch sphere. The rotation axis is set by the phase of the microwave signal relative to the qubit phase, which must be tracked for coherent operations. The pulse amplitude and duration determine the rotation angle.


A singular value decomposition allows visualization of a two-qubit state through a pair of Bloch spheres, one per subsystem. The Bloch vectors {right arrow over (u)} and {right arrow over (v)} are inscribed in their respective spheres, representing 6 degrees of freedom detectable through local measurements. The 9 degrees of freedom that can only be detected nonlocally are contained in Σ, M, and N, or equivalently, in the two matrix products MΣ and NΣ. The columns of these two products are the scaled correlation axes, given by xi{circumflex over (m)}i and xi{circumflex over (n)}i respectively. To complete the geometric representation of the quantum state, the three scaled correlation axes for each system can be added to their respective Bloch sphere, where they represent the magnitude and direction of the correlation. The scaled correlation axes in the two systems are paired off by a shared index i.


Spin in the directions of two such axes with the same index are correlated, proportional to their shared length xi, while spin along axes with different indices are uncorrelated. That is, simultaneously measuring the two spins on multiple copies of the system, each along the direction of its scaled correlation axis i, yields an expectation value equal to the axis length. Measuring the two spins simultaneously along correlation axes with different indices, i≠j, yields zero expectation value.


Quantum channels and operations are described by completely positive trace preserving maps, and lie at the heart of investigations in quantum information science. The single quantum bit (qubit) case has a particularly attractive geometric interpretation in terms of certain deformations of the Bloch sphere. This geometric picture to a large extent guides the intuition for higher-dimensional cases.


Viewing quantum operations as operators acting on operators leads to a clean geometric decomposition in the single qubit case; that is, completely positive trace preserving maps. Given an arbitrary 2×2 complex matrix, we can identify eight degrees of freedom through the real and imaginary parts of the four entries for example. In the case of Hermitian matrices, these eight degrees of freedom are reduced to four, as specification of any one of the off-diagonal terms fixes one of the others and each of the diagonal terms must be real. As a result, a linear map from 2×2 Hermitian matrices to 2×2 Hermitian matrices can be completely characterized by sixteen parameters. It is easily verified that any Hermitian matrix can be written as a linear combination of the identity and the three Pauli matrices, with real coefficients. Thus we can express any Hermitian 2×2 matrix as a 4-component real vector in the Pauli basis, {1, σx, σy, σz}, and we can express a linear map on the 2×2 Hermitian matrices as a 4×4 real matrix in the same basis.


Shifting attention to a subset of the 2×2 Hermitian matrices, namely density matrices for a single qubit, we add the conditions that the matrices must be positive and have trace equal to one. The trace condition forces the coefficient of the identity to be ½, reducing the characterization to a 3-dimensional real subspace. Positivity then tells us that all density matrices are represented by points within a radius of ½ from the origin in this 3-dimensional real subspace. Using the standard convention that ½ is factored out of each component, we have the familiar Bloch vector representation of a density matrix, wherein the set of permissible density matrices are represented by the ball ∥r∥2≤1, the Bloch sphere. When considering density matrices and quantum operations thereon, we can further refine the form of our linear map since a quantum operation will be described by a completely positive trace-preserving map. (Equivalently, the Hilbert-Schmidt dual of the map is completely positive and unital.)


We can therefore characterize the effect of an arbitrary completely positive trace-preserving map on the Bloch sphere as the composition of a rotation with a possible inversion, a compression to an ellipsoid, a second rotation with a possible inversion, and a translation.


See:


Abrams, Deanna M., Nicolas Didier, Blake R. Johnson, Marcus P. da Silva, and Colm A. Ryan. “Implementation of the XY interaction family with calibration of a single pulse.” arXiv preprint arXiv:1912.04424 (2019).


Abrams, Deanna M., Nicolas Didier, Shane A. Caldwell, Blake R. Johnson, and Colm A. Ryan. “Methods for measuring magnetic flux crosstalk between tunable transmons.” Physical Review Applied 12, no. 6 (2019): 064022.


Ahmad, Meraj, Christos Giagkoulovits, Sergey Danilin, Martin Weides, and Hadi Heidari. “Scalable Cryoelectronics for Superconducting Qubit Control and Readout.” Advanced Intelligent Systems (2022): 2200079.


Antonov, I. V., R. S. Shaikhaidarov, V. N. Antonov, and O. V. Astafiev. “Superconducting ‘twin’qubit.” Physical Review B 102, no. 11 (2020): 115422.


Ash-Saki, Abdullah, Mahabubul Alam, and Swaroop Ghosh. “Experimental characterization, modeling, and analysis of crosstalk in a quantum computer.” IEEE Transactions on Quantum Engineering 1 (2020): 1-6.


Bækkegaard, Thomas, L. B. Kristensen, Niels J S Loft, Christian Kraglund Andersen, David Petrosyan, and Nikolaj T. Zinner. “Realization of efficient quantum gates with a superconducting qubit-qutrit circuit.” Scientific reports 9, no. 1 (2019): 1-10.


Bardin, Joseph C. “Analog/Mixed-Signal Integrated Circuits for Quantum Computing.” In 2020 IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium (BCICTS), pp. 1-8. IEEE, 2020.


Bardin, Joseph C., Daniel Sank, Ofer Naaman, and Evan Jeffrey. “Quantum computing: An introduction for microwave engineers.” IEEE Microwave Magazine 21, no. 8 (2020): 24-44.


Bardin, Joseph C., Evan Jeffrey, Erik Lucero, Trent Huang, Ofer Naaman, Rami Barends, Ted White et al. “29.1 A 28 nm bulk-CMOS 4-to-8 GHzcustom character 2 mW cryogenic pulse modulator for scalable quantum computing.” In 2019 IEEE International Solid-State Circuits Conference-(ISSCC), pp. 456-458. IEEE, 2019.


Barends, Rami, C. M. Quintana, A. G. Petukhov, Yu Chen, Dvir Kafri, Kostyantyn Kechedzhi, Roberto Collins et al. “Diabatic gates for frequency-tunable superconducting qubits.” Physical Review Letters 123, no. 21 (2019): 210501.


Berke, Christoph, Evangelos Varvelis, Simon Trebst, Alexander Altland, and David P. DiVincenzo. “Transmon platform for quantum computing challenged by chaotic fluctuations.” arXiv preprint arXiv:2012.05923 (2020).


Besedin, Il'ya Stanislavovich, Gleb Petrovich Fedorov, A. Yu Dmitriev, and Valerii Vladimirovich Ryazanov. “Superconducting qubits in Russia.” Quantum Electronics 48, no. 10 (2018): 880.


Bhattacharyya, Shaman, and Somnath Bhattacharyya. “Demonstrating geometric phase acquisition in multi-path tunnel systems using a near-term quantum computer.” Journal of Applied Physics 130, no. 3 (2021): 034901.


Bocko, Mark F., Andrea M. Herr, and Marc J. Feldman. “Prospects for quantum coherent computation using superconducting electronics.” IEEE Transactions on Applied Superconductivity 7, no. 2 (1997): 3638-3641.


Brink, Markus, Jerry M. Chow, Jared Hertzberg, Easwar Magesan, and Sami Rosenblatt. “Device challenges for near term superconducting quantum processors: frequency collisions.” In 2018 IEEE International Electron Devices Meeting (IEDM), pp. 6-1. IEEE, 2018.


Cai, T-Q., X-Y. Han, Y-K. Wu, Y-L. Ma, J-H. Wang, Z-L. Wang, H-Y. Zhang, H-Y. Wang, Y-P. Song, and L-M. Duan. “Impact of Spectators on a Two-Qubit Gate in a Tunable Coupling Superconducting Circuit.” Physical Review Letters 127, no. 6 (2021): 060505.


Caldwell, S. A., N. Didier, C. A. Ryan, E. A. Sete, A. Hudson, P. Karalekas, R. Manenti et al. “Parametrically activated entangling gates using transmon qubits.” Physical Review Applied 10, no. 3 (2018): 034050.


Castellano, Maria Gabriella, Leif Grönberg, Pasquale Carelli, Fabio Chiarello, Carlo Cosmelli, Roberto Leoni, Stefano Poletto, Guido Torrioli, Juha Hassel, and Panu Helistö. “Characterization of a fabrication process for the integration of superconducting qubits and rapid-single-flux-quantum circuits.” Superconductor Science and Technology 19, no. 8 (2006): 860.


Christensen, B. G., C. D. Wilen, A. Opremcak, J. Nelson, F. Schlenker, C. H. Zimonick, L. Faoro et al. “Anomalous charge noise in superconducting qubits.” Physical Review B 100, no. 14 (2019): 140503.


Coffey, Mark W. “Quantum computing based on a superconducting quantum interference device: Exploiting the flux basis.” Journal of Modern Optics 49, no. 14-15 (2002): 2389-2398.


Crankshaw, Donald Shane. “Measurement and on-chip control of a niobium persistent current qubit.” PhD diss., Massachusetts Institute of Technology, 2003.


de Albornoz, Alejandro Cros Carrillo, John Taylor, and Vlad Cărare. “Time-optimal implementations of quantum algorithms.” Physical Review A 100, no. 3 (2019): 032329.


Dragoman, Mircea, and Daniela Dragoman. “Quantum Computing.” In Atomic-Scale Electronics Beyond CMOS, pp. 157-186. Springer, Cham, 2021.


Espinós, Hilario, Iván Panadero, Juan José García-Ripoll, and Erik Torrontegui. “Quantum control of tunable-coupling transmons using dynamical invariants of motion.” arXiv preprint arXiv:2205.06555 (2022).


Fedorov, Kirill G., Anastasia V. Shcherbakova, Michael J. Wolf, Detlef Beckmann, and Alexey V. Ustinov. “Fluxon readout of a superconducting qubit.” Physical review letters 112, no. 16 (2014): 160502.


Feng, Guanru, Shi-Yao Hou, Hongyang Zou, Wei Shi, Sheng Yu, Zikai Sheng, Xin Rao et al. “SpinQ Triangulum: a commercial three-qubit desktop quantum computer.” arXiv preprint arXiv:2202.02983 (2022).


Foss-Feig, Michael, Stephen Ragole, Andrew Potter, Joan Dreiling, Caroline Figgatt, John Gaebler, Alex Hall et al. “Entanglement from Tensor Networks on a Trapped-Ion Quantum Computer.” Physical Review Letters 128, no. 15 (2022): 150504.


Ganzhorn, Marc, Daniel J. Egger, Panagiotis Barkoutsos, Pauline Ollitrault, Gian Salis, Nikolaj Moll, M. Roth et al. “Gate-efficient simulation of molecular eigenstates on a quantum computer.” Physical Review Applied 11, no. 4 (2019): 044092.


García-Ripoll, J. J., A. Ruiz-Chamorro, and E. Torrontegui. “Quantum control of transmon superconducting qubits.” arXiv preprint arXiv:2002.10320 (2020).


Garciá-Ripoll, Juan José, Andrés Ruiz-Chamorro, and E. Torrontegui. “Quantum Control of Frequency-Tunable Transmon Superconducting Qubits.” Physical Review Applied 14, no. 4 (2020): 044035.


Graham, T. M., Y. Song, J. Scott, C. Poole, L. Phuttitarn, K. Jooya, P. Eichler et al. “Multi-qubit entanglement and algorithms on a neutral-atom quantum computer.” Nature 604, no. 7906 (2022): 457-462.


Graham, T. M., Y. Song, J. Scott, C. Poole, L. Phuttitarn, K. Jooya, P. Eichler et al. “Demonstration of multi-qubit entanglement and algorithms on a programmable neutral atom quantum computer.” arXiv preprint arXiv:2112.14589 (2021).


Hahn, Henning, Giorgio Zarantonello, Marius Schulte, Amado Bautista-Salvador, Klemens Hammerer, and Christian Ospelkaus. “Integrated 9Be+ multi-qubit gate device for the ion-trap quantum computer.” npj Quantum Information 5, no. 1 (2019): 1-5.


Hill, Charles D., Muhammad Usman, and Lloyd C L Hollenberg. “An exchange-based surface-code quantum computer architecture in silicon.” arXiv preprint arXiv:2107.11981 (2021).


Hou, Shi-Yao, Guanru Feng, Zipeng Wu, Hongyang Zou, Wei Shi, Jinfeng Zeng, Chenfeng Cao et al. “SpinQ Gemini: a desktop quantum computer for education and research.” arXiv preprint arXiv:2101.10017 (2021).


Huang, Ziwen, Yao Lu, Eliot Kapit, David I. Schuster, and Jens Koch. “Universal stabilization of single-qubit states using a tunable coupler.” Physical Review A 97, no. 6 (2018): 062345.


Humble, Travis S., Himanshu Thapliyal, Edgard Munoz-Coreas, Fahd A. Mohiyaddin, and Ryan S. Bennink. “Quantum computing circuits and devices.” IEEE Design & Test 36, no. 3 (2019): 69-94.


Hutchings, M. D., Jared B. Hertzberg, Yebin Liu, Nicholas T. Bronn, George A. Keefe, Markus Brink, Jerry M. Chow, and B. L. T. Plourde. “Tunable superconducting qubits with flux-independent coherence.” Physical Review Applied 8, no. 4 (2017): 044003.


Johnson, Philip R., Frederick W. Strauch, Alex J. Dragt, James R. Anderson, Christopher J. Lobb, and Frederick C. Wellstood. “Quantum control of superconducting phase qubits.” In Quantum Information and Computation II, vol. 5436, pp. 232-241. International Society for Optics and Photonics, 2004.


Khabipov, M. I., D. V. Balashov, F. Maibaum, A. B. Zorin, V. A. Oboznov, V. V. Bolginov, A. N. Rossolenko, and V. V. Ryazanov. “A single flux quantum circuit with a ferromagnet-based Josephson π-junction.” Superconductor Science and Technology 23, no. 4 (2010): 045032.


Klenov, N. V., A. V. Kuznetsov, I. I. Soloviev, S. V. Bakurskiy, M. V. Denisenko, and A. M. Satanin. “Flux qubit interaction with rapid single-flux quantum logic circuits: Control and readout.” Low Temperature Physics 43, no. 7 (2017): 789-798.


Krantz, Philip, Morten Kjaergaard, Fei Yan, Terry P. Orlando, Simon Gustavsson, and William D. Oliver. “A quantum engineer's guide to superconducting qubits.” Applied Physics Reviews 6, no. 2 (2019): 021318.


Landig, Andreas J., Jonne V. Koski, Pasquale Scarlino, Clemens Müller, José C. Abadillo-Uriel, Benedikt Kratochwil, Christian Reichl et al. “Virtual-photon-mediated spin-qubit-transmon coupling.” Nature communications 10, no. 1 (2019): 1-7.


Larsen, Thorvald Wadum, Karl David Petersson, Ferdinand Kuemmeth, Thomas Sand Jespersen, Peter Krogstrup, Jesper Nygård, and Charles M. Marcus. “Semiconductor-nanowire-based superconducting qubit.” Physical review letters 115, no. 12 (2015): 127001.


Leonard Jr, Edward, Matthew A. Beck, J. Nelson, Brad G. Christensen, Ted Thorbeck, Caleb Howington, Alexander Opremcak et al. “Digital coherent control of a superconducting qubit.” Physical Review Applied 11, no. 1 (2019): 014009.


Li, Kangbo, R. McDermott, and Maxim G. Vavilov. “Hardware-efficient qubit control with single-flux-quantum pulse sequences.” Physical Review Applied 12, no. 1 (2019): 014044.


Liebermann, Per J., and Frank K. Wilhelm. “Optimal qubit control using single-flux quantum pulses.” Physical Review Applied 6, no. 2 (2016): 024022.


Lu, Yao, Srivatsan Chakram, Ngainam Leung, Nathan Earnest, Ravi K. Naik, Ziwen Huang, Peter Groszkowski, Eliot Kapit, Jens Koch, and David I. Schuster. “Universal stabilization of a parametrically coupled qubit.” Physical review letters 119, no. 15 (2017): 150502.


Machnes, Shai, Elie Assémat, David Tannor, and Frank K. Wilhelm. “Tunable, flexible, and efficient optimization of control pulses for practical qubits.” Physical review letters 120, no. 15 (2018): 150401.


Malis̆, Momir, P. Kl Barkoutsos, Marc Ganzhorn, Stefan Filipp, Daniel J. Egger, Sara Bonella, and Ivano Tavernelli. “Local control theory for superconducting qubits.” Physical Review A 99, no. 5 (2019): 052316.


Marques, J. F., B. M. Varbanov, M. S. Moreira, Hany Ali, Nandini Muthusubramanian, Christos Zachariadis, Francesco Battistel et al. “Logical-qubit operations in an error-detecting surface code.” Nature Physics 18, no. 1 (2022): 80-86.


McConkey, T. G., J. H. Béjanin, C. T. Earnest, C. R. H. McRae, Z. Pagel, J. R. Rinehart, and M. Mariantoni. “Mitigating leakage errors due to cavity modes in a superconducting quantum computer.” Quantum Science and Technology 3, no. 3 (2018): 034004.


McDermott, R., and M. G. Vavilov. “Accurate qubit control with single flux quantum pulses.” Physical Review Applied 2, no. 1 (2014): 014007.


McDermott, R., M. G. Vavilov, B. L. T. Plourde, F. K. Wilhelm, P. J. Liebermann, O. A. Mukhanov, and T. A. Ohki. “Quantum-classical interface based on single flux quantum digital logic.” Quantum science and technology 3, no. 2 (2018): 024004.


McKay, David C., Christopher J. Wood, Sarah Sheldon, Jerry M. Chow, and Jay M. Gambetta. “Efficient Z gates for quantum computing.” Physical Review A 96, no. 2 (2017): 022330.


Mukhanov, Oleg A, A. Kirichenko, C. Howington, J. Walter, M. Hutchings, I. Vernik, D. Yohannes, K. Dodge, A. Ballard, B. L. T. Plourde, A. Opremcak, C.-H. Liu, R. McDermott, “Scalable Quantum Computing Infrastructure Based on Superconducting Electronics,” 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA (2019): 31.2.1-31.2.4.


Mukhanov, Oleg A. “Energy-efficient single flux quantum technology.” IEEE Transactions on Applied Superconductivity 21, no. 3 (2011): 760-769.


Mundada, Pranav, Gengyan Zhang, Thomas Hazard, and Andrew Houck. “Suppression of qubit crosstalk in a tunable coupling superconducting circuit.” Physical Review Applied 12, no. 5 (2019): 054023.


Murch, K. W., S. J. Weber, Christopher Macklin, and Irfan Siddiqi. “Observing single quantum trajectories of a superconducting quantum bit.” Nature 502, no. 7470 (2013): 211-214.


Negîrneac, V., H. Ali, N. Muthusubramanian, F. Battistel, R. Sagastizabal, M. S. Moreira, J. F. Marques, W. J. Vlothuizen, M. Beekman, C. Zachariadis, N. Haider, A. Bruno, and L. DiCarlo, “High-fidelity controlled-Z gate with maximal intermediate leakage operating at the speed limit in a superconducting quantum processor,” Phys. Rev. Letters 126 (2021): 220502.


Nguyen, Long Bao. “Toward the Fluxonium Quantum Processor.” PhD diss., University of Maryland, College Park, 2020.


Niskanen, A. O., K. Harrabi, F. Yoshihara, Y. Nakamura, S. Lloyd, and Jaw Shen Tsai. “Quantum coherent tunable coupling of superconducting qubits.” Science 316, no. 5825 (2007): 723-726.


Ohki, Thomas A., Michael Wulf, and Marc J. Feldman. “Low-Jc rapid single flux quantum (RSFQ) qubit control circuit.” IEEE transactions on applied superconductivity 17, no. 2 (2007): 154-157.


Patra, Bishnu, Jeroen P G van Dijk, Sushil Subramanian, Andrea Coma, Xiao Xue, Charles Jeon, Farhana Sheikh et al. “19.1 a scalable cryo-CMOS 2-to-20 GHz digitally intensive controller for 4×32 frequency multiplexed spin qubits/transmons in 22 nm FinFET technology for quantum computers.” In 2020 IEEE International Solid-State Circuits Conference-(ISSCC), pp. 304-306. IEEE, 2020.


Pezzagna, Sébastien, and Jan Meijer. “Quantum computer based on color centers in diamond.” Applied Physics Reviews 8, no. 1 (2021): 011308.


Rol, M. A., F. Battistel, F. K. Malinowski, C. C. Bultink, B. M. Tarasinski, R. Vollmer, N. Haider et al. “A fast, low-leakage, high-fidelity two-qubit gate for a programmable superconducting quantum computer.” arXiv preprint arXiv:1903.02492 (2019).


Schrade, Constantin, and Liang Fu. “Majorana superconducting qubit.” Physical Review Letters 121, no. 26 (2018): 267002.


Sete, Eyob A., Matthew J. Reagor, Nicolas Didier, and Chad T. Rigetti. “Charge- and flux-insensitive tunable superconducting qubit.” Physical Review Applied 8, no. 2 (2017): 024004.


Sheldon, Sarah, Easwar Magesan, Jerry M. Chow, and Jay M. Gambetta. “Procedure for systematically tuning up cross-talk in the cross-resonance gate.” Physical Review A 93, no. 6 (2016): 060302.


Sirois, Adam, Manuel Castellanos-Beltran, Anna Fox, Samuel Benz, and Peter Hopkins. “Josephson Microwave Sources Applied to Quantum Information Systems.” IEEE Transactions on Quantum Engineering (2020).


Song, Chao, Kai Xu, Hekang Li, Yu-Ran Zhang, Xu Zhang, Wuxin Liu, Qiujiang Guo et al. “Generation of multicomponent atomic Schrödinger cat states of up to 20 qubits.” Science 365, no. 6453 (2019): 574-577.


Stassi, Roberto, Mauro Cirio, and Franco Nori. “Scalable quantum computer with superconducting circuits in the ultrastrong coupling regime.” npj Quantum Information 6, no. 1 (2020): 1-6.


Stenger, John, Gilad Ben-Shach, David Pekker, and Nicholas T. Bronn. “Simulating spectroscopic detection of Majorana zero modes with a superconducting quantum computer.” arXiv preprint arXiv:2202.12910 (2022).


Uilhoorn, Willemijntje. “Hybrid Josephson junction-based quantum devices in magnetic field.” (2021).


Versluis, Richard, Stefano Poletto, Nader Khammassi, Brian Tarasinski, Nadia Haider, David J. Michalak, Alessandro Bruno, Koen Bertels, and Leonardo DiCarlo. “Scalable quantum circuit and control for a superconducting surface code.” Physical Review Applied 8, no. 3 (2017): 034021.


Wang, Joel, Daniel Rodan Legrain, Charlotte Boettcher, Landry Bretheau, Daniel Campbell, Bharath Kannan, David Kim et al. “Quantum coherent control of graphene-based transmon qubit.” In APS March Meeting Abstracts, vol. 2019, pp. C29-010. 2019.


Wendin, Göran. “Quantum information processing with superconducting circuits: a review.” Reports on Progress in Physics 80, no. 10 (2017): 106001.


Xin, Tao, Shilin Huang, Sirui Lu, Keren Li, Zhihuang Luo, Zhangqi Yin, Jun Li, Dawei Lu, Guilu Long, and Bei Zeng. “NMRCloudQ: a quantum cloud experience on a nuclear magnetic resonance quantum computer.” Science Bulletin 63, no. 1 (2018): 17-23.


Yamanashi, Yuki, Takanobu Nishigai, and Nobuyuki Yoshikawa. “Study of LR-loading technique for low-power single flux quantum circuits.” IEEE Transactions on applied superconductivity 17, no. 2 (2007): 150-153.


Yoshikawa, Nobuyuki. “Superconducting digital electronics for controlling quantum computing systems.” IEICE Transactions on Electronics 102, no. 3 (2019): 217-223.


Zhang, Helin, Srivatsan Chakram, Tanay Roy, Nathan Earnest, Yao Lu, Ziwen Huang, Daniel Weiss, Jens Koch, and David I. Schuster, “Universal fast flux control of a coherent, low-frequency qubit,” Phys. Rev. X 11 (2021): 011010.


Zhang, Xian-Peng, Li-Tuo Shen, Zhang-Qi Yin, Luyan Sun, Huai-Zhi Wu, and Zhen-Biao Yang. “Multi-Resonator-Assisted Multi-Qubit Resetting in a Network.” arXiv preprint arXiv:1604.08393 (2016).


Zhou, Jian, Sai Li, Guo-Zhu Pan, Gang Zhang, Tao Chen, and Zheng-Yuan Xue. “Nonadiabatic geometric quantum gates that are insensitive to qubit-frequency drifts.” Physical Review A 103, no. 3 (2021): 032609.


Zhu, Daoquan, Tuomas Jaako, Qiongyi He, and Peter Rabl. “Quantum computing with superconducting circuits in the picosecond regime.” arXiv preprint arXiv:2101.05810 (2021).


See, U.S. Patent and Published Patent Application Nos.: U.S. Pat. Nos. 5,170,080; 5,233,242; 5,233,243; 5,289,400; 5,388,068; 5,389,837; 5,598,105; 5,629,889; 5,781,009; 5,793,055; 5,818,373; 5,936,458; 5,963,351; 5,982,219; 6,023,161; 6,175,749; 6,188,236; 6,217,165; 6,242,939; 6,315,200; 6,317,192; 6,331,805; 6,345,189; 6,345,190; 6,353,330; 6,356,715; 6,362,868; 6,362,869; 6,415,054; 6,431,669; 6,442,525; 6,459,097; 6,459,495; 6,476,863; 6,479,139; 6,486,694; 6,495,854; 6,504,172; 6,507,234; 6,509,853; 6,518,786; 6,526,491; 6,537,847; 6,542,645; 6,563,310; 6,563,311; 6,573,202; 6,576,951; 6,580,102; 6,605,822; 6,608,581; 6,614,047; 6,626,995; 6,627,915; 6,627,916; 6,630,426; 6,636,216; 6,649,929; 6,665,454; 6,670,630; 6,703,857; 6,724,216; 6,725,248; 6,728,131; 6,734,699; 6,750,901; 6,750,944; 6,753,546; 6,756,925; 6,773,836; 6,781,435; 6,784,451; 6,786,420; 6,788,336; 6,791,109; 6,797,341; 6,803,599; 6,809,734; 6,812,484; 6,813,056; 6,822,255; 6,826,662; 6,831,681; 6,838,694; 6,838,749; 6,850,274; 6,865,639; 6,879,341; 6,885,325; 6,897,468; 6,900,454; 6,900,456; 6,905,887; 6,909,109; 6,911,664; 6,917,537; 6,918,542; 6,919,579; 6,926,921; 6,930,318; 6,930,320; 6,936,841; 6,943,368; 6,946,428; 6,948,661; 6,960,780; 6,979,836; 6,984,846; 6,987,282; 7,002,174; 7,007,852; 7,015,499; 7,018,852; 7,042,005; 7,050,143; 7,073,713; 7,078,694; 7,083,108; 7,089,099; 7,090,889; 7,092,011; 7,093,104; 7,095,227; 7,097,104; 7,100,834; 7,103,460; 7,110,139; 7,113,967; 7,124,259; 7,129,870; 7,135,701; 7,139,882; 7,155,395; 7,187,404; 7,201,319; 7,230,266; 7,231,500; 7,233,421; 7,233,998; 7,234,645; 7,236,998; 7,253,654; 7,268,576; 7,268,713; 7,280,623; 7,283,162; 7,287,702; 7,289,142; 7,289,156; 7,304,646; 7,307,275; 7,313,199; 7,313,467; 7,321,958; 7,332,738; 7,335,909; 7,360,102; 7,362,125; 7,362,971; 7,364,923; 7,365,663; 7,373,083; 7,377,706; 7,379,800; 7,386,687; 7,389,508; 7,391,435; 7,392,511; 7,395,411; 7,408,453; 7,409,570; 7,415,703; 7,418,283; 7,428,562; 7,428,619; 7,437,536; 7,439,208; 7,440,490; 7,443,719; 7,444,210; 7,444,525; 7,444,632; 7,453,492; 7,456,861; 7,457,939; 7,460,152; 7,461,931; 7,467,034; 7,468,630; 7,475,257; 7,475,825; 7,478,390; 7,483,050; 7,496,673; 7,496,917; 7,498,832; 7,502,928; 7,505,310; 7,508,230; 7,509,457; 7,511,744; 7,516,334; 7,516,456; 7,523,157; 7,524,045; 7,526,608; 7,527,288; 7,533,068; 7,546,405; 7,547,648; 7,549,145; 7,549,327; 7,550,759; 7,554,369; 7,559,472; 7,565,653; 7,570,075; 7,598,897; 7,602,423; 7,603,894; 7,605,600; 7,613,764; 7,613,765; 7,613,886; 7,614,053; 7,619,437; 7,624,088; 7,629,999; 7,630,802; 7,631,966; 7,639,035; 7,644,255; 7,650,210; 7,653,908; 7,654,626; 7,672,756; 7,676,683; 7,680,474; 7,680,972; 7,685,601; 7,687,938; 7,689,068; 7,689,783; 7,689,784; 7,689,814; 7,693,053; 7,693,626; 7,694,306; 7,698,473; 7,701,286; 7,701,506; 7,707,385; 7,714,605; 7,719,453; 7,720,982; 7,724,020; 7,724,083; 7,728,748; 7,730,456; 7,732,804; 7,733,253; 7,748,006; 7,749,922; 7,750,664; 7,760,080; 7,768,287; 7,772,871; 7,774,512; 7,782,077; 7,786,748; 7,786,786; 7,786,864; 7,788,192; 7,788,467; 7,800,395; 7,802,023; 7,805,756; 7,814,166; 7,816,940; 7,818,507; 7,818,724; 7,826,088; 7,829,377; 7,837,115; 7,843,209; 7,844,656; 7,847,615; 7,852,106; 7,858,966; 7,863,892; 7,868,645; 7,870,087; 7,875,876; 7,876,145; 7,876,248; 7,876,869; 7,877,333; 7,880,529; 7,880,594; 7,882,310; 7,882,379; 7,886,112; 7,889,096; 7,889,992; 7,893,708; 7,898,282; 7,899,852; 7,903,456; 7,911,265; 7,912,656; 7,917,667; 7,917,798; 7,920,102; 7,921,151; 7,924,313; 7,926,023; 7,928,875; 7,931,200; 7,932,514; 7,932,515; 7,936,395; 7,942,332; 7,944,253; 7,956,640; 7,958,371; 7,969,178; 7,969,805; 7,977,668; 7,982,646; 7,984,012; 7,984,965; 7,990,662; 7,991,013; 7,991,814; 7,999,813; 8,001,294; 8,001,377; 8,001,390; 8,001,592; 8,008,942; 8,008,991; 8,010,716; 8,018,244; 8,022,012; 8,024,084; 8,028,288; 8,028,292; 8,032,474; 8,035,540; 8,045,660; 8,050,648; 8,055,235; 8,055,318; 8,063,657; 8,068,151; 8,068,741; 8,073,808; 8,077,207; 8,089,286; 8,091,078; 8,098,179; 8,108,564; 8,130,880; 8,138,784; 8,138,880; 8,148,715; 8,159,313; 8,159,825; 8,169,231; 8,169,311; 8,175,995; 8,176,481; 8,179,133; 8,188,901; 8,190,548; 8,195,596; 8,195,726; 8,208,288; 8,219,871; 8,219,981; 8,224,639; 8,228,688; 8,234,103; 8,244,650; 8,244,662; 8,247,799; 8,249,540; 8,260,143; 8,260,144; 8,260,145; 8,271,805; 8,283,943; 8,284,585; 8,290,553; 8,291,485; 8,294,138; 8,301,104; 8,301,214; 8,312,529; 8,315,969; 8,321,866; 8,328,101; 8,332,924; 8,401,509; 8,401,600; 8,405,468; 8,416,109; 8,434,091; 8,437,168; 8,437,818; 8,441,329; 8,462,889; 8,494,993; 8,504,497; 8,508,280; 8,514,986; 8,521,117; 8,547,732; 8,549,521; 8,555,370; 8,565,345; 8,571,614; 8,582,687; 8,593,141; 8,604,944; 8,611,974; 8,618,799; 8,619,242; 8,627,444; 8,654,578; 8,655,828; 8,670,807; 8,686,751; 8,726,041; 8,735,964; 8,738,105; 8,744,541; 8,745,850; 8,748,196; 8,751,212; 8,755,220; 8,766,630; 8,769,495; 8,772,759; 8,786,476; 8,787,873; 8,804,358; 8,811,536; 8,812,066; 8,841,764; 8,854,074; 8,861,619; 8,867,931; 8,872,360; 8,872,690; 8,874,629; 8,892,857; 8,922,239; 8,928,391; 8,933,695; 8,936,196; 8,937,255; 8,951,808; 8,970,217; 8,971,977; 8,975,912; 8,977,223; 8,977,576; 8,986,646; 9,015,215; 9,020,079; 9,020,362; 9,021,011; 9,026,574; 9,040,959; 9,041,427; 9,058,164; 9,059,674; 9,059,707; 9,065,452; 9,069,928; 9,072,894; 9,077,577; 9,129,224; 9,130,116; 9,134,047; 9,152,923; 9,152,924; 9,160,593; 9,162,881; 9,170,278; 9,178,154; 9,183,051; 9,183,508; 9,192,085; 9,203,654; 9,207,672; 9,208,446; 9,218,567; 9,235,811; 9,240,773; 9,252,825; 9,252,986; 9,256,834; 9,261,573; 9,270,385; 9,275,011; 9,276,615; 9,312,878; 9,312,895; 9,331,875; 9,335,385; 9,344,069; 9,344,092; 9,350,460; 9,355,364; 9,355,365; 9,361,169; 9,369,133; 9,379,303; 9,384,827; 9,385,293; 9,385,294; 9,396,440; 9,400,499; 9,401,823; 9,405,876; 9,406,026; 9,412,074; 9,424,526; 9,425,377; 9,425,804; 9,425,838; 9,432,024; 9,437,800; 9,438,246; 9,455,391; 9,460,397; 9,461,588; 9,471,880; 9,473,124; 9,476,950; 9,490,296; 9,495,644; 9,501,747; 9,501,748; 9,503,063; 9,503,258; 9,509,274; 9,509,315; 9,514,415; 9,520,180; 9,524,470; 9,531,671; 9,537,575; 9,547,826; 9,548,878; 9,552,862; 9,554,303; 9,559,284; 9,565,045; 9,577,690; 9,588,191; 9,588,940; 9,594,726; 9,595,969; 9,607,270; 9,614,532; 9,618,591; 9,627,045; 9,633,314; 9,641,372; 9,647,194; 9,647,662; 9,661,596; 9,663,358; 9,665,539; 9,680,452; 9,685,935; 9,686,112; 9,692,423; 9,697,473; 9,699,266; 9,703,516; 9,710,586; 9,710,758; 9,712,238; 9,727,527; 9,727,823; 9,727,824; 9,735,776; 9,741,918; 9,741,920; 9,742,429; 9,747,968; 9,748,937; 9,748,976; 9,753,102; 9,755,133; 9,761,305; 9,768,371; 9,768,771; 9,779,360; 9,780,765; 9,787,312; 9,793,913; 9,793,933; 9,806,711; 9,812,836; 9,818,064; 9,836,699; 9,838,051; 9,853,645; 9,859,981; 9,865,648; 9,870,277; 9,875,215; 9,875,444; 9,881,256; 9,882,112; 9,887,000; 9,892,365; 9,906,191; 9,906,248; 9,909,460; 9,917,580; 9,922,289; 9,928,948; 9,929,978; 9,935,252; 9,940,586; 9,948,254; 9,953,268; 9,953,269; 9,966,720; 9,971,970; 9,978,020; 9,978,809; 9,982,935; 9,984,333; 9,991,864; 9,996,801; 9,998,122; 9,998,187; 10,002,107; 10,013,657; 10,014,859; 10,020,438; 10,031,887; 10,037,493; 10,042,805; 10,044,638; 10,050,630; 10,051,591; 10,056,540; 10,056,908; 10,062,828; 10,062,829; 10,068,180; 10,068,181; 10,074,056; 10,074,792; 10,074,793; 10,097,186; 10,097,221; 10,097,281; 10,103,730; 10,108,071; 10,121,754; 10,122,350; 10,122,351; 10,127,500; 10,128,878; 10,133,984; 10,134,972; 10,140,248; 10,140,404; 10,141,493; 10,141,928; 10,147,865; 10,148,360; 10,157,842; 10,158,343; 10,164,606; 10,168,501; 10,169,714; 10,170,680; 10,170,681; 10,171,077; 10,171,086; 10,176,432; 10,177,297; 10,177,749; 10,187,065; 10,192,168; 10,193,729; 10,197,497; 10,199,553; 10,210,460; 10,222,416; 10,224,475; 10,229,355; 10,229,366; 10,230,038; 10,230,389; 10,230,558; 10,235,634; 10,235,635; 10,236,432; 10,236,869; 10,242,968; 10,243,132; 10,255,557; 10,256,206; 10,262,276; 10,262,727; 10,263,170; 10,268,622; 10,268,968; 10,275,422; 10,275,556; 10,275,718; 10,276,771; 10,276,772; 10,281,278; 10,282,675; 10,283,693; 10,283,694; 10,289,960; 10,290,798; 10,291,227; 10,304,004; 10,304,005; 10,305,015; 10,311,369; 10,318,880; 10,318,881; 10,319,896; 10,320,331; 10,320,383; 10,326,526; 10,332,023; 10,332,024; 10,333,046; 10,333,047; 10,333,048; 10,333,049; 10,333,503; 10,340,438; 10,345,678; 10,346,348; 10,346,349; 10,346,508; 10,346,760; 10,346,761; 10,348,245; 10,348,343; 10,352,992; 10,353,844; 10,354,198; 10,355,193; 10,355,677; 10,355,681; 10,366,340; 10,367,132; 10,367,133; 10,373,928; 10,374,612; 10,379,420; 10,380,494; 10,380,495; 10,380,496; 10,381,206; 10,381,541; 10,381,542; 10,382,132; 10,389,336; 10,396,269; 10,396,782; 10,396,801; 10,398,031; 10,403,808; 10,403,809; 10,404,214; 10,411,321; 10,411,804; 10,417,574; 10,418,540; 10,423,888; 10,424,711; 10,424,712; 10,424,713; 10,452,991; 10,453,894; 10,454,015; 10,454,016; 10,454,459; 10,460,796; 10,461,385; 10,467,543; 10,467,544; 10,467,545; 10,468,578; 10,468,740; 10,475,983; 10,482,388; 10,483,980; 10,488,469; 10,489,477; 10,490,600; 10,491,178; 10,491,221; 10,496,933; 10,496,934; 10,497,853; 10,502,802; 10,504,842; 10,505,097; 10,505,524; 10,509,084; 10,510,015; 10,510,943; 10,511,276; 10,516,486; 10,528,885; 10,528,886; 10,528,887; 10,529,003; 10,530,435; 10,535,013; 10,535,809; 10,540,603; 10,540,604; 10,541,659; 10,546,992; 10,546,993; 10,547,160; 10,552,755; 10,552,756; 10,552,757; 10,553,775; 10,554,207; 10,560,076; 10,560,103; 10,565,515; 10,567,100; 10,572,816; 10,573,093; 10,578,891; 10,586,908; 10,586,909; 10,586,911; 10,593,858; 10,593,879; 10,599,988; 10,599,990; 10,601,623; 10,614,372; 10,615,223; 10,615,783; 10,616,025; 10,621,140; 10,621,502; 10,622,032; 10,622,977; 10,622,998; 10,628,752; 10,628,753; 10,629,978; 10,630,326; 10,635,988; 10,635,989; 10,635,990; 10,637,142; 10,637,449; 10,637,479; 10,643,143; 10,644,217; 10,644,809; 10,650,319; 10,650,320; 10,650,322; 10,650,323; 10,651,361; 10,651,808; 10,657,198; 10,657,455; 10,657,456; 10,658,424; 10,659,018; 10,659,075; 10,665,635; 10,665,701; 10,665,769; 10,665,918; 10,666,238; 10,671,559; 10,671,937; 10,680,617; 10,686,007; 10,686,115; 10,691,633; 10,692,010; 10,693,566; 10,700,256; 10,700,257; 10,705,163; 10,706,366; 10,707,402; 10,707,812; 10,707,873; 10,708,046; 10,712,408; 10,713,584; 10,715,083; 10,719,775; 10,719,776; 10,720,562; 10,720,563; 10,720,887; 10,725,131; 10,725,361; 10,726,351; 10,726,353; 10,735,003; 10,740,688; 10,741,742; 10,748,078; 10,748,079; 10,748,082; 10,748,960; 10,748,961; 10,749,095; 10,749,096; 10,755,190; 10,755,194; 10,755,775; 10,756,004; 10,756,712; 10,763,420; 10,769,545; 10,769,546; 10,770,638; 10,775,173; 10,776,709; 10,784,432; 10,789,123; 10,789,329; 10,789,541; 10,790,566; 10,797,684; 10,803,396; 10,804,874; 10,809,177; 10,810,506; 10,810,507; 10,811,276; 10,811,588; 10,813,219; 10,817,463; 10,817,796; 10,819,281; 10,826,845; 10,832,155; 10,832,156; 10,833,016; 10,833,121; 10,833,242; 10,833,243; 10,833,680; 10,839,305; 10,839,306; 10,840,295; 10,847,705; 10,847,706; 10,852,346; 10,852,366; 10,858,239; 10,858,240; 10,862,465; 10,868,540; 10,872,021; 10,879,202; 10,879,446; 10,879,906; 10,884,033; 10,885,459; 10,886,049; 10,886,454; 10,886,585; 10,887,013; 10,891,554; 10,891,555; 10,892,725; 10,892,751; 10,897,069; 10,901,062; 10,903,411; 10,903,809; 10,914,969; 10,915,832; 10,916,690; 10,916,821; 10,917,096; 10,922,381; 10,922,617; 10,922,619; 10,924,095; 10,927,076; 10,929,576; 10,931,267; 10,937,941; 10,938,346; 10,942,804; 10,943,180; 10,944,362; 10,949,769; 10,950,299; 10,950,654; 10,950,778; 10,956,267; 10,957,841; 10,958,253; 10,958,274; 10,964,997; 10,969,443; 10,971,672; 10,978,425; 10,978,632; 10,984,335; 10,984,336; 10,985,308; 10,985,701; 10,985,739; 10,989,767; 10,990,017; 10,991,755; 10,992,106; 10,996,979; 10,998,869; 11,004,009; 11,005,023; 11,005,024; 11,006,527; 11,010,145; 11,010,686; 11,011,693; 11,012,960; 11,017,310; 11,018,290; 11,033,981; 11,037,068; 11,038,095; 11,049,037; 11,050,009; 11,050,010; 11,055,627; 11,056,583; 11,063,201; 11,069,790; 11,070,210; 11,075,435; 11,088,679; 11,095,489; 11,100,418; 11,105,866; 11,106,980; 11,106,993; 11,108,120; 11,108,380; 11,108,398; 11,112,442; 11,112,842; 11,115,011; 11,115,012; 11,115,027; 11,115,131; 11,119,385; 11,120,357; 11,121,239; 11,121,301; 11,121,302; 11,126,062; 11,126926; 11,127,892; 11,128,045; 11,133,450; 11,133,451; 11,138,354; 11,139,424; 11,152,707; 11,157827; 11,163,209; 11,164,100; 11,164,102; 11,164,103; 11,164,104; 11,169,801; 11,170,317; 11,170318; 11,170,846; 11,177,428; 11,177,912; 11,178,771; 11,182,230; 11,182,690; 11,183,989; 11,188843; 11,194,573; 11,194,659; 11,197,365; 11,200,508; 11,210,600; 11,210,601; 11,210,602; 11,211482; 11,218,471; 11,223,005; 11,223,355; 11,240,223; 11,245,389; 11,245,390; 11,245,486; 11,245519; 11,258,415; 11,264,089; 11,264,554; 11,271,280; 11,271,533; 11,281,524; 11,283,002; 11,283445; 11,288,121; 11,289,156; 11,289,639; 11,293,851; 11,294,986; 11,300,853; 11,301,770; 11,302856; 11,303,281; 11,307,242; 11,308,416; 11,309,478; 11,317,519; 11,320,588; 11,321,627; 11,329638; 11,334,811; 11,341,426; 11,342,493; 11,342,905; 20010020701; 20010023943; 20010025012; 20010035524; 20010040447; 20010055669; 20010055775; 20020060635; 20020066936; 20020075057; 20020095765; 20020097047; 20020102674; 20020105948; 20020115571; 20020117467; 20020117656; 20020117738; 20020118903; 20020119243; 20020119805; 20020121636; 20020128156; 20020130313; 20020130315; 20020135582; 20020138637; 20020138701; 20020138707; 20020152810; 20020156993; 20020169079; 20020177529; 20020177769; 20020179937; 20020179939; 20020188578; 20020189533; 20020190381; 20030005010; 20030011398; 20030016010; 20030016069; 20030017949; 20030027724; 20030028338; 20030034794; 20030038285; 20030039138; 20030040440; 20030042481; 20030054960; 20030057441; 20030058026; 20030068832; 20030071246; 20030071258; 20030076251; 20030077224; 20030094606; 20030098455; 20030102470; 20030107033; 20030111659; 20030111661; 20030115401; 20030117496; 20030121028; 20030134089; 20030141868; 20030146429; 20030146430; 20030146746; 20030169041; 20030169142; 20030173498; 20030173997; 20030179831; 20030183935; 20030189203; 20030193097; 20030199395; 20030207766; 20030207767; 20030219911; 20030224944; 20030229765; 20030230732; 20040000666; 20040004129; 20040004698; 20040008262; 20040012388; 20040012407; 20040014077; 20040016883; 20040016918; 20040022332; 20040027125; 20040041018; 20040056105; 20040065738; 20040075747; 20040077503; 20040080620; 20040090553; 20040095803; 20040098443; 20040099861; 20040104410; 20040119061; 20040119827; 20040120299; 20040125209; 20040125212; 20040126304; 20040129789; 20040130311; 20040134967; 20040135139; 20040140537; 20040145366; 20040150458; 20040151321; 20040154704; 20040165454; 20040167036; 20040170047; 20040173787; 20040173792; 20040173793; 20040183914; 20040201400; 20040215931; 20040220057; 20040223380; 20040232405; 20040232912; 20040234785; 20040239319; 20040266497; 20040266627; 20050001209; 20050023518; 20050029512; 20050035368; 20050040843; 20050043185; 20050045869; 20050045872; 20050047245; 20050052181; 20050057248; 20050062131; 20050071404; 20050071513; 20050071526; 20050071578; 20050071651; 20050071828; 20050074220; 20050078022; 20050078117; 20050081181; 20050081182; 20050081201; 20050081202; 20050081203; 20050081209; 20050081213; 20050082519; 20050086655; 20050088174; 20050091473; 20050092849; 20050095011; 20050097231; 20050097280; 20050097302; 20050098773; 20050101489; 20050106313; 20050107262; 20050109879; 20050116204; 20050116719; 20050120185; 20050120187; 20050120254; 20050122399; 20050123674; 20050134262; 20050138325; 20050143791; 20050145701; 20050146613; 20050146614; 20050149002; 20050149169; 20050151819; 20050160097; 20050162302; 20050171421; 20050179781; 20050180095; 20050185198; 20050185461; 20050188372; 20050188373; 20050192727; 20050197254; 20050202572; 20050206376; 20050215436; 20050216222; 20050216775; 20050218236; 20050224784; 20050228967; 20050231196; 20050241394; 20050243708; 20050247793; 20050250651; 20050251659; 20050251667; 20050255680; 20050256007; 20050258248; 20050268038; 20050268048; 20050273652; 20060022671; 20060025897; 20060038821; 20060049891; 20060050286; 20060055782; 20060056728; 20060069879; 20060072030; 20060075397; 20060076423; 20060079402; 20060091881; 20060092957; 20060093861; 20060095220; 20060097746; 20060097747; 20060104889; 20060107122; 20060112213; 20060126770; 20060129786; 20060129999; 20060143509; 20060145694; 20060147154; 20060148514; 20060149861; 20060151775; 20060155792; 20060155955; 20060155964; 20060158519; 20060161741; 20060164081; 20060176054; 20060177122; 20060179179; 20060179198; 20060179255; 20060179275; 20060179277; 20060179278; 20060179436; 20060180371; 20060186881; 20060190614; 20060190942; 20060195824; 20060206731; 20060206732; 20060212193; 20060212194; 20060212643; 20060214012; 20060220641; 20060225165; 20060231627; 20060234419; 20060237660; 20060243043; 20060244581; 20060247131; 20060248618; 20060251070; 20060255987; 20060259733; 20060259743; 20060270173; 20060275958; 20060284839; 20060290553; 20070005202; 20070007956; 20070011023; 20070018643; 20070038067; 20070046955; 20070049097; 20070052441; 20070057781; 20070069339; 20070075729; 20070075752; 20070075919; 20070077906; 20070080341; 20070083870; 20070085534; 20070096565; 20070096730; 20070114994; 20070116629; 20070126561; 20070139216; 20070156312; 20070156320; 20070158791; 20070167723; 20070168538; 20070174227; 20070176625; 20070180041; 20070180586; 20070186077; 20070194225; 20070194958; 20070197900; 20070201845; 20070201846; 20070205881; 20070212794; 20070236245; 20070240013; 20070241746; 20070241747; 20070254375; 20070258329; 20070263432; 20070277000; 20070283103; 20070288701; 20070293160; 20080001599; 20080024126; 20080024642; 20080040805; 20080047367; 20080048762; 20080048902; 20080049885; 20080051291; 20080051292; 20080052055; 20080052504; 20080065290; 20080065573; 20080074110; 20080074113; 20080077721; 20080077815; 20080084898; 20080086240; 20080086438; 20080091886; 20080098260; 20080100175; 20080101444; 20080101501; 20080101503; 20080103708; 20080107213; 20080108503; 20080109500; 20080112313; 20080116448; 20080116449; 20080122434; 20080126601; 20080129475; 20080146449; 20080155203; 20080156406; 20080162613; 20080162834; 20080162877; 20080165254; 20080168443; 20080176750; 20080186064; 20080209156; 20080215850; 20080216567; 20080218519; 20080229143; 20080231353; 20080235679; 20080238531; 20080250414; 20080256275; 20080258753; 20080260257; 20080271003; 20080274898; 20080276232; 20080279370; 20080282063; 20080282084; 20080282093; 20080282341; 20080282342; 20080284413; 20080284575; 20080290938; 20080297230; 20080301695; 20080313114; 20080313430; 20090002014; 20090008632; 20090014714; 20090015317; 20090031412; 20090033369; 20090034657; 20090043441; 20090057652; 20090068355; 20090070402; 20090072828; 20090073017; 20090075825; 20090077001; 20090078931; 20090078932; 20090082209; 20090086533; 20090102580; 20090121215; 20090122508; 20090125717; 20090135215; 20090135232; 20090143665; 20090153180; 20090153381; 20090167342; 20090168286; 20090173936; 20090189633; 20090192041; 20090206871; 20090227044; 20090232191; 20090232507; 20090232510; 20090233798; 20090237106; 20090241013; 20090242636; 20090244215; 20090244292; 20090244958; 20090256561; 20090259905; 20090261319; 20090267635; 20090274609; 20090289638; 20090299947; 20090302844; 20090319757; 20090321720; 20090322374; 20090324484; 20100006825; 20100026447; 20100026537; 20100033206; 20100033252; 20100066576; 20100079600; 20100085827; 20100091116; 20100094796; 20100097056; 20100102904; 20100109638; 20100109669; 20100133514; 20100148841; 20100148853; 20100149011; 20100164536; 20100170951; 20100176840; 20100182039; 20100194466; 20100207622; 20100207657; 20100207754; 20100237899; 20100239489; 20100281885; 20100301855; 20100301856; 20100301857; 20100303731; 20100303733; 20100306142; 20100312969; 20100315516; 20100327861; 20100327865; 20100329401; 20100329962; 20100330704; 20110004930; 20110009274; 20110010412; 20110018612; 20110022820; 20110031994; 20110047201; 20110049475; 20110054236; 20110054450; 20110054876; 20110055520; 20110057169; 20110060710; 20110060711; 20110060780; 20110063016; 20110065585; 20110065586; 20110068789; 20110085381; 20110087909; 20110089405; 20110098623; 20110102068; 20110122261; 20110125460; 20110133770; 20110152104; 20110167241; 20110175061; 20110175062; 20110175628; 20110210738; 20110231462; 20110238607; 20110241765; 20110254583; 20110267878; 20110278355; 20110285393; 20110288823; 20110298489; 20110302591; 20110303153; 20120005456; 20120012818; 20120019242; 20120023053; 20120030386; 20120042372; 20120045136; 20120053059; 20120088674; 20120089299; 20120094838; 20120096873; 20120108434; 20120112168; 20120135867; 20120144159; 20120157319; 20120157321; 20120172233; 20120184445; 20120187378; 20120187872; 20120210111; 20120212375; 20120215821; 20120225411; 20120238860; 20120252678; 20120254586; 20120258861; 20120265718; 20120266174; 20120274494; 20120278057; 20120294424; 20120302446; 20120314490; 20120319684; 20120320668; 20120324563; 20120324564; 20120326130; 20120326720; 20120328301; 20130004180; 20130005580; 20130007087; 20130009677; 20130015885; 20130038330; 20130040818; 20130043945; 20130079230; 20130096825; 20130117200; 20130144925; 20130186953; 20130190185; 20130196855; 20130201316; 20130221960; 20130231249; 20130233077; 20130245402; 20130258595; 20130271142; 20130272453; 20130278265; 20130278283; 20130282636; 20130303379; 20130313526; 20130324832; 20140000630; 20140025606; 20140050475; 20140056385; 20140089374; 20140097405; 20140113828; 20140167811; 20140167836; 20140175380; 20140187427; 20140203838; 20140223224; 20140228222; 20140229705; 20140229722; 20140232400; 20140235450; 20140245249; 20140245314; 20140246763; 20140249033; 20140250288; 20140253111; 20140264285; 20140286465; 20140296076; 20140303931; 20140314419; 20140315723; 20140324933; 20140329687; 20140343397; 20140344322; 20140354326; 20140368234; 20150006443; 20150028970; 20150032991; 20150032993; 20150032994; 20150043273; 20150046681; 20150055961; 20150070131; 20150078290; 20150087945; 20150092465; 20150094207; 20150111754; 20150119252; 20150119253; 20150125155; 20150143817; 20150146805; 20150146806; 20150161524; 20150178432; 20150179913; 20150179914; 20150179915; 20150179916; 20150179918; 20150184286; 20150187840; 20150195248; 20150205759; 20150212166; 20150219730; 20150229343; 20150241481; 20150242758; 20150254571; 20150262073; 20150263736; 20150269124; 20150288476; 20150288542; 20150300719; 20150310350; 20150318095; 20150332164; 20150346291; 20150349780; 20150357550; 20150358022; 20150363708; 20150372217; 20150379418; 20160012346; 20160012347; 20160012882; 20160013791; 20160019468; 20160023906; 20160028402; 20160028403; 20160032904; 20160034609; 20160035404; 20160036612; 20160042294; 20160044647; 20160045841; 20160065693; 20160071021; 20160071903; 20160079968; 20160080189; 20160085616; 20160087599; 20160093420; 20160103192; 20160112031; 20160127073; 20160132785; 20160139213; 20160148112; 20160149111; 20160154068; 20160156357; 20160164505; 20160191060; 20160197628; 20160221825; 20160233405; 20160233860; 20160233965; 20160248582; 20160254434; 20160267032; 20160267964; 20160276570; 20160283857; 20160292586; 20160292587; 20160296145; 20160308502; 20160314407; 20160321559; 20160335558; 20160335559; 20160351306; 20160364653; 20160371227; 20160380636; 20170000375; 20170012862; 20170017742; 20170017894; 20170026095; 20170038123; 20170039481; 20170045592; 20170045800; 20170061317; 20170062107; 20170069367; 20170069415; 20170070290; 20170071082; 20170072504; 20170077381; 20170077382; 20170077665; 20170078400; 20170085231; 20170086281; 20170089961; 20170091647; 20170091649; 20170091650; 20170098682; 20170104491; 20170104493; 20170104695; 20170116159; 20170116542; 20170117901; 20170117994; 20170123171; 20170133336; 20170133576; 20170133577; 20170134091; 20170141286; 20170141287; 20170141769; 20170146618; 20170162778; 20170163301; 20170168123; 20170177534; 20170177751; 20170178017; 20170178018; 20170179973; 20170184689; 20170186934; 20170186935; 20170193388; 20170199036; 20170201224; 20170212860; 20170213143; 20170228483; 20170229167; 20170229631; 20170229632; 20170229633; 20170230050; 20170237144; 20170237594; 20170241953; 20170250796; 20170255629; 20170255871; 20170255872; 20170262765; 20170265158; 20170265287; 20170276827; 20170286859; 20170294965; 20170295048; 20170296169; 20170296177; 20170296178; 20170296179; 20170296180; 20170296183; 20170296184; 20170296185; 20170296189; 20170296213; 20170300454; 20170300808; 20170300827; 20170301444; 20170316487; 20170317262; 20170323195; 20170324019; 20170329883; 20170331899; 20170337155; 20170343750; 20170344898; 20170345990; 20170351974; 20170359072; 20170366270; 20170373044; 20170373369; 20180005809; 20180005887; 20180012932; 20180013052; 20180013426; 20180019737; 20180025775; 20180026633; 20180032893; 20180033944; 20180034425; 20180034912; 20180040935; 20180054201; 20180062765; 20180067182; 20180069288; 20180069631; 20180076777; 20180090661; 20180091115; 20180091141; 20180091142; 20180091143; 20180091440; 20180092313; 20180101784; 20180101785; 20180101786; 20180101787; 20180102166; 20180102469; 20180102470; 20180107092; 20180114568; 20180118573; 20180123544; 20180124181; 20180131376; 20180137428; 20180137429; 20180137430; 20180138987; 20180145631; 20180145664; 20180145753; 20180150579; 20180150760; 20180150761; 20180157775; 20180164385; 20180188107; 20180196780; 20180198427; 20180211158; 20180218279; 20180218280; 20180218281; 20180219150; 20180225586; 20180226974; 20180226975; 20180232652; 20180232653; 20180232654; 20180232655; 20180240033; 20180240034; 20180240035; 20180246848; 20180247974; 20180248103; 20180248104; 20180260245; 20180260729; 20180260730; 20180260731; 20180260732; 20180261752; 20180262243; 20180267116; 20180267933; 20180275057; 20180276550; 20180277733; 20180278693; 20180278694; 20180285761; 20180287041; 20180294401; 20180294815; 20180300286; 20180301612; 20180301613; 20180308007; 20180308896; 20180309452; 20180314968; 20180314970; 20180322408; 20180323364; 20180330264; 20180330266; 20180330267; 20180331274; 20180335683; 20180336153; 20180337138; 20180337324; 20180341874; 20180342663; 20180343304; 20180348310; 20180350411; 20180350749; 20180351521; 20180359718; 20180365587; 20180366634; 20180373996; 20180375790; 20180375940; 20190005403; 20190006572; 20190007051; 20190013065; 20190019098; 20190019099; 20190019938; 20190027672; 20190034819; 20190036515; 20190042264; 20190042962; 20190042963; 20190042964; 20190042967; 20190042968; 20190042970; 20190042971; 20190042972; 20190042973; 20190043822; 20190043919; 20190044044; 20190044046; 20190044047; 20190044051; 20190044668; 20190049495; 20190058105; 20190065981; 20190065982; 20190073439; 20190079145; 20190081629; 20190082997; 20190087385; 20190095811; 20190098090; 20190102691; 20190104614; 20190109273; 20190109904; 20190122133; 20190123743; 20190123744; 20190131511; 20190131683; 20190131944; 20190147359; 20190149139; 20190156237; 20190156238; 20190158098; 20190164077; 20190164959; 20190165239; 20190165240; 20190165242; 20190165245; 20190165246; 20190173708; 20190182995; 20190187075; 20190188596; 20190188597; 20190190463; 20190190474; 20190204372; 20190204753; 20190205784; 20190207075; 20190207076; 20190207794; 20190212147; 20190214561; 20190214789; 20190214971; 20190215952; 20190220771; 20190227439; 20190228331; 20190228332; 20190229094; 20190229690; 20190236476; 20190237648; 20190237649; 20190238137; 20190245538; 20190245544; 20190251466; 20190252754; 20190259931; 20190266508; 20190266510; 20190266512; 20190267154; 20190267532; 20190267692; 20190270635; 20190273196; 20190273197; 20190288174; 20190288176; 20190288178; 20190288367; 20190294025; 20190294991; 20190296212; 20190296214; 20190296743; 20190302194; 20190303242; 20190303788; 20190305037; 20190305038; 20190305206; 20190317167; 20190317978; 20190321039; 20190324846; 20190324941; 20190326501; 20190332965; 20190337894; 20190339339; 20190341540; 20190341668; 20190343002; 20190343003; 20190347576; 20190348597; 20190354890; 20190362260; 20190362780; 20190363239; 20190363688; 20190369171; 20190370679; 20190370680; 20190372192; 20190378874; 20190385088; 20190385673; 20190391214; 20190392344; 20190392878; 20190393401; 20200000468; 20200005178; 20200005186; 20200006421; 20200006619; 20200006620; 20200006621; 20200007235; 20200008800; 20200012961; 20200018803; 20200023462; 20200027502; 20200028480; 20200028512; 20200033511; 20200036330; 20200036331; 20200036332; 20200036333; 20200044137; 20200044632; 20200044656; 20200046348; 20200049776; 20200050026; 20200050958; 20200050959; 20200050961; 20200052101; 20200052183; 20200052359; 20200057957; 20200058702; 20200062583; 20200064412; 20200065696; 20200074345; 20200075093; 20200075832; 20200075833; 20200075834; 20200078015; 20200081075; 20200081076; 20200082291; 20200083424; 20200090738; 20200091396; 20200091397; 20200091867; 20200099116; 20200104740; 20200106149; 20200106444; 20200106445; 20200111016; 20200111944; 20200112310; 20200115372; 20200116623; 20200118025; 20200118026; 20200119251; 20200119254; 20200119737; 20200120812; 20200125625; 20200127186; 20200127678; 20200134502; 20200134503; 20200136008; 20200136223; 20200136626; 20200138434; 20200138437; 20200142225; 20200144476; 20200144690; 20200145065; 20200152696; 20200152851; 20200152853; 20200152854; 20200156955; 20200160204; 20200161446; 20200161531; 20200162047; 20200162078; 20200166586; 20200167683; 20200167684; 20200167685; 20200169396; 20200176409; 20200176662; 20200183768; 20200184364; 20200186132; 20200193320; 20200204181; 20200206344; 20200210879; 20200215131; 20200219001; 20200220064; 20200220757; 20200226487; 20200227617; 20200234171; 20200234173; 20200235277; 20200242452; 20200242500; 20200242501; 20200242503; 20200243132; 20200243133; 20200244253; 20200250564; 20200250567; 20200250569; 20200250570; 20200251419; 20200257644; 20200258003; 20200259066; 20200259483; 20200264130; 20200264213; 20200265334; 20200266234; 20200272910; 20200272925; 20200272929; 20200274049; 20200274050; 20200274526; 20200274703; 20200274929; 20200278308; 20200278903; 20200279013; 20200279184; 20200279186; 20200279990; 20200280316; 20200280317; 20200280607; 20200284855; 20200284859; 20200285539; 20200287118; 20200287122; 20200287525; 20200287540; 20200287550; 20200287631; 20200293486; 20200293937; 20200293938; 20200294401; 20200294557; 20200299146; 20200301244; 20200301874; 20200311591; 20200320420; 20200320423; 20200320424; 20200320426; 20200321506; 20200321508; 20200327440; 20200327441; 20200328339; 20200333263; 20200334101; 20200334104; 20200334107; 20200335683; 20200342296; 20200342345; 20200344051; 20200349326; 20200349458; 20200349459; 20200350083; 20200350880; 20200352918; 20200356889; 20200356890; 20200358187; 20200359501; 20200362384; 20200363206; 20200364600; 20200364602; 20200365397; 20200371974; 20200372094; 20200373351; 20200373475; 20200379768; 20200380396; 20200381608; 20200381609; 20200393738; 20200394524; 20200394537; 20200394546; 20200394547; 20200395405; 20200395448; 20200401649; 20200401922; 20200401927; 20200403137; 20200403289; 20200410343; 20200410382; 20200411937; 20200411938; 20200412369; 20210004708; 20210005249; 20210013391; 20210013570; 20210018575; 20210019223; 20210019646; 20210019647; 20210021245; 20210026162; 20210027188; 20210028138; 20210028343; 20210028345; 20210028346; 20210033683; 20210034998; 20210035004; 20210035005; 20210036206; 20210036692; 20210043824; 20210047913; 20210056454; 20210056455; 20210057135; 20210057484; 20210057631; 20210064350; 20210065036; 20210066570; 20210067146; 20210068320; 20210072139; 20210073667; 20210073668; 20210075860; 20210075861; 20210081816; 20210083167; 20210083168; 20210083676; 20210085316; 20210085317; 20210085675; 20210089954; 20210091062; 20210091755; 20210099129; 20210099201; 20210103012; 20210103018; 20210104656; 20210110290; 20210110291; 20210110868; 20210111469; 20210114864; 20210116499; 20210117512; 20210117845; 20210119101; 20210125096; 20210132969; 20210133614; 20210133617; 20210133618; 20210139315; 20210142203; 20210142205; 20210142215; 20210143804; 20210143805; 20210151844; 20210157877; 20210159384; 20210167272; 20210175095; 20210182724; 20210182725; 20210182728; 20210184329; 20210190885; 20210193270; 20210202573; 20210208509; 20210218367; 20210226113; 20210226597; 20210226635; 20210230674; 20210232960; 20210232963; 20210233617; 20210233896; 20210234086; 20210234087; 20210247329; 20210255856; 20210256351; 20210256409; 20210257177; 20210257969; 20210257995; 20210263390; 20210264309; 20210265964; 20210271545; 20210272002; 20210279134; 20210279624; 20210279625; 20210280701; 20210280704; 20210280766; 20210281252; 20210288611; 20210294680; 20210296558; 20210296749; 20210302513; 20210304052; 20210304053; 20210304054; 20210305958; 20210313973; 20210325368; 20210326737; 20210326739; 20210326740; 20210334081; 20210336032; 20210336121; 20210336319; 20210341411; 20210341979; 20210342161; 20210342726; 20210342727; 20210342729; 20210343923; 20210350266; 20210350268; 20210351075; 20210357798; 20210359666; 20210359670; 20210365622; 20210367065; 20210374550; 20210374595; 20210384401; 20210384402; 20210384406; 20210384896; 20210390440; 20210390442; 20210391851; 20210391852; 20210399044; 20210399199; 20210399763; 20210406746; 20210408112; 20210408355; 20220003676; 20220004079; 20220011384; 20220012622; 20220014408; 20220019927; 20220019929; 20220020912; 20220021391; 20220028927; 20220029083; 20220036943; 20220045416; 20220045425; 20220051123; 20220052662; 20220057261; 20220058508; 20220059919; 20220065954; 20220076154; 20220083488; 20220083891; 20220083892; 20220083893; 20220084085; 20220085527; 20220087012; 20220087022; 20220092461; 20220092462; 20220094320; 20220094338; 20220094341; 20220094342; 20220101171; 20220103172; 20220115577; 20220116208; 20220121978; 20220121979; 20220123449; 20220129779; 20220131064; 20220135409; 20220136895; 20220137390; 20220138609; 20220138611; 20220140223; 20220140820; 20220140927; 20220146905; 20220147358; 20220147859; 20220149841; 20220156444; 20220156621; 20220164501; 20220164694; 202102580109; and 202103904449.


See Patent and Publication Nos.: AU-2002248800; AU-2003250608; AU-2004266178; AU-2005242881; AU-2007209712; AU-2008200506; AU-2012236227; AU-2012271422; AU-2012279307; AU-2014354845; AU-2015267491; AU-2015275326; AU-2015283229; AU-2015347258; AU-2015361113; AU-2015417667; AU-2015417766; AU-2016215234; AU-2016215236; AU-2016287262; AU-2016335554; AU-2016351374; AU-2016357098; AU-2016423167; AU-2016423191; AU-2016432064; AU-2016432315; AU-2017215201; AU-2017219169; AU-2017280880; AU-2017345039; AU-2017360505; AU-2017386234; AU-2017387796; AU-2017404530; AU-2017404536; AU-2017429630; AU-2017429631; AU-2017430443; AU-2017431392; AU-2017431764; AU-2017432161; AU-2017432809; AU-2017434905; AU-2017442682; AU-2017442703; AU-2017443043; AU-2017443044; AU-2018230440; AU-2018230642; AU-2018247327; AU-2018278348; AU-2018282100; AU-2018362084; AU-2018406532; AU-2018415721; AU-2018434686; AU-2019203536; AU-2019206299; AU-2019206300; AU-2019209295; AU-2019210496; AU-2019283688; AU-2019289070; AU-2019321613; AU-2019333268; AU-2019365240; AU-2019389858; AU-2019420732; AU-2019426405; AU-2019430032; AU-2019446426; AU-2020202779; AU-2020217399; AU-2020235374; AU-2020250769; AU-2020255132; AU-2020256387; AU-2020259653; AU-2020274007; AU-2020292425; AU-2020294362; AU-2020297857; AU-2020324398; AU-2020340968; AU-2020349591; AU-2020354489; AU-2020376131; AU-2021201028; AU-2021201029; AU-2021201519; AU-2021201695; AU-2021202981; AU-2021203130; AU-2021204723; AU-2021225173; AU-2021232777; AU-2021257928; AU-763277; CA-2225803-C; CA-2381109; CA-2396201; CA-2444659; CA-2448682; CA-2482792; CA-2493592; CA-2530942-C; CA-2637071; CA-2662604; CA-2662604-C; CA-2667640; CA-2667640-C; CA-2681147; CA-2751897; CA-2763134; CA-2765898; CA-2814865; CA-2836156; CA-2837896; CA-2849589; CA-2860516; CA-2868986; CA-2898598; CA-2898608; CA-2927326; CA-2931398; CA-2950133; CA-2953185; CA-2960483; CA-2968827; CA-2968830; CA-2974106; CA-2977662; CA-2977780; CA-2981493; CA-2987426; CA-2988829; CA-2996620; CA-2998363; CA-3003272; CA-3004750; CA-3008796; CA-3008825; CA-3009887; CA-3010686; CA-3012700; CA-3012853; CA-3026499; CA-3032557; CA-3034528; CA-3036054; CA-3036059; CA-3036478; CA-3036489; CA-3036501; CA-3036945; CA-3040583; CA-3043201; CA-3046173; CA-3046616; CA-3047541; CA-3049097; CA-3054796; CA-3056595; CA-3056596; CA-3058725; CA-3058731; CA-3065337; CA-3065859; CA-3074067; CA-3074121; CA-3074722; CA-3075163; CA-3075253; CA-3076182; CA-3076743; CA-3078581; CA-3080318; CA-3085717; CA-3085827; CA-3085866; CA-3085954; CA-3085955; CA-3086919; CA-3087071; CA-3087257; CA-3087539; CA-3088133; CA-3088135; CA-3088650; CA-3089263; CA-3090429; CA-3093134; CA-3093358; CA-3096026; CA-3096490; CA-3096897; CA-3101170; CA-3102199; CA-3102773; CA-3102866; CA-3103471; CA-3104518; CA-3109380; CA-3109599; CA-3109604; CA-3109643; CA-3112351; CA-3112444; CA-3112594; CA-3112596; CA-3114773; CA-3117223; CA-3125749; CA-3125824; CA-3125917; CA-3125986; CA-3127307; CA-3132092; CA-3132152; CA-3133917; CA-3135530; CA-3135532; CA-3137517; CA-3137657; CA-3139157; CA-3140970; CA-3141547; CA-3142865; CA-3143227; CA-3143363; CA-3143581; CA-3143661; CA-3143691; CA-3147698; CA-3147706; CA-3149305; CA-3150036; CA-3150374; CA-3151055; CA-3151510; CA-3154738; CN-100382014; CN-100409222; CN-100412848; CN-100419638; CN-100432956; CN-100451996; CN-100504790; CN-100524270; CN-100549984; CN-100555174; CN-100572590; CN-101040268; CN-101057223; CN-101080701; CN-101084505; CN-101091147; CN-101099140; CN-101099141; CN-101203939; CN-101326500; CN-101375302; CN-101401128; CN-101615233; CN-101626233; CN-101626234; CN-101657827; CN-101705469; CN-101838844; CN-102334206; CN-102449481; CN-102460196; CN-102687169; CN-102687476; CN-102959750; CN-103069421; CN-103451265; CN-103582949; CN-103781918; CN-104081464; CN-104576914; CN-104838590; CN-105190656; CN-105264680; CN-105814074; CN-105814856; CN-105914219; CN-105980615; CN-105984840; CN-106267902; CN-106461287; CN-106575667; CN-106662707; CN-106664194; CN-106767944; CN-106953000; CN-107004755; CN-107075559; CN-107251435; CN-107302512; CN-107393941; CN-107580752; CN-107636699; CN-107704649; CN-107924490; CN-107925146; CN-107980145; CN-107994307; CN-108028293; CN-108108151; CN-108259014; CN-108290733; CN-108342385; CN-108349725; CN-108352841; CN-108475353; CN-108778345; CN-108780119; CN-108780129; CN-108796058; CN-109075186; CN-109238775; CN-109285760; CN-109313725; CN-109314174; CN-109376870; CN-109389223; CN-109450555; CN-109477061; CN-109508303; CN-109626323; CN-109643710; CN-109643730; CN-109685216; CN-109715802; CN-109716650; CN-109764960; CN-109783054; CN-109791944; CN-109792840; CN-109804477; CN-109841645; CN-109844637; CN-109844642; CN-109845107; CN-109863249; CN-109874327; CN-109889318; CN-109891252; CN-109891591; CN-109997156; CN-110024146; CN-110024282; CN-110024292; CN-110034228; CN-110050383; CN-110069238; CN-110073375; CN-1101083-C; CN-110176532; CN-110235150; CN-110249343; CN-110257430; CN-110289256; CN-110289312; CN-110311662; CN-110383303; CN-110383485; CN-110402446; CN-110431568; CN-110462836; CN-110472740; CN-110494998; CN-110520873; CN-110622297; CN-110646503; CN-110692067; CN-110709934; CN-110739010; CN-110741391; CN-110945536; CN-110998853; CN-111033773; CN-111049503; CN-111095306; CN-111095307; CN-111095584; CN-111108687; CN-111133459; CN-111149439; CN-111164618; CN-111180848; CN-111183434; CN-111213280; CN-111213281; CN-111247741; CN-111260066; CN-111260068; CN-111328432; CN-111344875; CN-111344896; CN-111417966; CN-111417967; CN-111427810; CN-111460749; CN-111465947; CN-111465948; CN-111480170; CN-111523672; CN-111542842; CN-111542935; CN-111598248; CN-111613716; CN-111630531; CN-111656374; CN-111712842; CN-111723936; CN-111725382; CN-111727248; CN-111755587; CN-111788588; CN-111868755; CN-111868756; CN-111868757; CN-111902358; CN-111903057; CN-111914500; CN-111914507; CN-111950215; CN-111950216; CN-111967603; CN-111969100; CN-112114875; CN-112116094; CN-112149832; CN-112236785; CN-112262398; CN-112313677; CN-112313796; CN-112331693; CN-112368721; CN-112368940; CN-112385140; CN-112397862; CN-112400178; CN-112444715; CN-112449704; CN-112514158; CN-112514246; CN-112534448; CN-112567397; CN-112585627; CN-112602205; CN-112633506; CN-112640200; CN-112654970; CN-112673486; CN-112771553; CN-112771717; CN-112789629; CN-112819170; CN-112823361; CN-112861463; CN-112868135; CN-112930491; CN-112949229; CN-112956129; CN-112990468; CN-112990470; CN-113037294; CN-113056752; CN-113065301; CN-113095033; CN-113128165; CN-113128172; CN-113168579; CN-113168581; CN-113193311; CN-113206364; CN-113215326; CN-113255921; CN-113257552; CN-113261156; CN-113302631; CN-113328759; CN-113330465; CN-113361718; CN-113421600; CN-113424205; CN-113424441; CN-113449870; CN-113452326; CN-113454656; CN-113490731; CN-113516248; CN-113557666; CN-113627614; CN-113646779; CN-113646781; CN-113661502; CN-113725208; CN-113725349; CN-113826124; CN-113839644; CN-113853619; CN-113890513; CN-113906449; CN-113934680; CN-113939833; CN-113987993; CN-114021519; CN-114077897; CN-114122249; CN-114127900; CN-114175058; CN-114175059; CN-114186516; CN-114200282; CN-114207630; CN-114221629; CN-114223003; CN-114239838; CN-114254754; CN-114296685; CN-114297976; CN-114335318; CN-114373635; CN-114386610; CN-114399054; CN-114429215; CN-114444703; CN-114450697; CN-114450698; CN-114497113; CN-114503019; CN-114503027; CN-114503431; CN-114514192; CN-114528806; CN-1189934; CN-1279469-C; CN-1279470-C; CN-1291327-C; CN-1292366-C; CN-1300723-C; CN-1494690; CN-1496511; CN-1496516; CN-1496517; CN-1496518; CN-1601468; CN-1601511; CN-1601512; CN-1806231; CN-1808400; CN-1811745; CN-1815438; CN-1834852; CN-1839093; CN-1890400; CN-1906576; CN-1906586; CN-1906587; CN-1910554; CN-1914600; CN-1938687; CN-1942858; CN-1989769; CN-201479114; CN-201667647; CN-207399151; CN-209930215; CN-209930216; CN-210327515; CN-211404707; CN-213069884; CN-213426111; CN-214378496; CN-215008192; CN-215186652; CN-215729853; CN-215895506; CN-216083004; CN-216083732; CN-216086610; CN-216134457; CN-216285581; CN-216286750; CN-216286751; DE-102004005243; DE-102008036993; DE-102009025716; DE-102010026098; DE-1020100260989; DE-102010053575; DE-102016204201; DE-102017129364; DE-102017129365; DE-102019101054; DE-102019104312; DE-102019112893; DE-102020007977; DE-102020122245; DE-102020125169; DE-102020125171; DE-102020125172; DE-102020125173; DE-102020125174; DE-102020125175; DE-102020125176; DE-102020125177; DE-102020125178; DE-102020125179; DE-102020125180; DE-102020125181; DE-102020125182; DE-102020125183; DE-102020125185; DE-102020125186; DE-102020125187; DE-102020125188; DE-102020125189; DE-102020125190; DE-102020125191; DE-102020201688; DE-102021005497; DE-102021121877; DE-10218695; DE-112012001735; DE-112012003764; DE-112012005798; DE-112014000501; DE-112016001769; DE-112016003215; DE-112016004439; DE-112016005278; DE-112017003036; DE-112017003044; DE-112017003719; DE-112017004725; DE-112017004860; DE-112017007187; DE-112017007873; DE-112017007921; DE-112020002985; DE-19634808; DE-19649500; DE-19705239; DE-19741483; DE-19927661; DE-19954265; DE-19964555; DE-202017105268; DE-202020005427; DE-4441766; DE-602005005035; DE-60212967; EP-0835555; EP-0922333; EP-0985939; EP-1001473; EP-1030380; EP-1069687; EP-1245002; EP-1324549; EP-1370948; EP-1370961; EP-1370968; EP-1370969; EP-1370971; EP-1395947; EP-1468303; EP-1518208; EP-1561277; EP-1620800; EP-1623317; EP-1639463; EP-1658564; EP-1660403; EP-1669911; EP-1677193; EP-1690218; EP-1696318; EP-1697558; EP-1702264; EP-1716486; EP-1725935; EP-1730635; EP-1733296; EP-1769347; EP-1779668; EP-1800214; EP-1803062; EP-1805575; EP-1805626; EP-1805627; EP-1834245; EP-1836635; EP-1839165; EP-1842227; EP-1846820; EP-1846829; EP-1846895; EP-1851637; EP-1854016; EP-1861790; EP-1884791; EP-1974315; EP-1975590; EP-19755909; EP-2021929; EP-2097936; EP-2143044; EP-2149196; EP-2263332; EP-2296090; EP-2304654; EP-2309562; EP-2397004; EP-2401776; EP-2425609; EP-2443469; EP-2446069; EP-2457354; EP-2476119; EP-2504777; EP-2519870; EP-2585987; EP-2591514; EP-2609541; EP-2638448; EP-2659365; EP-2691996; EP-2707832; EP-2707903; EP-2710471; EP-2730029; EP-2774077; EP-2797038; EP-2803211; EP-2904540; EP-2919172; EP-29191729; EP-2945160; EP-2946413; EP-2946414; EP-3039174; EP-3058618; EP-3075123; EP-3098865; EP-3111379; EP-3111380; EP-3111381; EP-3113084; EP-3114618; EP-3127266; EP-3130031; EP-3132209; EP-3164889; EP-3170259; EP-3195377; EP-3217336; EP-3224640; EP-3231092; EP-3248210; EP-3250792; EP-3254241; EP-3254375; EP-3262573; EP-3262762; EP-3266063; EP-3284115; EP-3296932; EP-3300004; EP-3304363; EP-3332363; EP-3344576; EP-3360253; EP-3378162; EP-3380995; EP-3380996; EP-3383793; EP-3391415; EP-3394905; EP-3398213; EP-3411080; EP-3414583; EP-3422412; EP-3427310; EP-3475217; EP-3475760; EP-3476048; EP-3488474; EP-3491586; EP-3497726; EP-3513249; EP-3513434; EP-3513443; EP-3513631; EP-3514723; EP-3516407; EP-3516596; EP-3520039; EP-3539061; EP-3542320; EP-3542321; EP-3542463; EP-3545563; EP-3563308; EP-3563309; EP-3563310; EP-3568128; EP-3574455; EP-3576025; EP-3576142; EP-3577700; EP-3580701; EP-3580702; EP-3583626; EP-3589581; EP-3593296; EP-3593297; EP-3593298; EP-3596669; EP-3610519; EP-3613141; EP-3619655; EP-3634442; EP-3635726; EP-3639295; EP-3642959; EP-3660179; EP-3662515; EP-3673487; EP-3676882; EP-3682381; EP-3682382; EP-3685321; EP-3685322; EP-3685323; EP-3685451; EP-3689113; EP-3692476; EP-3703141; EP-3704794; EP-3707649; EP-3711004; EP-3718059; EP-3718166; EP-3718207; EP-3718208; EP-3724827; EP-3724828; EP-3724829; EP-3724933; EP-3735392; EP-3735710; EP-3735711; EP-3735712; EP-3738206; EP-3738209; EP-3738210; EP-3740910; EP-3744001; EP-3745481; EP-3746953; EP-3746954; EP-3759659; EP-3769271; EP-3769347; EP-3776390; EP-3782089; EP-3785185; EP-3785186; EP-3788562; EP-3788563; EP-3788565; EP-3788657; EP-3789932; EP-3791334; EP-3795950; EP-3803719; EP-3805423; EP-3807825; EP-3807972; EP-3814905; EP-3815006; EP-3818173; EP-3822871; EP-3824415; EP-3827381; EP-3828782; EP-3830625; EP-3830867; EP-3830953; EP-3835916; EP-3836038; EP-3837646; EP-3837647; EP-3844684; EP-3844687; EP-3844688; EP-3847701; EP-3850478; EP-3852021; EP-3853943; EP-3857619; EP-3861488; EP-3861489; EP-3861588; EP-3864110; EP-3864403; EP-3864586; EP-3867829; EP-3867972; EP-3869420; EP-3871162; EP-3886003; EP-3886321; EP-3888018; EP-3888019; EP-3888020; EP-3895078; EP-3899814; EP-3903375; EP-3903415; EP-3907669; EP-3908988; EP-3908989; EP-3910415; EP-3912107; EP-3912200; EP-3918538; EP-3928260; EP-3931765; EP-3935583; EP-3939160; EP-3939165; EP-3942362; EP-3948697; EP-3948698; EP-3948953; EP-3956770; EP-3956824; EP-3959666; EP-3963518; EP-3966751; EP-3970084; EP-3970272; EP-3971793; EP-3983958; EP-3983961; EP-3983962; EP-3983963; EP-3983964; EP-3987462; EP-3989130; EP-3991104; EP-3992868; ES-2346045; ES-2849257; ES-2850151; FI-128904; FI-129128; FI-129520; FI-20195045; FI-20205115; FR-2855921; FR-2862151; FR-3021163; FR-3090891; GB-2482008; GB-2524039; GB-2553848; GB-2592935; GB-2598059; IL-245788; IL-260859; IL-283799; IL-2837990; IL-286336; IL-2863360; IL-286366; IL-2863660; IL-286404; IL-2864040; IL-286612; IL-2866120; IL-288973; IL-2889730; IN-2006KN00539; IN-2006KN01207; IN-2008CN03914; IN-2011DN10030; IN-201847025509; IN-201847025527; IN-201947035669; IN-202047029322; IN-242559; JP-2000150973; JP-2000244308; JP-2000260187; JP-2001060862; JP-2001068995; JP-2001119300; JP-2001504647; JP-2002135111; JP-2002237749; JP-2002342165; JP-2002344307; JP-2002351850; JP-2002358289; JP-2002366533; JP-2002366534; JP-2003069418; JP-2003271570; JP-2003281107; JP-2003303134; JP-2003519927; JP-2004015151; JP-2004032481; JP-2004046861; JP-2004071630; JP-2004072141; JP-2004072305; JP-2004078979; JP-2004252990; JP-2004533061; JP-2005079749; JP-2005093511; JP-2005100405; JP-2005166056; JP-2005235228; JP-2005235229; JP-2005259812; JP-2005260364; JP-2005267635; JP-2005285123; JP-2005285124; JP-2005322232; JP-2005322240; JP-2005332402; JP-2005339557; JP-2005346327; JP-2005513600; JP-2005527902; JP-2006040451; JP-2006065864; JP-2006092541; JP-2006092542; JP-2006099774; JP-2006107513; JP-2006107514; JP-2006120147; JP-2006139785; JP-2006146921; JP-2006165812; JP-2006172468; JP-2006172474; JP-2006178987; JP-2006190299; JP-2006190301; JP-2006196004; JP-2006202287; JP-2006216058; JP-2006216060; JP-2006221638; JP-2006221639; JP-2006221642; JP-2006221643; JP-2006221644; JP-2006221645; JP-2006260555; JP-2006260556; JP-2006268928; JP-2006286002; JP-2006318470; JP-2006318477; JP-2006323824; JP-2006323829; JP-2006506010; JP-2006512270; JP-2007042074; JP-2007049009; JP-20070490095; JP-2007053247; JP-2007104332; JP-2007214885; JP-2007250771; JP-2007287933; JP-2007516610; JP-2007521397; JP-2007534144; JP-2008047678; JP-2008077640; JP-2008108927; JP-2008182157; JP-2008526682; JP-2009003946; JP-2009016767; JP-2009049631; JP-2009182745; JP-2009194646; JP-2009217845; JP-2009225213; JP-2009302219; JP-2009503624; JP-2009508179; JP-2009524857; JP-2010092499; JP-2010109697; JP-2010199343; JP-2010213210; JP-2010271087; JP-2010511293; JP-2010525431; JP-2011082515; JP-2011197875; JP-2011523747; JP-2012015878; JP-2012026738; JP-2012064622; JP-2012519379; JP-2012530674; JP-2012530895; JP-2012531876; JP-2013058705; JP-2013058997; JP-2013058998; JP-2013535805; JP-2014166956; JP-2014215985; JP-2014216596; JP-2014241073; JP-2014504057; JP-2014523705; JP-2014525161; JP-2015015590; JP-2015035129; JP-2015155377; JP-2015167176; JP-2015508253; JP-2015511067; JP-2016042521; JP-2016045001; JP-2016058441; JP-2016151561; JP-2016509800; JP-2016510497; JP-2016511534; JP-2016518637; JP-2016539607; JP-2016541146; JP-2017073106; JP-2017175155; JP-2017511463; JP-2017517918; JP-2017518629; JP-2017529695; JP-2017532841; JP-2017533572; JP-2018129535; JP-2018136316; JP-2018503249; JP-2018511848; JP-2018512729; JP-2018514094; JP-2018514104; JP-2018516456; JP-2018524667; JP-2018529142; JP-2018532177; JP-2018533253; JP-2018536324; JP-2018538681; JP-2019003975; JP-2019036625; JP-20190366255; JP-2019041088; JP-2019041121; JP-2019047126; JP-2019050399; JP-2019145800; JP-2019186418; JP-2019501581; JP-2019504511; JP-2019504527; JP-2019505989; JP-2019508819; JP-2019508876; JP-2019511562; JP-2019512112; JP-2019513249; JP-2019525452; JP-2019530051; JP-2019530336; JP-2019532505; JP-2019532506; JP-2019532507; JP-2019532520; JP-2019534551; JP-2019534555; JP-2019537241; JP-2019537882; JP-2020010337; JP-2020038976; JP-2020047999; JP-2020065261; JP-2020074351; JP-2020127032; JP-2020501216; JP-2020502551; JP-2020503690; JP-2020503694; JP-2020503706; JP-2020504466; JP-2020509608; JP-2020510309; JP-2020511794; JP-2020513610; JP-2020519005; JP-2020520084; JP-2020522120; JP-2020522128; JP-2020522805; JP-2020522892; JP-2020532099; JP-2020532865; JP-2020532866; JP-2020533705; JP-2020533804; JP-2020534607; JP-2020535461; JP-2020535690; JP-2020535747; JP-2020536376; JP-2020536397; JP-2021087004; JP-2021090075; JP-2021103093; JP-2021118342; JP-2021121946; JP-2021141318; JP-2021141319; JP-2021157798; JP-2021175178; JP-2021500737; JP-2021500781; JP-2021500783; JP-2021501499; JP-2021504956; JP-2021504964; JP-2021506045; JP-2021509244; JP-2021509748; JP-2021509771; JP-2021509982; JP-2021511657; JP-2021511659; JP-2021512395; JP-2021512396; JP-2021515395; JP-2021516389; JP-2021518655; JP-2021519459; JP-2021521550; JP-2021524198; JP-2021530040; JP-2021530042; JP-2021531544; JP-2021531578; JP-2021532396; JP-2021532514; JP-2021532629; JP-2021533345; JP-2021535592; JP-2021535593; JP-2021536666; JP-2022003576; JP-2022010223; JP-2022069496; JP-2022069525; JP-2022500776; JP-2022501802; JP-2022501885; JP-2022502836; JP-2022509003; JP-2022509907; JP-2022511331; JP-2022511376; JP-2022512281; JP-2022513533; JP-2022517773; JP-2022518863; JP-2022520689; JP-2022522757; JP-2022525909; JP-2022525910; JP-2679610; JP-2688011; JP-2768276; JP-2931787; JP-2962251; JP-3107034; JP-3325545; JP-3411273; JP-3454808; JP-3483877; JP-3488663; JP-3515985; JP-3519303; JP-3647795; JP-3648551; JP-3696563; JP-3705252; JP-3802042; JP-3821405; JP-3936889; JP-3983250; JP-4015159; JP-4023546; JP-4024271; JP-4044807; JP-4053547; JP-4113077; JP-4116978; JP-4134182; JP-4176787; JP-4183712; JP-4219369; JP-4243318; JP-4246204; JP-4255457; JP-4286826; JP-4316574; JP-4322259; JP-4334521; JP-4334901; JP-4339307; JP-4346612; JP-4364202; JP-4386373; JP-4386883; JP-4408079; JP-4421561; JP-4451397; JP-4455822; JP-4489399; JP-4507791; JP-4524126; JP-4524784; JP-4526412; JP-4527029; JP-4578366; JP-4583327; JP-4597553; JP-4609733; JP-4645973; JP-4681755; JP-4712328; JP-4733085; JP-4756718; JP-4768386; JP-4769938; JP-4777718; JP-4792328; JP-4805341; JP-4836028; JP-4855255; JP-4913501; JP-4925012; JP-4955961; JP-5020181; JP-5048350; JP-5062659; JP-5078979; JP-5092596; JP-5093515; JP-5167504; JP-5414031; JP-5432073; JP-5497596; JP-5513188; JP-5520939; JP-5567669; JP-5579563; JP-5638770; JP-5669832; JP-5674603; JP-5750194; JP-5766350; JP-5877428; JP-5956392; JP-5976641; JP-6028307; JP-6029070; JP-6030591; JP-6042777; JP-6066314; JP-6087716; JP-6230123; JP-6247177; JP-6326379; JP-6347489; JP-6360499; JP-6379298; JP-6395736; JP-6396726; JP-6397509; JP-6415737; JP-6437607; JP-6461009; JP-6498752; JP-6530326; JP-6534741; JP-6553287; JP-6556952; JP-6590446; JP-6609066; JP-6617197; JP-6656273; JP-6678102; JP-6684366; JP-6704086; JP-6706391; JP-6734873; JP-6742028; JP-6742433; JP-6744379; JP-6749382; JP-6771009; JP-6771660; JP-6776187; JP-6779278; JP-6785219; JP-6788734; JP-6789385; JP-6790245; JP-6802266; JP-6802383; JP-6810280; JP-6831452; JP-6840237; JP-6840818; JP-6845238; JP-6849858; JP-6852187; JP-6853141; JP-6861245; JP-6864812; JP-6877050; JP-6882533; JP-6884273; JP-6894378; JP-6912559; JP-6931071; JP-6936313; JP-6941166; JP-6941230; JP-6947408; JP-6964079; JP-6974470; JP-6974473; JP-6977176; JP-6986627; JP-6998459; JP-7005748; JP-7005786; JP-7033658; JP-7035169; JP-7039689; JP-7047230; JP-7050153; JP-70501536; JP-7052042; JP-7058014; JP-7064057; JP-7064599; JP-H07235699; JP-H08172352; JP-H08340136; JP-H09198876; JP-H09219542; JP-H09237923; JP-H09246608; JP-H10269783; JP-H11261384; JP-H11311663; JP-H11312971; JP-H1140866; JP-H11508747; JP-WO2006011451; JP-WO2007077984; JP-WO20070779846; JP-WO2008029815; JP-WO2020179554; JP-WO2020213596; KR-100282356; KR-100388497; KR-100724098; KR-100777600; KR-100829287; KR-100832192; KR-100840113; KR-100841864; KR-100847982; KR-100866739; KR-100875030; KR-100878424; KR-100881539; KR-100881810; KR-100890134; KR-100891063; KR-100933389; KR-100938942; KR-100959748; KR-101052209; KR-101189972; KR-101309677; KR-101747455; KR-101822326; KR-101899842; KR-101901166; KR-101929207; KR-101936533; KR-102031584; KR-102035149; KR-102063563; KR-102088675; KR-102098081; KR-102109070; KR-102116277; KR-102158678; KR-102173099; KR-102174976; KR-102193846; KR-102196240; KR-102208348; KR-102211013; KR-102217205; KR-102241971; KR-102247626; KR-102250154; KR-102250155; KR-102252438; KR-102279157; KR-102283357; KR-102318773; KR-102319393; KR-102389777; KR-102390936; KR-102400989; KR-19990028555; KR-19990065792; KR-20020092038; KR-20030081532; KR-20030085037; KR-20030085038; KR-20030086319; KR-20030086320; KR-20060063977; KR-20060096109; KR-20060121266; KR-20060127120; KR-20060127859; KR-20060132852; KR-20070007775; KR-20070052311; KR-20070073825; KR-20070085411; KR-20070089998; KR-20070098900; KR-20070100336; KR-20080106911; KR-20080108588; KR-20100056622; KR-20110002020; KR-20110040705; KR-20110046390; KR-20130045831; KR-20140140474; KR-20160072187; KR-20160089410; KR-20160140913; KR-20160147988; KR-20170013224; KR-20170048470; KR-20170085533; KR-20170089880; KR-20170103866; KR-20170106364; KR-20170127476; KR-20170134399; KR-20180004132; KR-20180022925; KR-20180043802; KR-20180069026; KR-20180090857; KR-20180102581; KR-20180112833; KR-20180122596; KR-20190015330; KR-20190035819; KR-20190042720; KR-20190043170; KR-20190045362; KR-20190047022; KR-20190052109; KR-20190077518; KR-20190094418; KR-20190100344; KR-20190113923; KR-20190116452; KR-20190123313; KR-20200016336; KR-20200038546; KR-20200040839; KR-20200040862; KR-20200051769; KR-20200052367; KR-20200065032; KR-20200097787; KR-20200103786; KR-20200104374; KR-20200105510; KR-20200105517; KR-20200106535; KR-20200127052; KR-20210011433; KR-20210024638; KR-20210054034; KR-20210055806; KR-20210095784; KR-20210106452; KR-20210113669; KR-20210118459; KR-20210120869; KR-20210123400; KR-20210125035; KR-20210129186; KR-20210130209; KR-20210134031; KR-20210134688; KR-20210136986; KR-20210138678; KR-20220002366; KR-20220031998; KR-20220041156; KR-20220042440; KR-20220043190; KR-20220044944; KR-20220047753; NL-2016442; NL-2018253; NL-2024742; Publication Number; RU-177295; RU-2599904; RU-2612847; RU-2682559; RU-2716028; RU-2742504; SE-512591; TW-200525428; TW-200532471; TW-200540705; TW-201731071; TW-201814902; TW-201930633; TW-202007091; TW-202011286; TW-202107744; TW-202107837; TW-202115625; TW-202121267; TW-202123097; TW-202205159; TW-202215309; TW-461105; TW-574653; TW-594492; TW-I227401; TW-I274283; TW-I291656; TW-I292880; TW-I293157; TW-I306552; TW-I314285; TW-I314286; TW-I321414; TW-I326426; TW-I338844; TW-I345155; TW-I352905; TW-I361981; TW-I713194; UA-104982; WO-1997002661; WO-1998008307; WO-19980083079; WO-1999017449; WO-2001010027; WO-2001039283; WO-2001050534; WO-2002063430; WO-2002069498; WO-2002077826; WO-2002077838; WO-2002077845; WO-2002077846; WO-2002077848; WO-2002084337; WO-2002086813; WO-2002097725; WO-2003019685; WO-2003025725; WO-2003052438; WO-2003052687; WO-2003082482; WO-2003090162; WO-2004013808; WO-2004013965; WO-2004019270; WO-2004045063; WO-2004086295; WO-2004102470; WO-2004109924; WO-2005010953; WO-2005019095; WO-2005048183; WO-2005055057; WO-2005069392; WO-2005081104; WO-2005081105; WO-2005088443; WO-2005089092; WO-2005093564; WO-2005093649; WO-2005096150; WO-2005106647; WO-2005106662; WO-2005111799; WO-2005116839; WO-2006011451; WO-2006019188; WO-2006033419; WO-2006033423; WO-2006035989; WO-2006038714; WO-2006038717; WO-2006041218; WO-2006043300; WO-2006052017; WO-2006064961; WO-2006064962; WO-2006073204; WO-2006076354; WO-2006078002; WO-2006083043; WO-2006083045; WO-2006083046; WO-2006085636; WO-2006085639; WO-2006085641; WO-2006085665; WO-2006098499; WO-2006121175; WO-2006121211; WO-2006127495; WO-2007077617; WO-2007077984; WO-2007085074; WO-2007086542; WO-2007129786; WO-2007135783; WO-2008006217; WO-2008024368; WO-2008029815; WO-2008064491; WO-2008128338; WO-2008147769; WO-2008150341; WO-2009019040; WO-2009114738; WO-2009117003; WO-2010011409; WO-2010051580; WO-2010092545; WO-2010099312; WO-2010125233; WO-2010145631; WO-2010149775; WO-2011064440; WO-2011088399; WO-2012003821; WO-2012007736; WO-2012025665; WO-2012030319; WO-2012064974; WO-2012089904; WO-2012113983; WO-2012123642; WO-2012135683; WO-2012153000; WO-2012173712; WO-2012174366; WO-2013006375; WO-2013034801; WO-2013035512; WO-2013104822; WO-2013126120; WO-2013160531; WO-2013180780; WO-2014006567; WO-2014053697; WO-2014075296; WO-2014092819; WO-2014140943; WO-2014163728; WO-2014168665; WO-2014197047; WO-2014197048; WO-2014197095; WO-2015014549; WO-2015036266; WO-2015057839; WO-2015081107; WO-2015127498; WO-2015153056; WO-2015159258; WO-2015178990; WO-2015178991; WO-2015178992; WO-2015183535; WO-2016000836; WO-2016003626; WO-2016020648; WO-2016022689; WO-2016025598; WO-2016049446; WO-2016061114; WO-2016076935; WO-2016083140; WO-2016094045; WO-2016118821; WO-2016126979; WO-2016126981; WO-2016138395; WO-2016138406; WO-2016168642; WO-2016183213; WO-2016199029; WO-2016200845; WO-2017001404; WO-2017015432; WO-2017015532; WO-2017021714; WO-2017040598; WO-2017055946; WO-2017059104; WO-2017062143; WO-2017065934; WO-2017079394; WO-20170793949; WO-2017079417; WO-2017079424; WO-2017082983; WO-2017087070; WO-2017089891; WO-2017100078; WO-2017103694; WO-2017105429; WO-2017105524; WO-2017111949; WO-2017115008; WO-2017115160; WO-2017116442; WO-2017131831; WO-2017136450; WO-2017139683; WO-2017151200; WO-2017152287; WO-2017155531; WO-2017158134; WO-2017217958; WO-2017217959; WO-2017217960; WO-2017217961; WO-2017222806; WO-2018004578; WO-2018004634; WO-2018004635; WO-2018004636; WO-2018009240; WO-2018030977; WO-2018034638; WO-2018035448; WO-2018038707; WO-2018051123; WO-2018052397; WO-2018052399; WO-2018052414; WO-2018052424; WO-2018052427; WO-2018052465; WO-2018052466; WO-2018055467; WO-2018055607; WO-2018057024; WO-2018060981; WO-2018062991; WO-2018063139; WO-2018063168; WO-2018063205; WO-2018063206; WO-2018069908; WO-2018073668; WO-2018075106; WO-2018089850; WO-2018093545; WO-2018106215; WO-2018106222; WO-2018111242; WO-2018125026; WO-2018125513; WO-2018125543; WO-2018125604; WO-2018132769; WO-2018139928; WO-2018144601; WO-2018159832; WO-2018160184; WO-2018160185; WO-2018160187; WO-2018160674; WO-2018162965; WO-2018165021; WO-2018165500; WO-2018165607; WO-2018169579; WO-2018169585; WO-2018182571; WO-2018182584; WO-2018185306; WO-2018191041; WO-2018192674; WO-2018217351; WO-2018219484; WO-2018223037; WO-2018226586; WO-2018231212; WO-2018231241; WO-2018236374; WO-2018236922; WO-2019004991; WO-2019025019; WO-2019032114; WO-2019032115; WO-2019038409; WO-2019040098; WO-2019045762; WO-2019045763; WO-2019050525; WO-2019054990; WO-2019054995; WO-2019055002; WO-2019055038; WO-2019055048; WO-2019057317; WO-2019059879; WO-2019063113; WO-2019063116; WO-2019070228; WO-2019070265; WO-2019077397; WO-2019077398; WO-2019077399; WO-2019084286; WO-2019086943; WO-2019089141; WO-2019089603; WO-2019105630; WO-2019106416; WO-2019108512; WO-2019116103; WO-2019117883; WO-2019117922; WO-2019117929; WO-2019117930; WO-2019117949; WO-2019117954; WO-2019117955; WO-2019117972; WO-2019117973; WO-2019117974; WO-2019117975; WO-2019118442; WO-2019125423; WO-2019125498; WO-2019126396; WO-2019132963; WO-2019136213; WO-2019139799; WO-2019139800; WO-2019143680; WO-2019152019; WO-2019152020; WO-2019156759; WO-2019156760; WO-2019164591; WO-2019168721; WO-2019173651; WO-2019173799; WO-2019178009; WO-2019179732; WO-2019179740; WO-2019183602; WO-2019190460; WO-2019204680; WO-2019217772; WO-2019222514; WO-2019224789; WO-2019229527; WO-2019236137; WO-2019241570; WO-2019245740; WO-2020005963; WO-2020010147; WO-2020010214; WO-2020018797; WO-2020019015; WO-2020025458; WO-2020025460; WO-2020027779; WO-2020028325; WO-2020028650; WO-2020033807; WO-2020033974; WO-2020036673; WO-2020036707; WO-2020037253; WO-2020037300; WO-2020037301; WO-2020043415; WO-2020043596; WO-2020043597; WO-2020046928; WO-2020048842; WO-2020055450; WO-2020056176; WO-2020058002; WO-2020068237; WO-20200682379; WO-2020069623; WO-2020069883; WO-2020072661; WO-2020072819; WO-2020074742; WO-2020077288; WO-20200772889; WO-2020078777; WO-2020078849; WO-2020081805; WO-2020083618; WO-2020086867; WO-2020104206; WO-2020106313; WO-2020106955; WO-2020109106; WO-2020109107; WO-2020109869; WO-2020112185; WO-2020120183; WO-2020127299; WO-2020139407; WO-2020142122; WO-2020145854; WO-2020146025; WO-20201460259; WO-2020146083; WO-2020146794; WO-2020148565; WO-2020150348; WO-2020152393; WO-2020156680; WO-2020169224; WO-2020178640; WO-2020179554; WO-2020180442; WO-2020180902; WO-2020183060; WO-2020186076; WO-2020197575; WO-2020200782; WO-2020200801; WO-2020212092; WO-2020213596; WO-2020214910; WO-2020219578; WO-2020222044; WO-2020227385; WO-2020231378; WO-2020231795; WO-2020236587; WO-2020252157; WO-2020252425; WO-2020253292; WO-2020254055; WO-2020257772; WO-2020259813; WO-2020263255; WO-2020263278; WO-2021007153; WO-2021008796; WO-2021011765; WO-2021015789; WO-2021016542; WO-2021018466; WO-2021019294; WO-2021021398; WO-2021022217; WO-2021022375; WO-2021022376; WO-2021026070; WO-2021029095; WO-2021034404; WO-2021044210; WO-2021044212; WO-2021046184; WO-2021046495; WO-2021050541; WO-2021051163; WO-2021055000; WO-2021055507; WO-2021056115; WO-2021059013; WO-2021061776; WO-2021062331; WO-2021067023; WO-2021076221; WO-2021076808; WO-2021077691; WO-2021080789; WO-2021083448; WO-2021087206; WO-2021091600; WO-2021092351; WO-2021093977; WO-2021096955; WO-2021101829; WO-2021102321; WO-2021102344; WO-2021105100; WO-2021107949; WO-2021108487; WO-2021111961; WO-2021113513; WO-2021118867; WO-2021123903; WO-2021132009; WO-2021140995; WO-2021146028; WO-2021148311; WO-2021150101; WO-2021155289; WO-2021156538; WO-2021162981; WO-2021163032; WO-2021163487; WO-2021165639; WO-2021168019; WO-2021168096; WO-2021176974; WO-2021178042; WO-2021178562; WO-2021181059; WO-2021181155; WO-2021183344; WO-2021185595; WO-2021188193; WO-2021191501; WO-2021195368; WO-2021201954; WO-2021202405; WO-2021202409; WO-2021202687; WO-2021211657; WO-2021216497; WO-2021223964; WO-2021223983; WO-2021224551; WO-2021229388; WO-2021231224; WO-2021236725; WO-2021237362; WO-2021247125; WO-2021247540; WO-2021247656; WO-2021247878; WO-2021249759; WO-2021253404; WO-2021255055; WO-2021259711; WO-2021262741; WO-2022002881; WO-2022003450; WO-2022004921; WO-2022015399; WO-2022018038; WO-2022018170; WO-2022020951; WO-2022023913; WO-2022031348; WO-2022036422; WO-2022037958; WO-2022038205; WO-2022043020; WO-2022043297; WO-2022048399; WO-2022051030; WO-2022053561; WO-2022054992; WO-2022058025; WO-2022058285; WO-2022058381; WO-2022060897; WO-2022060950; WO-2022060954; WO-2022060957; WO-2022060959; WO-2022060962; WO-2022060964; WO-2022073380; WO-2022074041; WO-2022081675; WO-2022084350; WO-2022084778; WO-2022086751; WO-2022087143; WO-2022092815; WO-2022093575; WO-2022093618; and ZA-200207825.


SUMMARY OF THE INVENTION

A quantum computer requires many qubits and couplers with well-defined and precise energies. Superconducting quantum computers are fabricated from integrated circuits comprising a plurality of Josephson junctions. In practice, due to the spread in the fabrication processes of Josephson junctions, the fabricated qubits will possess energies that are slightly different from the design parameters. Such variations in the energy of qubits and coupler make it difficult to accurately perform single and multi-qubit operations in the quantum computer, particularly as the number of coupled qubits increase. An external energy tuning of the qubits through flux biasing may compensate for the inherent variation of the fabrication process, and permit additional degrees of control. Precisely controlled flux biasing of superconducting circuits is necessary to achieve the desired quantum behavior in scalable quantum computing systems.


In addition to compensation for the fabrication variation, the controllability of the energy of the quantum circuit such as qubits and quantum coupler enables certain functions and properties. As an example, by changing the energy of the qubits and quantum couplers, we can increase or decrease the interaction with other components in a quantum circuit. This enables deliberate coupling and decoupling of different quantum components based on the desired functionality. For example, to enable two-qubit or multi-qubit gate operation, the energies of the coupler or the qubits may be tuned to enable interaction among them. Similarly, a qubit may be decoupled from other qubits or couplers by detuning the energy through the flux biasing. Change of flux biasing to increase coupling enables multi-qubit and coupler gate operations, whereas the change of flux biasing to decouple quantum components enables preserving the quantum coherence by decreasing interaction.


Finally, one can execute single or two-qubit gate operations by applying the generated fast flux bias pulses to execute high-fidelity qubit control. Such control can be done using a universal set of flux pulses, in which qubit gates are completed within a single or multiple Larmor periods. The basic principle of SFQ flux biasing according to the present invention is as follows. A superconducting storage loop is magnetically coupled to the quantum circuit. To change the amount of the flux biasing of the qubits or couplers, SFQ pulses are added or removed from the storage loop as shown in FIG. 1.


The resolution, amount of coupling, and the speed of the change of flux biasing can be controlled through different design parameters of the transformer, i.e., Lin, Lout, M, and SFQ circuits and/or the qubit/coupler.


Li, X., T. Cai, H. Yan, Z. Wang, X. Pan, Y. Ma, W. Cai et al. “Tunable coupler for realizing a controlled-phase gate with dynamically decoupled regime in a superconducting circuit.” Physical Review Applied 14, no. 2 (2020): 024070, discloses a tunable and switchable qubit coupler. Controllable interaction between superconducting qubits is desirable for large-scale quantum computation and simulation. Based on Yan et al. [Phys. Rev. Appl. 10, 054061 (2018)], a flux-controlled tunable coupler with a continuous tunability by adjusting the coupler frequency, which can completely turn off adjacent superconducting qubit coupling was tested. Utilizing the tunable interaction between two qubits via the coupler, a controlled-phase (CZ) gate with dynamically decoupled regime, which allows the qubit-qubit coupling to be only “on” at the usual operating point while dynamically “off” during the tuning process of one qubit frequency into and out of the operating point. This efficiently suppresses the leakage out of the computational subspace, but also allows for the acquired two-qubit phase being geometric at the operating point. See also:


Sung, Youngkyu, Leon Ding, Jochen Braumüller, Antti Vepsäläinen, Bharath Kannan, Morten Kjaergaard, Ami Greene et al. “Realization of High-Fidelity CZ and Z Z-Free iSWAP Gates with a Tunable Coupler.” Physical Review X 11, no. 2 (2021): 021058.


Allman, Michael S., Fabio Altomare, Jed D. Whittaker, Katarina Cicak, Dale Li, Adam Sirois, Joshua Strong, John D. Teufel, and Raymond W. Simmonds. “rf-SQUID-mediated coherent tunable coupling between a superconducting phase qubit and a lumped-element resonator.” Physical review letters 104, no. 17 (2010): 177004.


Han, X. Y., T. Q. Cai, X. G. Li, Y. K. Wu, Y. W. Ma, Y. L. Ma, J. H. Wang, H. Y. Zhang, Y. P. Song, and L. M. Duan. “Error analysis in suppression of unwanted qubit interactions for a parametric gate in a tunable superconducting circuit.” Physical Review A 102, no. 2 (2020): 022619.


Harris, R., A. J. Berkley, M. W. Johnson, P. Bunyk, S. Govorkov, M. C. Thom, S. Uchaikin et al. “Sign- and magnitude-tunable coupler for superconducting flux qubits.” Physical review letters 98, no. 17 (2007): 177001.


Xu, Huikai, Weiyang Liu, Zhiyuan Li, Jiaxiu Han, Jingning Zhang, Kehuan Linghu, Yongchao Li et al. “Realization of adiabatic and diabatic CZ gates in superconducting qubits coupled with a tunable coupler.” Chinese Physics B 30, no. 4 (2021): 044212.


Yang, Chui-Ping, Qi-Ping Su, Shi-Biao Zheng, and Siyuan Han. “One-step transfer or exchange of arbitrary multipartite quantum states with a single-qubit coupler.” Physical Review B 92, no. 5 (2015): 054509.


Van der Ploeg, S. H. W., A. Izmalkov, Alec Maassen van den Brink, U. Hübner, M. Grajcar, E. Il'Ichev, H-G. Meyer, and A. M. Zagoskin. “Controllable coupling of superconducting flux qubits.” Physical review letters 98, no. 5 (2007): 057004.


Zajac, D. M., J. Stehlik, D. L. Underwood, T. Phung, J. Blair, S. Carnevale, D. Klaus et al. “Spectator errors in tunable coupling architectures.” arXiv preprint arXiv:2108.11221 (2021).


McKay, David C., Stefan Filipp, Antonio Mezzacapo, Easwar Magesan, Jerry M. Chow, and Jay M. Gambetta. “Tunable coupling between fixed-frequency superconducting transmon qubits, Part II: Implementing a two-qubit XX-90 gate.” In APS March Meeting Abstracts, vol. 2016, pp. F48-008. 2016.


Jin, Lijing. “Implementing High-fidelity Two-Qubit Gates in Superconducting Coupler Architecture with Novel Parameter Regions.” arXiv preprint arXiv:2105.13306 (2021).


Quintana, Chris, Yu Chen, D. Sank, D. Kafri, A. Megrant, T. C. White, A. Shabani et al. “Coplanar waveguide flux qubit suitable for quantum annealing.” In APS March Meeting Abstracts, vol. 2016, pp. K48-010. 2016.


Kafri, Dvir, Chris Quintana, Yu Chen, Alireza Shabani, John M. Martinis, and Hartmut Neven. “Tunable inductive coupling of superconducting qubits in the strongly nonlinear regime.” Physical Review A 95, no. 5 (2017): 052333.


Wulschner, Friedrich, Jan Goetz, Fabian R. Koessel, Elisabeth Hoffmann, Alexander Baust, Peter Eder, Michael Fischer et al. “Tunable coupling of transmission-line microwave resonators mediated by an rf SQUID.” EPJ Quantum Technology 3, no. 1 (2016): 1-10.


Xu, Xuexin, and M. H. Ansari. “Parasitic-free gate: A protected switch between idle and entangled states.” arXiv preprint arXiv:2202.05208 (2022).


Xu, Yuan, Ji Chu, Jiahao Yuan, Jiawei Qiu, Yuxuan Zhou, Libo Zhang, Xinsheng Tan et al. “High-fidelity, high-scalability two-qubit gate scheme for superconducting qubits.” Physical Review Letters 125, no. 24 (2020): 240503.


Groszkowski, Peter, Austin G. Fowler, Felix Motzoi, and Frank K. Wilhelm. “Tunable coupling between three qubits as a building block for a superconducting quantum computer.” Physical Review B 84, no. 14 (2011): 144516.


Di Paolo, Agustin, Catherine Leroux, Thomas M. Hazard, Kyle Serniak, Simon Gustavsson, Alexandre Blais, and William D. Oliver. “Extensible circuit-QED architecture via amplitude- and frequency-variable microwaves.” arXiv preprint arXiv:2204.08098 (2022).


Nägele, Maximilian, Christian Schweizer, Federico Roy, and Stefan Filipp. “Effective non-local parity-dependent couplings in qubit chains.” arXiv preprint arXiv:2203.07331 (2022).


McCourt, Trevor, Charles Neill, Kenny Lee, Chris Quintana, Yu Chen, Julian Kelly, V. N. Smelyanskiy et al. “Learning Noise via Dynamical Decoupling of Entangled Qubits.” arXiv preprint arXiv:2201.11173 (2022).


He, Yongcheng, Jianshe Liu, Changhao Zhao, Rutian Huang, Genting Dai, and Wei Chen. “Control System of Superconducting Quantum Computers.” Journal of Superconductivity and Novel Magnetism (2022): 1-21.


The circuit to add or remove flux could be designed in many ways. The simplest approach is using Josephson Transmission lines (JTLs) as shown in FIG. 2. In FIG. 2, the chain of JTLs could be amplifying JTLs to increase the number of fluxons that can be stored in Lin.


A more scalable approach uses parallel JTLs to increase the capacity of stored fluxons in the loop and, therefore, the induced current through inductor Lin as shown in FIG. 3. In the circuit shown in FIG. 4, the number of parallel JTLs could be arbitrary large from 1 to n, depending on the specifics of the flux biasing design. The circuit simulation of this circuit is shown in FIG. 4.


It is possible to create different profiles of the flux biasing over time using this technique. In FIG. 5, a sample time and amplitude-varying flux biasing is shown. The flux biasing can be either positive or negative. The SFQ circuit to add or remove flux to the flux biasing circuit in FIG. 1 could be designed for a specific profile or time dependence of the flux biasing. The slew rate of the rising and falling edges of the flux biasing waveforms or flux bias pulses (FBP) can be achieved by changing SFQ pulse repetition rates set by SFQ circuit clock, its submultiples, and or special on-chip SFQ pulse generator circuits (flux pumps). In general case, the SFQ pulse repetition rates can be non-uniform.


As an example, a flux pump could be used for a fast change in the flux biasing by injection or removal of a fast train of pulses for coarse flux biasing, as shown in FIG. 6. An example of a flux pump is a relaxation oscillator circuit using an under-damped Josephson junction. When an underdamped Josephson junction switches it creates a train of SFQ pulses with the number of pulses determined by the resistance and inductance load of the circuit.


Flux biasing using SFQ pulses can be further refined for specific purposes including fast but high-resolution biasing over large intervals by combining coarse and fine tune biasing as shown in FIG. 7. In FIG. 7, the coarse biasing could be used for fast steps in biasing, and fine-tune biasing for the initial and/or final high-resolution tuning. In general, the specific sequence, duration, pulse rates, and other parameters of the coarse and fine biasing and, therefore, generated flux bias pulse shapes, their number and polarities are selected based on the specific function and optimization to achieve the highest gate fidelity.


The initial flux stored in the flux biasing storage loop can be reset by adding a reset circuit as shown in FIG. 8. In FIG. 8, the SQUID in series with the input transformer can be used as a reset mechanism. When the critical current of the SQUID is suppressed by applying the reset current to the input transformer, the flux stored in Lin is completely removed.


SFQ pulse control can be used not only for tuning of a qubit, but also for initiating quantum transitions between qubit states, as was proposed in the prior art. In this scheme, SFQ pulse is applied resonantly (uniformly) over many qubit Larmor periods or using more complex, non-uniform pulse patterns derived using the optimal control theory methods.


With a central control unit (which may also be an SFQ digital logic circuit), the combination and timing of these two control mechanisms can be coordinated and synchronized, as suggested in the block diagram of FIG. 9A. Fast flux biasing of the qubits and couplers also enables new and improved multi-qubit operations, as shown in FIG. 10A. This could be used to increase the speed of multi-qubit gate operation or improve the fidelity of the gate operation by exploiting new modes of multi-qubit interaction.


Here, the central control unit is capable of precise timing and control of a train of SFQ pulses acting on each qubit, and the flux biasing of all the qubits and coupler to achieve faster multi-qubit operation with higher fidelity.


Alternatively, quantum transitions can be executed using FBP waveforms generated by SFQ circuits, as shown in FIG. 9B. In this case, qubit rotations are driven exclusively by flux biasing applied to a qubit, while SFQ circuits are used to generate specific FBPs corresponding to the desired gate. This method can potentially lead to a faster gate execution, since the applied FBP can perform gate within a single or a few Larmor periods in contrast to SFQ pulse trains or microwave pulses typically applied over many qubit Larmor periods.



FIG. 10B shows a block diagram of multi-qubit operations using only flux biasing controls. In this case, separate FBPs are generated to control qubits and a coupler connecting qubits. The SFQ flux bias to adjust qubit energy (qubit frequency) is combined with the qubit control flux biasing, see the SFQ flux bias offset in FIG. 10B.


An example of the application of SFQ flux biasing to change the energy of the qubit during SFQ single qubit operation as shown in FIG. 11. In this example, the energy of the qubit can be reduced quickly during a single qubit operation, which enables faster single qubit operation. At the end of the single qubit rotation, the flux biasing can change the energy of the qubit again to decouple it from the rest of the circuit.


This type of flux bias control can be applied to change the superconducting critical current of a SQUID loop incorporated in qubit in place of a single Josephson junction (sometimes called a split junction) that is a central component of a superconducting qubit or coupler, which in turn affects the energy and coupling strength of the quantum device. Applicable qubits include flux qubits, phase qubits, and transmons, among others. For fluxoniums and similar qubits having large inductors (superinductors), flux bias can be applied to the superinductor which can be made using a Josephson junction array. Other applications of the rapid time-varying superconducting digital flux control to quantum computing are described in more detail below, or may become clear to those skilled in the art.


It is therefore an object to provide a magnetic flux control system, comprising: a superconducting circuit configured to convert each of successive single-flux-quantum pulses into a magnetic flux; a superconducting inductor configured to integrate the magnetic flux from the superconducting circuit to define an integrated magnetic flux; and a control system comprising a plurality of Josephson junctions, the control system being configured to generate at least one output control signal for controlling the superconducting circuit, the output control signal comprising at least one sequence of single-flux-quantum pulses adapted to selectively change the integrated magnetic flux.


It is also an object to provide a magnetic flux control system, comprising: at least one superconducting circuit configured to generate single-flux-quantum pulses; a coupling circuit configured to couple the single-flux-quantum pulses into a corresponding magnetic flux; a superconducting inductor configured to integrate the magnetic flux corresponding to the single-flux-quantum pulses to define an integrated magnetic flux; a qubit having a resonance frequency dependent on the integrated magnetic flux; and a sensor having a sensor output, the sensor being configured to determine at least one of the resonance frequency and the integrated magnetic flux; a control system comprising a plurality of Josephson junctions, the control system being configured to control a value of the integrated magnetic flux dependent on the sensor output.


It is a further object to provide a magnetic flux control method for controlling a superconducting system, comprising a superconducting circuit configured to convert each of successive single-flux-quantum pulses into a magnetic flux, and a superconducting inductor configured to integrate the magnetic flux from the superconducting circuit to define an integrated magnetic flux, and a control circuit comprising a plurality of Josephson junctions, the method comprising: defining a target magnetic flux; controlling the superconducting circuit to produce a sequence of single-flux-quantum pulses for monotonically changing the integrated magnetic flux to reduce a difference between the target magnetic flux and the integrated magnetic flux; and controlling the superconducting circuit to cease production of the sequence of single-flux-quantum pulses for monotonically changing the integrated magnetic flux and thereby cease monotonically changing the integrated magnetic flux, wherein said controlling superconducting circuit to cease production of the sequence of single-flux-quantum pulses is dependent on a value of the integrated magnetic flux.


The magnetic flux control system may further comprise a quantum computing circuit comprising at least one qubit having at last one physical property tunable dependent on at least the integrated magnetic flux, wherein the integrated magnetic flux is coupled with the at least one qubit. The at least one physical property may comprise a microwave resonance. The control system may be configured to control a dynamic variation of the at least one physical property of the at least one qubit over time. The at least one physical property may comprise at least one of a microwave resonance, an energy and a phase of the qubit, and may control each of a microwave resonance, an energy and a phase of the qubit. The control system may be configured to control a dynamic variation of the at least one physical property of the at least one of the qubit and the tunable qubit coupler. The at least one of the qubit and the tunable qubit coupler may comprise a switched qubit coupler configured to selectively control presence and absence of an interaction of a plurality of qubits.


The magnetic flux control system may be provided in a first integrated circuit and the at least one of the qubit and the tunable qubit coupler is provided in a second integrated circuit, therein the first integrated circuit and the second integrated circuit are provided on a common substrate.


The magnetic flux control system may further comprise at least one of a qubit and a tunable qubit coupler associated with a qubit, coupled to the integrated magnetic flux, wherein a qubit Bloch sphere state of the qubit is responsive to the at least one output control signal.


The magnetic flux control system may further comprising a qubit, whose state is represented by a phase and an amplitude a Bloch sphere, coupled to the integrated magnetic flux, wherein the phase and amplitude of the Bloch sphere are responsive to the at least one output control signal.


The magnetic flux control system may be provided in a first integrated circuit and the at least one of the qubit and the tunable qubit coupler is provided in a second integrated circuit, therein the first integrated circuit and the second integrated circuit are inductively coupled and provided on separate substrates having a flip chip geometry.


The control system may further comprise an input port configured to receive at least one feedback signal relating to a magnitude of the integrated magnetic flux.


The control system further may further comprise a pair of output ports configured to produce a first signal adapted to increase the integrated magnetic flux and a second signal adapted to decrease the integrated magnetic flux.


The control system may be configured to implement at least one of a phase locked loop control and a frequency locked loop control.


The control system may be configured to receive a photonic input control signal.


The magnetic flux control system may further comprise a frequency mixer and a detector configured to receive an output of at least one qubit and produce an input control signal for the control system.


The magnetic flux control system may further comprise a superconducting oscillator configured to generate a microwave signal which interacts with a qubit.


The superconducting inductor may be further configured to couple the integrated magnetic flux with a quantum computing circuit comprising a transmon qubit circuit having a microwave resonance tunable dependent on at least the integrated magnetic flux. The control system may be configured to, within a quantum calculation period of the transmon qubit, define a first microwave resonant frequency of the transmon qubit, and subsequently define a second microwave resonant frequency of the transmon qubit, wherein the first microwave resonant frequency and the second microwave resonant frequency are different.


The superconducting inductor may be further configured to couple the integrated magnetic flux with a quantum computing circuit comprising a transmon qubit circuit having a microwave resonance tunable dependent on at least the integrated magnetic flux, and the control system may be configured to tune the microwave resonance of the transmon qubit circuit with the integrated magnetic flux dependent on a microwave resonance state of the transmon qubit circuit.


The magnetic flux control system may further comprise a superconducting quantum interference device responsive to the integrated magnetic flux, adapted to produce a magnetometer output, wherein the control system comprises a control system input responsive to the magnetometer output.


The control system further may comprise a first input port configured to receive a reference frequency signal, a second input port configured to receive a microwave resonance signal, and a comparing circuit configured to produce a comparison output configured to control the integrated magnetic flux to selectively change the integrated magnetic flux in response to the comparison output.


The control system is further configured: to receive at least one input control signal selectively dependent on a signal from a qubit during a quantum computing calculation representing a calculation state of the qubit during a phase of quantum computing, and to control the integrated magnetic flux selectively dependent on the calculation state of the qubit during a subsequent phase of quantum computing.


The magnetic flux control system may further comprise an error input port configured to receive an error signal; and at least one memory configured to persistently store a calibration value dependent on the error signal, wherein the control system produces output control signal selectively dependent on the persistently stored calibration value.


The magnetic flux control system may further comprise a superconducting circuit configured to reset the integrated magnetic flux to a predetermine value.


The control system may be further configured to produce at least two types of the at least one sequence of single-flux-quantum pulses, comprising: a first type of the sequence adapted to change the integrated magnetic flux by a first amount; and a second type of the sequence adapted to change the integrated magnetic flux by a second amount, the first amount being different from the second amount; and the control system is configured to receive at least one input control signal representing an amount of change of the integrated magnetic flux, and to produce at least the first type of sequence and the second type of sequence selectively dependent on the at least one input control signal.


The control system may be further configured to produce at least two different types of the output control signal comprising the at least one sequence of single-flux-quantum pulses, comprising a first type of sequence associated with a first positive whole number of single single-flux-quantum pulses, and a second type of sequence associated with a second positive whole number of single-flux-quantum pulses, the first positive whole number and the second positive whole number being different.


The magnetic flux control system may further comprise a counter responsive to a target value, configured to count each single-flux-quantum pulse and selectively produce a signal when a cumulative value of the at least one sequence of single-flux-quantum pulses corresponds to the target value, wherein the superconducting circuit comprises a superconducting transformer primary inductor, coupled to the superconducting inductor as a superconducting transformer secondary inductor; and the at least one sequence of single-flux-quantum pulses comprise first pulses and second pulses; the superconducting transformer primary inductor has a first terminal and a second terminal, the first pulses enter the superconducting transformer primary inductor at the first terminal, and the second pulses enter the superconducting transformer primary inductor at the second terminal, such that the first pulses act with opposite polarity with respect to the second pulses with respect to changes in the integrated magnetic flux.


See, Çelik, Mustafa Eren, Timur V. Filippov, Anubhav Sahu, Dmitri E. Kirichenko, Saad M. Sarwana, A. Erik Lehmann, and Deepnarayan Gupta. “Fast RSFQ and ERSFQ parallel counters.” IEEE Transactions on Applied Superconductivity 30, no. 7 (2020): 1-4; L. V. Filippenko, V. K. Kaplunenko, M. I. Khabipov, V. P. Koshelets, K. K. Likharev, O. A. Mukhanov, S. V. Rylov, V. K. Semenov, and A. N. Vystavkin, “Experimental Implementation of Analog-to-Digital Converter Based on the Reversible Ripple Counter,” IEEE Trans. Magn., vol. MAG-27, no. 2, pp. 2464-2467, March 1991; Shukla, Ashish, Dmitry Kirichenko, Timur Filippov, Anubhav Sahu, Mustafa Eren Celik, Mingoo Seok, and Deepnarayan Gupta. “Pulse Interfaces and Current Management Techniques for Serially Biased RSFQ Circuits.” IEEE Transactions on Applied Superconductivity (2022); Amparo, Denis, Mustafa Eren Çelik, Sagnik Nath, Joao P. Cerqueira, and Amol Inamdar. “Timing characterization for RSFQ cell library.” IEEE Transactions on Applied Superconductivity 29, no. 5 (2019): 1-9; Kito, Nobutaka, and Kazuyoshi Takagi. “An RSFQ flexible-precision multiplier utilizing bit-level processing.” In Journal of Physics: Conference Series, vol. 1975, no. 1, p. 012025. IOP Publishing, 2021; Qu, Pei-Yao, Guang-Ming Tang, Jia-Hong Yang, Xiao-Chun Ye, Dong-Rui Fan, Zhi-Min Zhang, and Ning-Hui Sun. “Design of an 8-bit Bit-Parallel RSFQ Microprocessor.” IEEE Transactions on Applied Superconductivity 30, no. 7 (2020): 1-6; Yamae, Taiki, Naoki Takeuchi, and Nobuyuki Yoshikawa. “Binary counters using adiabatic quantum-flux-parametron logic.” IEEE Transactions on Applied Superconductivity 31, no. 2 (2020): 1-5.


The control system may be configured to receive a feedback signal based on a magnitude of the integrated magnetic flux, further comprising a gate configured to cease the at least one sequence of single-flux-quantum pulses when the feedback signal indicates a sufficient correction in the integrated magnetic flux.


The magnetic flux control system may further comprise a control system input representing a feedback signal, wherein the control system is configured to produce the at least one output control signal selectively in dependence on the feedback signal, to produce: a continuous series of single-flux-quantum pulses of a first type for increasing the integrated magnetic flux; or a continuous series of single-flux-quantum pulses of a second type for decreasing the integrated magnetic flux; or an output representing no net single-flux-quantum pulses for maintaining the integrated magnetic flux.


The magnetic flux control system may further comprise a counter, wherein the control system is configured to receive a target value and in dependence thereon selectively: increment a counter based on a continuous series of single-flux-quantum pulses adapted to increase the integrated magnetic flux; decrement the counter based on a continuous series of single-flux-quantum pulses adapted to decrease the integrated magnetic flux; and suppress net single-flux-quantum pulses while a count value of the counter corresponds to an error margin of the target value.


The magnetic flux control system may further comprise a reset circuit configured to establish the magnetic flux at a predetermined value, the reset circuit comprising a reset inductor coupled to a superconducting quantum interference device (SQUID) having a critical current, in series with the superconducting inductor, wherein a current in the reset inductor is sufficient to drive the SQUID above the critical current and become resistive and dissipative of energy stored in the superconducting inductor.


It is another object of the invention to provide a method for controlling a superconducting quantum computing circuit, comprising generating different types of flux biasing pulses using a superconducting digital SFQ control circuit dependent on at least one control signal over time; converting the single-flux-quantum voltage pulses to a magnetic flux selectively dependent on a history of the at least one control signal, using the generated flux bias pulse with or without single-flux-quantum pulse control patterns applied to a superconducting quantum circuit, the different types of single-flux-quantum voltage pulses selectively causing increases and decreases in the magnetic flux; coupling the magnetic flux to a quantum computing circuit having a property tunable dependent on the coupled magnetic flux; and defining the at least one control signal over time dependent on a performance of the quantum computing circuit.


It is also an object of the invention to provide a method for controlling a superconducting quantum computing circuit, comprising: generating single-flux-quantum voltage pulses with a superconducting digital control circuit dependent on at least one control signal over time; converting the single-flux-quantum voltage pulses to a magnetic flux selectively dependent on a history of the at least one control signal; coupling the magnetic flux to a quantum computing circuit comprising at least one component having a property tunable dependent on the coupled magnetic flux; and defining the at least one control signal over time to selectively define the magnetic flux, to alter the property of the at least one component. The coupled magnetic flux may control a frequency, phase, rate, precision, or dynamic range of the at least one component, for example.


It is a further object to provide a magnetic flux control method, comprising: a control system comprising a plurality of Josephson junctions, the control system being configured to generate a sequence of single-flux-quantum pulses; a superconducting circuit configured to convert the sequence of single-flux-quantum pulses into a magnetic flux; and a superconducting inductor configured to couple the magnetic flux with a quantum computing circuit comprising at least one qubit coupler circuit having physical properties tunable dependent on the magnetic flux.


It is also an object to provide a magnetic flux control system, comprising: a control system comprising a plurality of Josephson junctions, configured to generate a sequence of single-flux-quantum pulses; a superconducting circuit configured to convert each pulse of the sequence of single-flux-quantum pulses into a magnetic flux; and a superconducting inductor configured to integrate the magnetic flux, wherein the integrated magnetic flux is controlled to increase and decrease corresponding to at least one control signal of the control system.


The superconducting inductor may be further configured to couple the integrated magnetic flux with a quantum computing circuit comprising at least one qubit circuit having physical properties tunable dependent on at least the magnetic flux.


The magnetic flux control system may further comprise the quantum computing circuit comprising at least one qubit circuit having physical properties tunable dependent on at least the magnetic flux.


The control system may have at least one control mode adapted to maintain a constant physical property of the at least one qubit.


The control system may have at least one control mode adapted to dynamically vary the physical property of the at least one qubit over time.


The superconducting inductor may be further configured to couple the integrated magnetic flux with a qubit circuit having physical properties tunable dependent on at least the magnetic flux.


The magnetic flux control system may be provided together with, or integrated with, the qubit circuit having physical properties tunable dependent on at least the magnetic flux.


The control system may have at least one control mode adapted to maintain a constant physical property of the qubit.


The control system may have at least one control mode adapted to dynamically vary the physical property of the qubit over time.


The control system may comprise an input configured to receive a feedback signal.


The control system may comprise a pair of inputs configured to receive feedback signals representing an excess of magnetic flux and a deficiency of magnetic flux.


The control system may comprise a pair of outputs configured to produce signals representing an increase of magnetic flux and a decrease of magnetic flux.


The control system may be configured to implement a phase locked loop control. See, en.wikipedia.org/wiki/Phase-locked_loop.


The control system may be configured to implement a frequency locked loop control. See, en.wikipedia.org/wiki/Frequency-locked_loop.


The control system may be configured to receive an optical control signal. See, e.g., Nakahara, K., H. Nagaishi, H. Hasegawa, S. Kominami, H. Yamada, and T. Nishino. “Optical input/output interface system for Josephson junction integrated circuits.” IEEE transactions on applied superconductivity 4, no. 4 (1994): 223-227; Van Zeghbroeck, B. “Optical data communication between Josephson-junction circuits and room-temperature electronics.” IEEE transactions on applied superconductivity 3, no. 1 (1993): 2881-2884; Karlsen, Bjørnar. “Optically operated pulse-driven Josephson junction arrays and range extension using voltage dividers and buffer amplifiers.” (2019); Karlsen, Bjørnar. “Optically operated pulse-driven Josephson junction arrays and range extension using voltage dividers and buffer amplifiers.” (2019).


The control system may be configured to receive a photonic control signal.


The control system may further comprise an optical output signal. See, e.g., Ireland, Jane, Oliver Kieler, Johannes Kohlmann, Helge Malmbekk, Jonathan M. Williams, Ralf Behr, Bjornar Karlsen et al. “Josephson arbitrary waveform system with optoelectronic drive.” In 2017 16th International Superconductive Electronics Conference (ISEC), pp. 1-4. IEEE, 2017; Youssefi, Amir, Itay Shomroni, Yash J. Joshi, Nathan R. Bernier, Anton Lukashchuk, Philipp Uhrich, Liu Qiu, and Tobias J. Kippenberg. “A cryogenic electro-optic interconnect for superconducting devices.” Nature Electronics (2021): 1-7.


The control system may further comprise a photonic output signal. See, Liu, Chenxu, Maria Mucci, Xi Cao, Michael Hatridge, and David Pekker. “Theory of an on-chip Josephson quantum micromaser.” Bulletin of the American Physical Society 65 (2020).


The superconducting inductor may couple the integrated magnetic flux of a transmon qubit circuit of a quantum computing system having a microwave resonance tunable dependent on at least the integrated magnetic flux. The control system tunes the microwave resonance of the transmon qubit circuit by adjusting the integrated magnetic flux dependent on a microwave resonance state of the transmon qubit circuit.


Modulation of signals may be detected by using receiver having a heterodyne or homodyne architecture, as shown in FIG. 12E. In a homodyne, the modulated signal is mixed in a mixer, typically a nonlinear device which produces modulation products of input frequencies f1 and f2 of f1+f2, f1−f2. etc. If f1=f2, the homodyne state, the modulating signal on the inputs will appear in the output as a baseband signal. If f1≠f2, the modulating signal will appear in the output biased with the offset frequency of f1 and f2, in which has the advantage of producing an intermediate frequency that may be bandpass filtered and subjected to other processes and transforms above baseband frequency. Even where modulation of one or both of the signals is immaterial, the mixer permits frequency translation of the output. The detector is a device that determines characteristics of a modulating signal. The output of the detector is used as an input of the control system, which may include a comparing circuit configured to produce a comparison output configured to control the integrated magnetic flux to selectively change the integrated magnetic flux in response to the comparison output.


The magnetic flux control system may further comprise a heterodyne detector. See, e.g., Ilves, Jesper, Shingo Kono, Yoshiki Sunada, Shota Yamazaki, Minkyu Kim, Kazuki Koshino, and Yasunobu Nakamura. “On-demand generation and characterization of a microwave time-bin qubit.” npj Quantum Information 6, no. 1 (2020): 1-7.


The magnetic flux control system may further comprise a homodyne detector. See, e.g., Fong, Kin Chung, Evan Walsh, Gil-Ho Lee, Dmitri Efetov, Jesse Crossno, Leonardo Ranzani, Thomas Ohki, Philip Kim, and Dirk Englund. “Graphene Josephson Junction Microwave Detector.” In APS March Meeting Abstracts, vol. 2017, pp. S51-011. 2017; Salmon, Neil A. “A quantum Bell Test homodyne interferometer at ambient temperature for millimetre wave entangled photons.” In Quantum Information Science and Technology IV, vol. 10803, p. 1080301. International Society for Optics and Photonics, 2018; Vrajitoarea, Andrei, Ziwen Huang, Peter Groszkowski, Jens Koch, and Andrew A. Houck. “Quantum control of an oscillator using a stimulated Josephson nonlinearity.” Nature Physics 16, no. 2 (2020): 211-217; Lüders, Carolin, and Marc Aßmann. “Distinguishing intrinsic photon correlations from external noise with frequency-resolved homodyne detection.” Scientific Reports 10, no. 1 (2020): 1-11.


The magnetic flux control system may further comprise a phase-sensitive amplifier configured to amplify a microwave signal which interacts with at least one qubit.


The magnetic flux control system may further comprise a Josephson parametric amplifier configured to amplify signals associated with at least one qubit. See, e.g., Boutin, Samuel, David M. Toyli, Aditya V. Venkatramani, Andrew W. Eddins, Irfan Siddiqi, and Alexandre Blais. “Effect of higher-order nonlinearities on amplification and squeezing in Josephson parametric amplifiers.” Physical Review Applied 8, no. 5 (2017): 054030; Sivak, V. V., Shyam Shankar, Gangqiang Liu, Jose Aumentado, and M. H. Devoret. “Josephson array-mode parametric amplifier.” Physical Review Applied 13, no. 2 (2020): 024014; Winkel, Patrick, Ivan Takmakov, Dennis Rieger, Luca Planat, Wiebke Hasch-Guichard, Lukas Grünhaupt, Nataliya Maleeva et al. “Nondegenerate parametric amplifiers based on dispersion-engineered josephson-junction arrays.” Physical Review Applied 13, no. 2 (2020): 024015; Planat, Luca, Arpit Ranadive, Rémy Dassonneville, Javier Puertas Martínez, Sébastien Léger, Cécile Naud, Olivier Buisson, Wiebke Hasch-Guichard, Denis M. Basko, and Nicolas Roch. “Photonic-crystal Josephson traveling-wave parametric amplifier.” Physical Review X 10, no. 2 (2020): 021021; Miano, Alessandro, and Oleg A. Mukhanov. “Symmetric traveling wave parametric amplifier.” IEEE Transactions on Applied Superconductivity 29, no. 5 (2019): 1-6; Aumentado, Jose. “Superconducting parametric amplifiers: The state of the art in Josephson parametric amplifiers.” IEEE Microwave Magazine 21, no. 8 (2020): 45-59.


The magnetic flux control system may further comprise a quadrature oscillator. See, Naaman, Ofer, J. A. Strong, D. G. Ferguson, J. Egan, N. Bailey, and R. T. Hinkey. “Josephson junction microwave modulators for qubit control.” Journal of Applied Physics 121, no. 7 (2017): 073904; Naaman, Ofer, Joshua Strong, David Ferguson, Jonathan Egan, Nancyjane Bailey, and Robert Hinkey. “Josephson Junction Microwave Modulators.” In 2018 IEEE/MTT-S International Microwave Symposium-IMS, pp. 1003-1005. IEEE, 2018.


The magnetic flux control system may further comprise a quadrature signal demodulator. See, e.g., Kono, Shingo, Kazuki Koshino, Yutaka Tabuchi, Atsushi Noguchi, and Yasunobu Nakamura. “Quantum non-demolition detection of an itinerant microwave photon.” Nature Physics 14, no. 6 (2018): 546-549.


The control system may be configured to, within a decoherence time of a qubit, maintain a first magnetic flux associated with the qubit, and maintain a second magnetic flux associated with the qubit, wherein the first magnetic flux and the second magnetic flux are different.


The superconducting inductor may be further configured to couple the integrated magnetic flux with a quantum computing circuit comprising at least one qubit circuit having a physical property tunable dependent on at least the magnetic flux, and the control system may be configured to, within a decoherence time of the at least one qubit, maintain a first state of the physical property of the at least one qubit, and subsequently maintain a second state of the physical property of the at least one qubit, wherein the first state and the second state are different.


The physical property may comprise a microwave resonance.


The superconducting inductor may be further configured to couple the integrated magnetic flux with a quantum computing circuit comprising a transmon qubit circuit having a microwave resonance tunable dependent on at least the magnetic flux, and the control system may be configured to, within a quantum calculation period of the transmon qubit, define a first microwave resonant frequency of the transmon qubit, and subsequently define a second microwave resonant frequency of the transmon qubit, wherein the first microwave resonant frequency and the second microwave resonant frequency are different.


The magnetic flux control system may further comprise a magnetometer configured to measure the integrated magnetic flux. The magnetometer may comprise a superconducting quantum interference detector (SQUID) magnetometer. The magnetometer may comprise a superconducting quantum interference filter (SQIF) magnetometer. The control system may further comprise an input for receiving a signal dependent on an output of the magnetometer.


The control system may further comprise an input for receiving a reference frequency signal, an input for receiving a microwave resonance signal, and a comparing circuit producing an output for controlling the magnetic flux to increase or decrease.


The control system may receive control signals comprising a reference frequency signal, and a microwave resonance signal, the control system further comprising a comparing circuit producing an output for controlling the magnetic flux to increase or decrease in dependence on an output of the comparing circuit.


The control system may receive at least one control signal selectively dependent on a signal from a qubit during a quantum computing calculation representing a calculation state of the qubit during a phase of quantum computing, and controls the magnetic flux selectively dependent on the calculation state of the qubit during a subsequent phase of quantum computing.


The magnetic flux control system may further comprise at least one memory configured to persistently store a calibration value, wherein the control system produces the sequence of single-flux-quantum pulses dependent on the persistently stored calibration value. An input may be provided to receive the calibration value. A circuit may be provided to determine the calibration value.


The magnetic flux control system may further comprise a circuit configured to reset the integrated magnetic flux to a predetermine value, e.g., by providing an element that temporarily transitions from a superconducting state to a non-superconducting state to dissipate energy stored in the superconducting inductor.


The control system may be configured to produce at least two types of the sequence of single-flux-quantum pulses, comprising a first type having a first number of single-flux-quantum pulses to change the integrated magnetic flux by a first amount, and second type having a second number of single-flux-quantum pulses to change the integrated magnetic flux by a second amount, the first number being different from the second number.


The control system may be configured to produce at least two types of the sequence of single-flux-quantum pulses, a first type which changes the integrated magnetic flux by a first amount, and second type which changes the integrated magnetic flux by a second amount, the first amount and the second amount being different.


The control system may be configured to produce at least four types of the sequence of single-flux-quantum pulses, comprising a first type having a first number of single-flux-quantum pulses to increase the integrated magnetic flux by a first amount, second type having a second number of single-flux-quantum pulses to increase the integrated magnetic flux by a second amount, a third type having a third number of single-flux-quantum pulses to decrease the integrated magnetic flux by a third amount, and fourth type having a fourth number of single-flux-quantum pulses to decrease the integrated magnetic flux by a second amount, the first number being different from the second number; and the third number being different from the fourth number.


The control system may be configured to produce at least four types of the sequence of single-flux-quantum pulses, a first type which increases the integrated magnetic flux by a first amount, second type which increases the integrated magnetic flux by a second amount, a third type which decreases the integrated magnetic flux by a third amount, and fourth type which decreases the integrated magnetic flux by a fourth amount, the first amount and the second amount being different, and the third amount and the fourth amount being different.


The control system may be configured to produce at least three respectively different types of the sequence of single-flux-quantum pulses, a first type which changes the integrated magnetic flux by a first amount, a second type which changes the integrated magnetic flux by a second amount, and a third type which changes the integrated magnetic flux by a third amount.


The control system may receive at least one control signal representing an amount of change of the integrated magnetic flux, and the control system may be configured to produce at least the first type, the second type, and the third type selectively dependent on the at least one control signal representing an amount of change of the integrated magnetic flux.


The control system may be configured to produce at least two different types of the sequence of single-flux-quantum pulses for increasing the integrated magnetic flux, a first type which produces a single single-flux-quantum pulse and a second type which produces a plurality of single-flux-quantum pulses.


The control system may be configured to produce at least two different types of the sequence of single-flux-quantum pulses for decreasing the integrated magnetic flux, a third type which produces a single single-flux-quantum pulse and a fourth type which produces a plurality of single-flux-quantum pulses.


The control system may be configured to produce at least three different types of the sequence of single-flux-quantum pulses for increasing the integrated magnetic flux, a first type which produces a single single-flux-quantum pulse, a second type which produces a plurality of single-flux-quantum pulses comprising a first range, and a third type which produces a plurality of single-flux-quantum pulses comprising a second range. The first range and the second range may be different. The control system may be configured to produce at least three additional different types of the sequence of single-flux-quantum pulses for decreasing the integrated magnetic flux, a fourth type which produces a single single-flux-quantum pulse, a fifth type which produces a plurality of single-flux-quantum pulses comprising a third range, and a sixth type which produces a plurality of single-flux-quantum pulses comprising a fourth range. The first range and the second range are different, and the third range and the fourth range are different.


It is also an object to provide a flux bias control method, comprising: generating a sequence of single-flux-quantum pulses with a control system having a plurality of Josephson junctions; converting each pulse of the sequence of single-flux-quantum pulses into a magnetic flux with a superconducting circuit; and integrating the magnetic flux with a superconducting inductor, wherein the integrated magnetic flux may be increased and decreased corresponding to at least one control signal of the control system.


The superconducting inductor may couple the integrated magnetic flux with a quantum computing circuit comprising at least one qubit circuit having physical properties tunable dependent on at least the magnetic flux.


The control system may maintain a constant physical property of the at least one qubit over a period.


The control system may dynamically vary the physical property of the at least one qubit over time.


The superconducting inductor may couple the integrated magnetic flux with a qubit circuit having physical properties tunable dependent on at least the magnetic flux.


The control system may maintain a constant physical property of the qubit over a period.


The control system may dynamically vary the physical property of the qubit over time.


A control system feedback signal may be received. A pair of feedback signals may be received representing respectively an excess of magnetic flux and a deficiency of magnetic flux.


A pair of outputs may be provided producing signals representing an increase of magnetic flux and a decrease of magnetic flux.


The control system implements a phase locked loop control and/or a frequency locked loop control.


The magnetic flux control method may receive an optical control signal and/or a photonic control signal, and may produce an optical output signal and/or a photonic output signal.


A microwave signal may be detected with a heterodyne detector or a homodyne detector.


A phase-sensitive amplifier may be provided for amplifying a microwave signal which interacts with at least one qubit. A Josephson parametric amplifier may be provided for amplifying signals associated with at least one qubit. The microwave signal may be an output of a qubit, have a characteristic dependent on the qubit. In some cases, a plurality of qubits are coupled, and an output signal derived from one qubit may be used to influence another qubit.


A quadrature microwave signal may be generated with a quadrature oscillator.


A microwave signal may be demodulated with a quadrature signal demodulator.


Within a decoherence time of a qubit, a first magnetic flux associated with the qubit may be maintained, and subsequently a second magnetic flux associated with the qubit maintained, wherein the first magnetic flux and the second magnetic flux are different.


The magnetic flux control method may further comprise coupling the integrated magnetic flux with a quantum computing circuit comprising at least one qubit circuit having a physical property tunable dependent on at least the magnetic flux, and within a decoherence time of the at least one qubit maintaining a first state of the physical property of the at least one qubit, and subsequently maintaining a second state of the physical property of the at least one qubit, wherein the first state and the second state are different.


The physical property may comprise a microwave resonance.


The superconducting inductor may couple the integrated magnetic flux with a quantum computing circuit comprising a transmon qubit circuit having a microwave resonance tunable dependent on at least the magnetic flux, further comprising, within a quantum calculation period of the transmon qubit: defining a first microwave resonant frequency of the transmon qubit, and subsequently defining a second microwave resonant frequency of the transmon qubit, wherein the first microwave resonant frequency and the second microwave resonant frequency are different.


A magnetometer sensor may be provided to measure the integrated magnetic flux. The magnetometer may comprise a superconducting quantum interference detector (SQUID) magnetometer. The magnetometer may comprise a superconducting quantum interference filter (SQIF) magnetometer. A control system input signal dependent on an output of the magnetometer may be provided.


The magnetic flux control method may further comprise comparing a reference frequency signal, and a microwave resonance signal, and controlling the magnetic flux to increase or decrease in dependence on the comparing.


The magnetic flux control method may further comprise receiving control signals comprising a reference frequency signal, and a microwave resonance signal; comparing the reference frequency signal, and a microwave resonance signal to produce a comparing output; and controlling the magnetic flux to increase or decrease in dependence on the comparing output.


The magnetic flux control method may further comprise receiving at least one control signal selectively dependent on a signal from a qubit during a quantum computing calculation representing a calculation state of the qubit during a phase of quantum computing; and controlling the magnetic flux selectively dependent on the calculation state of the qubit during a subsequent phase of quantum computing.


The magnetic flux control method may further comprise storing a calibration value in a memory, register or analog storage; and producing the sequence of single-flux-quantum pulses dependent on the persistently stored calibration value. The calibration value may be received from an external input. The calibration value may be determined within the control system.


The integrated magnetic flux may be reset to a predetermine value. The integrated magnetic flux may be reset by causing at least one superconducting element associated with the superconducting inductor to become temporarily resistive while a portion of the superconducting inductor remains superconductive. The at least one superconducting element may comprise a superconducting quantum interference device (SQUID) which is induced to enter into a non-superconducting state by exceeding a critical current.


At least two types of the sequence of single-flux-quantum pulses may be produced, comprising a first type having a first number of single-flux-quantum pulses to change the integrated magnetic flux by a first amount, and second type having a second number of single-flux-quantum pulses to change the integrated magnetic flux by a second amount, the first number being different from the second number.


At least two types of the sequence of single-flux-quantum pulses may be produced, comprising a first type which changes the integrated magnetic flux by a first amount, and second type which changes the integrated magnetic flux by a second amount, the first amount and the second amount being different.


At least four types of the sequence of single-flux-quantum pulses may be produced, comprising a first type having a first number of single-flux-quantum pulses to increase the integrated magnetic flux by a first amount, second type having a second number of single-flux-quantum pulses to increase the integrated magnetic flux by a second amount, a third type having a third number of single-flux-quantum pulses to decrease the integrated magnetic flux by a third amount, and fourth type having a fourth number of single-flux-quantum pulses to decrease the integrated magnetic flux by a second amount, the first number being different from the second number; and the third number being different from the fourth number.


At least four types of the sequence of single-flux-quantum pulses may be produced, a first type which increases the integrated magnetic flux by a first amount, second type which increases the integrated magnetic flux by a second amount, a third type which decreases the integrated magnetic flux by a third amount, and fourth type which decreases the integrated magnetic flux by a fourth amount, the first amount and the second amount being different, and the third amount and the fourth amount being different.


The magnetic flux control method may further comprise producing at least three respectively different types of the sequence of single-flux-quantum pulses, a first type which changes the integrated magnetic flux by a first amount, a second type which changes the integrated magnetic flux by a second amount, and a third type which changes the integrated magnetic flux by a third amount. The method may further comprise receiving at least one control signal representing an amount of change of the integrated magnetic flux, and the control system may be configured to produce at least the first type, the second type, and the third type selectively dependent on the at least one control signal representing an amount of change of the integrated magnetic flux.


The magnetic flux control method may further comprise producing at least two different types of the sequence of single-flux-quantum pulses for increasing the integrated magnetic flux, a first type which produces a single single-flux-quantum pulse and a second type which produces a plurality of single-flux-quantum pulses. The method may further comprise producing at least two different types of the sequence of single-flux-quantum pulses for decreasing the integrated magnetic flux, a third type which produces a single single-flux-quantum pulse and a fourth type which produces a plurality of single-flux-quantum pulses.


The magnetic flux control method may further comprise producing at least three different types of the sequence of single-flux-quantum pulses for increasing the integrated magnetic flux, a first type which produces a single single-flux-quantum pulse, a second type which produces a plurality of single-flux-quantum pulses comprising a first range, and a third type which produces a plurality of single-flux-quantum pulses comprising a second range. The first range and the second range may be different. At least three additional different types of the sequence of single-flux-quantum pulses for decreasing the integrated magnetic flux may be produced, a fourth type which produces a single single-flux-quantum pulse, a fifth type which produces a plurality of single-flux-quantum pulses comprising a third range, and a sixth type which produces a plurality of single-flux-quantum pulses comprising a fourth range. The first range and the second range may be different, and the third range and the fourth range may be different.


The magnetic flux from the sequence of single-flux-quantum pulses may be integrated by the superconducting inductor, such that successive single-flux-quantum pulses cause a change in a current in the superconducting inductor by a quantized amount.


The control system may selectively produce single-flux-quantum pulses representing different polarities.


The control system may selectively produce single-flux-quantum pulses of a first type and single-flux-quantum pulses of a second type, wherein the single-flux-quantum pulse of the first type causes an increase in a current in the superconducting inductor, and the single-flux-quantum pulse of the second type causes a decrease in the current in the superconducting inductor. The superconducting circuit may comprise a superconducting transformer primary inductor, coupled to the superconducting inductor as a superconducting transformer secondary inductor. The superconducting transformer primary inductor may have a first terminal and a second terminal, wherein the single-flux-quantum pulse of the first type enters the superconducting transformer primary inductor at the first terminal, and the single-flux-quantum pulse of the second type enters the superconducting transformer primary inductor at the second terminal, such that the single-flux-quantum pulse of the first type acts with opposite polarity with respect to the single-flux-quantum pulse of the first type with respect to changes in the magnetic flux.


The control system may be configured to receive a target value for the magnetic flux, the system further comprising a counter configured to count the single-flux-quantum pulses and cease the sequence of single-flux-quantum pulses when the counter value corresponds to the target value.


The control system may be configured to receive a feedback signal for the magnetic flux, the system further comprising a gate configured to cease the sequence of single-flux-quantum pulses (or their effect on the integrated magnetic flux) when the feedback signal indicates a sufficient correction in the magnetic flux.


The control system may receive a feedback signal and in dependence thereon selectively produce a continuous series of single-flux-quantum pulses of a first type or selectively produce a continuous series of single-flux-quantum pulses of a second type, wherein the single-flux-quantum pulse of the first type causes an increase in a current in the superconducting inductor, and the single-flux-quantum pulse of the second type causes a decrease in the current in the superconducting inductor.


The control system may receive a target value and in dependence thereon selectively produce and count a continuous series of single-flux-quantum pulses of a first type or of a second type, until the count corresponds to the target value, wherein the single-flux-quantum pulse of the first type causes an increase in a current in the superconducting inductor, and the single-flux-quantum pulse of the second type causes a decrease in the current in the superconducting inductor. The counter acts as a numerical integrator for the pulses. Since the pulses are quantized, their cumulative effect correlates with their numerosity.


The control system may receive a feedback signal and in dependence thereon selectively produce: a continuous series of single-flux-quantum pulses of a first type; or a continuous series of single-flux-quantum pulses of a second type; or an output representing no net single-flux-quantum pulses; wherein the single-flux-quantum pulse of the first type causes an increase in a current in the superconducting inductor, the single-flux-quantum pulse of the second type causes a decrease in the current in the superconducting inductor, and the output representing no net single-flux-quantum pulses produces no net change in the current in the superconducting inductor. The output representing no net single-flux-quantum pulses may comprise no single-flux-quantum pulses. The output may represent no net single-flux-quantum pulses may comprise offsetting single-flux-quantum pulses of the first type and single-flux-quantum pulses of the second type.


The control system may receive a target value and in dependence thereon selectively: increment a counter based on a continuous series of single-flux-quantum pulses of a first type until the count increases to the target value; decrement the counter based on a continuous series of single-flux-quantum pulses of a second type until the count decreases to the target value; or suppress net single-flux-quantum pulses while the counter corresponds to an error margin of the target value, wherein the single-flux-quantum pulse of the first type causes an increase in a current in the superconducting inductor, and the single-flux-quantum pulse of the second type causes a decrease in the current in the superconducting inductor. The suppressed net single-flux-quantum pulses may comprise no single-flux-quantum pulses and/or offsetting single-flux-quantum pulses of the first type and single-flux-quantum pulses of the second type.


The system may further comprise a sensor configured to measure the magnetic flux, a sensor configured to measure the physical properties, and/or an input configured to receive a feedback signal dependent on a performance of the plurality of qubits.


The at least one qubit may comprise a plurality of qubits and couplers between the plurality of qubits, having physical properties tunable dependent on the magnetic flux. The qubits may be superconducting qubits.


The control system may selectively produce single-flux-quantum pulses of a first type and single-flux-quantum pulses of a second type, wherein the single-flux-quantum pulse of the first type cause a change in current in the superconducting inductor of a first amplitude, and the single-flux-quantum pulse of the second type causes a change in current in the superconducting inductor of a second amplitude, and wherein the single-flux-quantum pulse of the first type is produced independently of the single-flux-quantum pulse of the second type. The single-flux-quantum pulse of the first type may cause a change in the current in the superconducting inductor which has an absolute value smaller than the change in the current in the superconducting inductor caused by the single-flux-quantum pulse of the second type.


A reset may be provided, configured to establish the magnetic flux at a predetermined value, e.g., zero. The reset may comprise a reset inductor coupled to a superconducting quantum interference device (SQUID) in series with the superconducting inductor, wherein a current in the reset inductor is sufficient to drive the SQUID above its critical current and become resistive and therefore dissipative of energy stored in the superconducting inductor.


It is also an object to provide a flux bias control method, comprising generating a sequence of single-flux-quantum pulses with a control system comprising a plurality of Josephson junctions; converting the sequence of single-flux-quantum pulses into a magnetic flux; coupling the magnetic flux with a quantum computing circuit comprising at least one qubit circuit with a superconducting inductor; and tuning physical properties of the qubit dependent on the magnetic flux.


The magnetic flux from the sequence of single-flux-quantum pulses may be integrated by the superconducting inductor, such that successive single-flux-quantum pulses cause a change in a current in the superconducting inductor by a quantized amount.


The generating may comprise selectively producing single-flux-quantum pulses representing different polarities with a control system.


Single-flux-quantum pulses of a first type and single-flux-quantum pulses of a second type may be selectively produced, wherein the single-flux-quantum pulse of the first type causes an increase in a current in the superconducting inductor, and the single-flux-quantum pulse of the second type causes a decrease in the current in the superconducting inductor.


The sequence of single-flux-quantum pulses may be converted into a magnetic flux by a superconducting circuit comprising a superconducting transformer primary inductor, coupled to the superconducting inductor as a superconducting transformer secondary inductor.


The superconducting transformer primary inductor may have a first terminal and a second terminal, wherein the single-flux-quantum pulse of the first type enters the superconducting transformer primary inductor at the first terminal, and the single-flux-quantum pulse of the second type enters the superconducting transformer primary inductor at the second terminal, such that the single-flux-quantum pulse of the first type acts with opposite polarity with respect to the single-flux-quantum pulse of the first type with respect to changes in the magnetic flux.


The method may further comprise receiving a target value for the magnetic flux; counting the sequence of single-flux-quantum pulses; and ceasing the single-flux-quantum pulses after the counter value corresponds to the target value.


The method may further comprise receiving a feedback signal for the magnetic flux dependent on a required correction of the magnetic flux; and gating the sequence of single-flux-quantum pulses when the feedback signal indicates a sufficient correction of the magnetic flux.


The method may further comprise receiving a feedback signal; and producing a continuous series of single-flux-quantum pulses of a first type or a second type selectively dependent on the feedback signal, wherein the single-flux-quantum pulse of the first type causes an increase in a current in the superconducting inductor, and the single-flux-quantum pulse of the second type causes a decrease in the current in the superconducting inductor.


The method may further comprise receiving a target value; and counting a continuous series of single-flux-quantum pulses of a first type or a second type, until the count corresponds to the target value; wherein the single-flux-quantum pulse of the first type causes an increase in a current in the superconducting inductor, and the single-flux-quantum pulse of the second type causes a decrease in the current in the superconducting inductor.


The method may further comprise receiving a feedback signal; and selectively producing a continuous series of single-flux-quantum pulses of a first type or of a second type or an output representing no net single-flux-quantum pulses, selectively dependent on the feedback signal; wherein the single-flux-quantum pulse of the first type causes an increase in a current in the superconducting inductor, the single-flux-quantum pulse of the second type causes a decrease in the current in the superconducting inductor, and the output representing no net single-flux-quantum pulses produces no net change in the current in the superconducting inductor.


The output representing no net single-flux-quantum pulses may comprise no single-flux-quantum pulses and/or offsetting single-flux-quantum pulses of the first type and single-flux-quantum pulses of the second type.


The method may further comprise receiving a target value; selectively incrementing a counter based on a continuous series of single-flux-quantum pulses of a first type if the count is below the target value; selectively decrementing the counter based on a continuous series of single-flux-quantum pulses of a second type if the count is above the target value; and selectively suppressing net single-flux-quantum pulses if the count corresponds to an error margin of the target value, wherein the single-flux-quantum pulse of the first type causes an increase in a current in the superconducting inductor, and the single-flux-quantum pulse of the second type causes a decrease in the current in the superconducting inductor. The suppressed net single-flux-quantum pulses may comprise no single-flux-quantum pulses and/or offsetting single-flux-quantum pulses of the first type and single-flux-quantum pulses of the second type.


The method may further comprise measuring the magnetic flux or integrated magnetic flux with a sensor, and/or measuring the physical properties with a sensor, and/or receiving a feedback signal dependent on a performance of the plurality of qubits.


The at least one qubit may comprise a plurality of qubits and couplers between the plurality of qubits, having physical properties tunable dependent on the magnetic flux. The qubits may be superconducting qubits.


The method may further comprise selectively producing single-flux-quantum pulses of a first type and selectively producing single-flux-quantum pulses of a second type, wherein the single-flux-quantum pulses of the first type cause an change in current in the superconducting inductor of a first amplitude, and the single-flux-quantum pulses of the second type cause a change in current in the superconducting inductor of a second amplitude, and wherein the single-flux-quantum pulse of the first type is produced independently of the single-flux-quantum pulse of the second type. The single-flux-quantum pulse of the first type may cause a change in the current in the superconducting inductor which has an absolute value smaller than the change in the current in the superconducting inductor caused by the single-flux-quantum pulse of the second type.


The method may further comprise resetting the magnetic flux to a predetermined value. The resetting may comprise passing a pulse through a reset inductor coupled to a superconducting quantum interference device (SQUID) in series with the superconducting inductor, wherein a pulse-induced current in the reset inductor is sufficient to drive the SQUID above its critical current and become resistive and therefore dissipative of energy stored in the superconducting inductor.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows a SFQ flux biasing circuit.



FIG. 2 shows a SFQ flux biasing using chain of JTLs.



FIG. 3 shows a flux biasing using parallel JTLs.



FIG. 4 shows a simulation of flux biasing by adding or removing magnetic fluxons.



FIG. 5 shows an arbitrary-shape time-varying flux-biasing.



FIG. 6 shows a circuit for coarse flux biasing using flux pump.



FIG. 7 shows a combining coarse and fine tune biasing.



FIG. 8 shows a circuit to reset flux stored in the flux biasing circuit.



FIG. 9A shows a block diagram for single-qubit gate operation with time-variable flux biasing.



FIG. 9B shows a block diagram for single-qubit gate operation with time- and pulse rate-variable flux biasing.



FIG. 10A shows a block diagram for multi-qubit gate operation with time-variable flux biasing of qubits and couplers.



FIG. 10B shows a block diagram for multi-qubit gate operation with time- and pulse-rate-variable flux biasing of qubits and couplers.



FIG. 11 shows a single qubit operation combining SFQ pulses for single qubit control and flux biasing.



FIG. 12A shows a block diagram of a prototype SFQ flux bias circuit employing a counter.



FIG. 12B shows a block diagram of a prototype SFQ flux bias circuit employing feedback.



FIG. 12C shows a block diagram of a prototype SFQ flux bias circuit to produce net-zero flux bias pulses for fluxonium control.



FIG. 12D shows a block diagram of a prototype low-hardware-overhead SFQ flux bias circuit to produce net-zero flux bias pulses for fluxonium control.



FIG. 12E shows a block diagram of a circuit which includes a mixer and detector.



FIG. 13 shows a schematic of an amplifying JTL.



FIGS. 14A-14B show a block diagram and circuit schematic of a relaxation oscillator flux pump.



FIG. 14C shows a graph of a simulation of operation of the relaxation oscillator where the dotted curve shows the voltage output, and the solid curve represents the total flux output.



FIG. 15 shows a block diagram of a programmable pulse counter.



FIG. 16A shows a top-level schematic of a prototype SFQ flux bias circuit.



FIG. 16B shows a schematic of the flux generating circuit from FIG. 16A.



FIG. 16C shows a schematic of the switch from FIG. 16B.



FIG. 16D shows a schematic of the synchronizer component of the switch from FIG. 16C.



FIG. 17 shows a circuit layout of a prototype SFQ flux bias circuit.



FIG. 18 shows a simulation of operation of the prototype SFQ flux bias circuit.



FIG. 19 shows experimental measurements of the prototype SFQ bias circuit.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS


FIG. 1 shows a conceptual diagram of a preferred embodiment of a flux biasing circuit. This diagram comprises the flux biasing circuit itself, which generates a time-variable magnetic flux, inductively coupled to a superconducting qubit, or a superconducting coupler between two qubits (Qubit/Coupler). The inductive coupling comprises a transformer, generally without a magnetic core, with a primary inductance Lin, a secondary inductance Lout, and a mutual inductance M. The transformer lines preferably comprise a superconducting material, such as niobium or aluminum, at the cryogenic temperature of operation, so that they are essentially lossless with magnetic flux that is quantized as a multiple of the fluxon Φ0. Both the flux-biasing circuit and the qubit/coupler comprise a plurality of Josephson junctions. The flux biasing circuit and the qubit/coupler may be integrated circuits, which may be fabricated on the same chip, or alternatively they may be fabricated on separate chips that are coupled inductively in a flip-chip geometry.



FIG. 1 also comprises two digital SFQ generating circuits, which may be nominally identical, but which are connected to the primary inductance Lin with opposite polarities, so as to correspond to magnetic flux of opposite signs.


This conceptual diagram is further refined in FIG. 2 to include Josephson Transmission Lines (JTLs) in each of the two channels. The JTLs are used to transport and shape the SFQ pulses, and may also be configured in parallel to achieve current gain, as shown in FIG. 3. While the JTL itself propagates an SFQ pulse in series, the parallel output configuration functions as a digital pulse multiplier, increasing the total flux by a factor of n of the parallel unit cells.



FIGS. 4 and 5 show two examples of time-varying flux profiles that may be generated by such positive and negative fluxon generators. FIG. 4 shows a simple profile that rises linearly, remains constant, and then ramps down again, while FIG. 5 represents an arbitrary variation in time. The time axis is not specified in either case, but the characteristic ramp time can be anywhere from 10 ps to 1 ns or longer, since the individual SFQ pulses have intrinsic pulsewidth of order 1-2 ps. This may be compared to the period of a qubit resonance, which may be of order 100 ps. So, the flux bias variation may occur either within a single resonance period, or over a plurality of resonance periods. Note also that while the SFQ pulses comprise very high frequency components, the circuits can be configured to filter out the highest frequency components to yield a smooth flux profile. Such a smooth flux profile will also not excite quasiparticles in the quantum portion of the circuit, which would tend to reduce quantum coherence times.


A further embodiment of the flux biasing circuit is shown in FIGS. 6 and 7, and comprises a two-stage coarse and fine control. The coarse control may comprise a flux pump that multiplies the flux by a known factor. One embodiment of a flux pump is a SQUID relaxation oscillator, shown in FIGS. 14A-14C and described further below. The two-stage flux bias control permits high precision, high speed, and large dynamic range.


A further refinement is shown in FIG. 8, which resets the flux in the control loop to zero. This is achieved using a SQUID in series with the inductive storage loop. When a control SFQ pulse drives the SQUID above its critical current into its normal state, the loop becomes resistive, and the stored flux of either sign quickly escapes the loop.


The block diagram in FIG. 9A shows the various ways that SFQ digital control may be applied to qubit control. In a preferred embodiment, all of these blocks comprise superconducting circuits located at cryogenic temperatures. The block on the top is the Central Control Unit, which provides the centralized source for clock pulses for synchronization and sequential timing. These clock pulses are also SFQ pulses. SFQ control signals include flux bias for the qubit, but also include other SFQ pulse sequences that can be used to induce quantum transitions, for example. These include the blocks labeled “SFQ Pattern Generation”, “SFQ Amplitude Control”, and “SFQ-Qubit Coupler”. These are similar to prior-art circuits for SFQ control, but here they may be properly synchronized with the flux biasing circuits for improved control.


The block diagram on FIG. 9B shows another embodiment, in which the qubit is controlled exclusively using flux bias pulses (FBP). The shape of the pulses is controlled using blocks “SFQ FBP Amplitude Control” and “SFQ FBP Ramp Control”. Specific control functions for these blocks are generated by “SFQ Flux Bias (FBP) Pattern Generation” block.



FIGS. 10A and 10B take this one step further for two coupled qubits and beyond. The two tunable qubits linked by a coupler, shown in the center of the figure, comprise the superconducting quantum circuit itself. These may be linked to other qubits and couplers, as indicated on the bottom. The completely synchronized digital control at all levels enables new opportunities for precision control while minimizing decoherence of the quantum operation.


An illustrative example of these two types of SFQ control is shown in FIG. 11. The pulses at the bottom (corresponding to opposite polarities) provide a flux bias that first tunes, then detunes, the energy of the qubit, shown in the middle. The pulses on top represent the resonant pulse train coupled to induce a transition of the qubit, during the time that its energy is properly tuned.


In addition to presenting the concept and method of superconducting digital flux bias of qubits, portions of a preferred embodiment have been designed, simulated, fabricated, and demonstrated experimentally.



FIG. 12A shows a block diagram of a flux bias control circuit similar to that shown in FIG. 3. This circuit includes positive and negative flux generating circuits, each with an amplifying JTL (AJTL), a switch, and a counter. This also includes a single coupling inductor L1 that couples magnetic flux to a qubit or coupler, labeled Q, and a superconducting clock source that sets the generation rate of SFQ pulses.


Alternately, as shown in FIG. 12B, a flux bias control circuit similar to that shown in FIG. 3 is provided with a feedback input, based on a sensor measurement or a performance indicator dependent on the output of the qubit. This circuit also includes positive and negative flux generating circuits, each with an amplifying JTL (AJTL), a switch, a comparator for determining whether the magnetic flux is above or below the target value or setpoint, supplied by a controller, and an inverter for driving the opposite phase (Flux on vs. Flux off). The comparator may also have intrinsic complementary outputs. This also includes the single coupling inductor L1 that couples magnetic flux to the qubit or coupler, labeled Q, and a superconducting clock source that sets the generation rate of SFQ pulses. Not shown in FIG. 12B, but as shown in FIG. 12E, is an option for suppressing all pulses, for example when the sensor output or performance indicator demonstrates a sufficient proximity to the target that tuning is not required. Typically, this is produced by a digital control, a deadband control circuit, or hysteresis circuit, which advantageously may be implemented by adjusting the setpoint. The null tuning zone may be implemented by suppression of pulses or by presence of both Flux on and Flux off pulses. The former case reduces power dissipation. Typically, the comparator is implemented in digital logic, though an analog implementation is possible, so long as power dissipation is maintained at a low level. The comparator may be digital in amplitude and analog in time, and operate on phase relationships. For example, if the comparator is clocked, the output may be selectively dependent on whether one input precedes the clock and the other succeeds the clock. If both precede or succeed, then the comparator may produce a null output.



FIG. 12C shows an example of an SFQ circuit to produce net-zero flux bias pulse which can be used for fluxonium control within a single qubit cycle (Larmor period). The net-zero pulse consists of two opposite polarity triangular flux bias pulses applied to the qubit with interval ΔtZ. The amplitude of each pulse is programmed using an SFQ counter, the carry signal of this counter triggers the polarity switch implemented using the toggle flip-flop (TFF). Nondestructive readout switches (ND) are used to control the beginning and completion of pulse generation.



FIG. 12D shows an example of a simplified SFQ circuit to produce net-zero flux bias pulse similar to one described in FIG. 12C. The complexity reduction is achieved by using a dc/SFQ converter which generates control SFQ pulses to set the interval ΔtZ between the opposite polarity flux bias pulses. Although this scheme is simpler on the SFQ side, it requires a control signal for the dc/SFQ converter which can be generated by cryoCMOS or conventional room-temperature electronics.


The AJTL can be a parallel JTL with 6 JTL stages in parallel, as shown in FIG. 13. Alternatively, a flux pump based on a relaxation oscillator (ROS) could be used, as shown in FIGS. 14A-14C. FIG. 14A shows the block diagram of the full flux bias circuit with two ROS circuits for both positive and negative flux. FIG. 14B shows the schematic of ROS, built around a hysteretic Josephson junction Jm2. When this junction switches, it remains in the voltage stage for an extended period of time, typically generating hundreds of fluxons or more. A simulation of operation of the ROS is shown in FIG. 14C, where the oscillating dotted curve shows the voltage output, and the solid curve with a long tail represents the total flux output. This ROS flux bias circuit would be particularly useful for the coarse channel of a two-stage flux bias circuit, as suggested in FIGS. 6 and 7.


The counter can be a fixed frequency divider, based on a simple chain of N T-flip-flops (TFFs), well known in the prior art, which generates 2N SFQ pulses. Alternatively, a programmable counter such as that in FIG. 15 can be used, which can generate an arbitrary programmable number of SFQ pulses up to 2N. This also comprises a series of N TFFs (where N=6 in FIG. 14C), linked to a serially programmable non-destructive readout (NDRO) register.


Portions of the schematic hierarchy for a prototype flux bias control circuit based on FIG. 12 are shown in FIGS. 16A, 16B, 16C, and 16D. FIG. 16A shows the components of the overall bipolar flux control circuit, including the positive and negative flux channels (Flux ON and Flux OFF), two identical flux bias drivers (FB_DRV), a synchronizing clock generator with a splitter for clock distribution, and an output flux bias inductor LFB. This output inductor would couple flux to a qubit or coupler, but the quantum circuit is not included in this prototype demonstration circuit.



FIG. 16B provides a more detailed schematic of the flux bias driver FB_DRV, including a switch, a 16-bit counter, and an amplifying JTL, as shown in the blocks in FIG. 11. The switch is further expanded in FIG. 16C, comprising a synchronizer circuit SYNC and a storage register NDRO. Finally in FIG. 16D, the SYNC circuit is shown to comprise two D-flip-flops (DFF) that are well known in the prior art.


The circuits of FIGS. 16A-16D were laid out on chip using a standard integrated circuit design tool, and parts of this chip layout are shown in FIG. 17. This includes the Flux on and Flux off Bias Drivers, with components counter 171 (×16), switch 172, and JTL current amplifier 173.


The operation of the circuit in FIG. 16 was simulated, and several inputs and outputs are shown in FIG. 18. The plot on top shows several periods of the output current (and hence the flux bias) being ramped up and down. Below this is the clock signal, the alternating flux pulses from the left and right sides (positive and negative flux), and the trigger pulses for the two sides.


A chip based on the layout of FIG. 17 was fabricated using niobium Josephson junction technology, cooled to about 4 K, below the superconducting critical temperature, and tested. Preliminary results are shown in FIG. 19, which shows the clock inputs, the flux pump inputs, and a magnetic flux output as measured by a DC SQUID. Although this was a preliminary low-frequency test, the circuit demonstrated the expected functionality.


Similar superconducting circuits would be expected to exhibit similar performance at high speed, at reduced cryogenic temperatures in the mK range, with flux bias linked to a superconducting qubit or inter-qubit coupler.

Claims
  • 1. A magnetic flux control system, comprising: a superconducting circuit configured to convert each of successive single-flux-quantum pulses into a magnetic flux;a superconducting inductor configured to integrate the magnetic flux from the superconducting circuit to define an integrated magnetic flux; anda control system comprising a plurality of Josephson junctions, the control system being configured to generate at least one output control signal for controlling the superconducting circuit, the output control signal comprising at least one sequence of single-flux-quantum pulses adapted to selectively change the integrated magnetic flux.
  • 2. The magnetic flux control system according to claim 1, further comprising a quantum computing circuit comprising at least one of a qubit and a tunable qubit coupler having at least one physical property tunable dependent on at least the integrated magnetic flux, wherein the integrated magnetic flux is coupled with the at least one of the qubit and the tunable qubit coupler.
  • 3. The magnetic flux control system according to claim 2, wherein the at least one physical property comprises a microwave resonance, an energy, and a phase of the qubit.
  • 4. The magnetic flux control system according to claim 2, wherein the control system is configured to control a dynamic variation of the at least one physical property of the at least one of the qubit and the tunable qubit coupler.
  • 5. The magnetic flux control system according to claim 2, wherein the magnetic flux control system is provided in a first integrated circuit and the at least one of the qubit and the tunable qubit coupler is provided in a second integrated circuit, therein the first integrated circuit and the second integrated circuit are provided on a common substrate.
  • 6. The magnetic flux control system according to claim 2, wherein the magnetic flux control system is provided in a first integrated circuit and the at least one of the qubit and the tunable qubit coupler is provided in a second integrated circuit, therein the first integrated circuit and the second integrated circuit are inductively coupled and provided on separate substrates having a flip chip geometry.
  • 7. The magnetic flux control system according to claim 2, wherein the at least one of the qubit and the tunable qubit coupler comprises a switched qubit coupler configured to selectively control presence and absence of an interaction of a plurality of qubits.
  • 8. The magnetic flux control system according to claim 1, wherein the control system further comprises a pair of output ports configured to produce a first signal adapted to increase the integrated magnetic flux and a second signal adapted to decrease the integrated magnetic flux.
  • 9. The magnetic flux control system according to claim 1, further comprising a frequency mixer and detector configured to receive an output of at least one qubit and produce an input control signal for the control system.
  • 10. The magnetic flux control system according to claim 1, further comprising a superconducting oscillator configured to generate a microwave signal which interacts with a qubit.
  • 11. The magnetic flux control system according to claim 1, wherein: the superconducting inductor is further configured to couple the integrated magnetic flux with a quantum computing circuit comprising a transmon qubit circuit having a microwave resonance tunable dependent on at least the integrated magnetic flux, andthe control system is configured to, within a quantum calculation period of the transmon qubit, define a first microwave resonant frequency of the transmon qubit, and subsequently define a second microwave resonant frequency of the transmon qubit, wherein the first microwave resonant frequency and the second microwave resonant frequency are different.
  • 12. The magnetic flux control system according to claim 1, wherein: the superconducting inductor is further configured to couple the integrated magnetic flux with a quantum computing circuit comprising a transmon qubit circuit having a microwave resonance tunable dependent on at least the integrated magnetic flux, andthe control system is configured to tune the microwave resonance of the transmon qubit circuit with the integrated magnetic flux dependent on a microwave resonance state of the transmon qubit circuit.
  • 13. The magnetic flux control system according to claim 1, wherein the control system further comprises a first input port configured to receive a reference frequency signal, a second input port configured to receive a microwave resonance signal, and a comparing circuit configured to produce a comparison output configured to control the integrated magnetic flux to selectively change the integrated magnetic flux in response to the comparison output.
  • 14. The magnetic flux control system according to claim 1, wherein the control system is further configured to: receive at least one input control signal selectively dependent on a signal from a qubit during a quantum computing calculation representing a calculation state of the qubit during a phase of quantum computing, andcontrol the integrated magnetic flux selectively dependent on the calculation state of the qubit during a subsequent phase of quantum computing.
  • 15. The magnetic flux control system according to claim 1, further comprising: an error input port configured to receive an error signal; andat least one memory configured to persistently store a calibration value dependent on the error signal,wherein the control system produces output control signal selectively dependent on the persistently stored calibration value.
  • 16. The magnetic flux control system according to claim 1, wherein the superconducting circuit is further configured to reset the integrated magnetic flux to a predetermine value.
  • 17. The magnetic flux control system according to claim 1, wherein: the control system is further configured to produce at least two types of the at least one sequence of single-flux-quantum pulses, comprising: a first type of the sequence adapted to change the integrated magnetic flux by a first amount; and a second type of the sequence adapted to change the integrated magnetic flux by a second amount, the first amount being different from the second amount; andthe control system is configured to receive at least one input control signal representing an amount of change of the integrated magnetic flux, and to produce at least the first type of sequence and the second type of sequence selectively dependent on the at least one input control signal.
  • 18. The magnetic flux control system according to claim 1, wherein the control system is further configured to produce at least two different types of the output control signal comprising the at least one sequence of single-flux-quantum pulses, comprising a first type of sequence associated with a first positive whole number of single single-flux-quantum pulses, and a second type of sequence associated with a second positive whole number of single-flux-quantum pulses, the first positive whole number and the second positive whole number being different.
  • 19. The magnetic flux control system according to claim 1, further comprising a counter responsive to a target value, configured to count each single-flux-quantum pulse and selectively produce a signal when a cumulative value of the at least one sequence of single-flux-quantum pulses corresponds to the target value,wherein:the superconducting circuit comprises a superconducting transformer primary inductor, coupled to the superconducting inductor as a superconducting transformer secondary inductor;the at least one sequence of single-flux-quantum pulses comprise first pulses and second pulses; andthe superconducting transformer primary inductor has a first terminal and a second terminal, the first pulses enter the superconducting transformer primary inductor at the first terminal, and the second pulses enter the superconducting transformer primary inductor at the second terminal, such that the first pulses act with opposite polarity with respect to the second pulses with respect to changes in the integrated magnetic flux.
  • 20. The magnetic flux control system according to claim 1, wherein the control system is configured to receive a feedback signal based on a magnitude of the integrated magnetic flux, further comprising a gate configured to cease the at least one sequence of single-flux-quantum pulses when the feedback signal indicates a sufficient correction in the integrated magnetic flux.
  • 21. The magnetic flux control system according to claim 1, further comprising a control system input representing a feedback signal, wherein the control system is configured to produce the at least one output control signal selectively in dependence on the feedback signal, to produce: a continuous series of single-flux-quantum pulses of a first type for increasing the integrated magnetic flux; ora continuous series of single-flux-quantum pulses of a second type for decreasing the integrated magnetic flux; oran output representing no net single-flux-quantum pulses for maintaining the integrated magnetic flux.
  • 22. The magnetic flux control system according to claim 1, further comprising a counter, wherein the control system is configured to receive a target value and in dependence thereon selectively: increment a counter based on a continuous series of single-flux-quantum pulses adapted to increase the integrated magnetic flux;decrement the counter based on a continuous series of single-flux-quantum pulses adapted to decrease the integrated magnetic flux; andsuppress net single-flux-quantum pulses while a count value of the counter corresponds to an error margin of the target value.
  • 23. The magnetic flux control system according to claim 1, further comprising a reset circuit configured to establish the magnetic flux at a predetermined value, the reset circuit comprising a reset inductor coupled to a superconducting quantum interference device (SQUID) having a critical current, in series with the superconducting inductor, wherein a current in the reset inductor is sufficient to drive the SQUID above the critical current and become resistive and dissipative of energy stored in the superconducting inductor.
  • 24. The magnetic flux control system according to claim 1, wherein the control system is configured to implement at least one of a phase locked loop control and a frequency locked loop control.
  • 25. The magnetic flux control system according to claim 1, wherein the control system is configured to receive a photonic input control signal.
  • 26. The magnetic flux control system according to claim 1, wherein the control system further comprises an input port configured to receive at least one feedback signal relating to a magnitude of the integrated magnetic flux.
  • 27. The magnetic flux control system according to claim 1, further comprising a qubit, whose state is represented by a phase and an amplitude a Bloch sphere, coupled to the integrated magnetic flux, wherein the phase and amplitude of the Bloch sphere are responsive to the at least one output control signal.
  • 28. The magnetic flux control system according to claim 1, further comprising a superconducting quantum interference device responsive to the integrated magnetic flux, adapted to produce a magnetometer output, wherein the control system comprises a control system input responsive to the magnetometer output.
  • 29. A magnetic flux control system, comprising: at least one superconducting circuit configured to generate single-flux-quantum pulses;a coupling circuit configured to couple the single-flux-quantum pulses into a corresponding magnetic flux;a superconducting inductor configured to integrate the magnetic flux corresponding to the single-flux-quantum pulses to define an integrated magnetic flux;a qubit having a resonance frequency dependent on the integrated magnetic flux; anda sensor having a sensor output, the sensor being configured to determine at least one of the resonance frequency and the integrated magnetic flux;a control system comprising a plurality of Josephson junctions, the control system being configured to control a value of the integrated magnetic flux dependent on the sensor output.
  • 30. A magnetic flux control method for controlling a superconducting system, comprising a superconducting circuit configured to convert each of successive single-flux-quantum pulses into a magnetic flux, a superconducting inductor configured to integrate the magnetic flux from the superconducting circuit to define an integrated magnetic flux, and a control circuit comprising a plurality of Josephson junctions, the method comprising: defining a target magnetic flux;controlling the superconducting circuit to produce a sequence of single-flux-quantum pulses for monotonically changing the integrated magnetic flux to reduce a difference between the target magnetic flux and the integrated magnetic flux; andcontrolling the superconducting circuit to cease production of the sequence of single-flux-quantum pulses for monotonically changing the integrated magnetic flux and thereby cease monotonically changing the integrated magnetic flux,wherein said controlling superconducting circuit to cease production of the sequence of single-flux-quantum pulses is dependent on a value of the integrated magnetic flux.
US Referenced Citations (2283)
Number Name Date Kind
5170080 Murphy Dec 1992 A
5233242 Murphy Aug 1993 A
5233243 Murphy Aug 1993 A
5289400 Przybysz Feb 1994 A
5388068 Ghoshal Feb 1995 A
5389837 Hietala Feb 1995 A
5598105 Kurosawa Jan 1997 A
5629889 Chandra May 1997 A
5781009 Lee Jul 1998 A
5793055 Kastalsky Aug 1998 A
5818373 Semenov Oct 1998 A
5936458 Rylov Aug 1999 A
5963351 Kaplounenko Oct 1999 A
6023161 Dantsker Feb 2000 A
6175749 Wōrdenweber Jan 2001 B1
6188236 Wikborg Feb 2001 B1
6242939 Nagasawa Jun 2001 B1
6331805 Gupta Dec 2001 B1
6345189 Wördenweber Feb 2002 B1
6345190 Wördenweber Feb 2002 B1
6353330 Kanda Mar 2002 B1
6459097 Zagoskin Oct 2002 B1
6479139 Claeson Nov 2002 B1
6486694 Kirichenko Nov 2002 B1
6495854 Newns Dec 2002 B1
6504172 Zagoskin Jan 2003 B2
6507234 Johnson Jan 2003 B1
6509853 Gupta Jan 2003 B2
6518786 Herr Feb 2003 B2
6537847 Zagoskin Mar 2003 B2
6563310 Zagoskin May 2003 B2
6563311 Zagoskin May 2003 B2
6573202 Ivanov Jun 2003 B2
6576951 Ivanov Jun 2003 B2
6580102 Ivanov Jun 2003 B2
6605822 Blais Aug 2003 B1
6608581 Semenov Aug 2003 B1
6614047 Tzalenchuk Sep 2003 B2
6626995 Kim Sep 2003 B2
6627915 Ustinov Sep 2003 B1
6627916 Amin Sep 2003 B2
6649929 Newns Nov 2003 B2
6670630 Blais Dec 2003 B2
6703857 Kameda Mar 2004 B2
6724216 Suzuki Apr 2004 B2
6725248 Hasegawa Apr 2004 B1
6728131 Ustinov Apr 2004 B2
6734699 Herr May 2004 B1
6753546 Tzalenchuk Jun 2004 B2
6756925 Leung Jun 2004 B1
6773836 Kim Aug 2004 B2
6781435 Gupta Aug 2004 B1
6784451 Amin Aug 2004 B2
6791109 Tzalenchuk Sep 2004 B2
6803599 Amin Oct 2004 B2
6812484 Tzalenchuk Nov 2004 B2
6813056 Cottrell Nov 2004 B2
6822255 Tzalenchuk Nov 2004 B2
6838694 Esteve Jan 2005 B2
6865639 Herr Mar 2005 B2
6885325 Omelyanchouk Apr 2005 B2
6897468 Blais May 2005 B2
6900454 Blais May 2005 B2
6900456 Blais May 2005 B2
6905887 Amin Jun 2005 B2
6909109 Herr Jun 2005 B2
6911664 Il'ichev et al. Jun 2005 B2
6917537 Bunyk Jul 2005 B2
6919579 Amin Jul 2005 B2
6926921 Stasiak Aug 2005 B2
6930318 Vion Aug 2005 B2
6930320 Blais Aug 2005 B2
6936841 Amin Aug 2005 B2
6943368 Amin Sep 2005 B2
6960780 Blais Nov 2005 B2
6979836 Zagoskin Dec 2005 B2
6984846 Newns Jan 2006 B2
6987282 Amin Jan 2006 B2
7002174 Il'ichev et al. Feb 2006 B2
7015499 Zagoskin Mar 2006 B1
7018852 Wu Mar 2006 B2
7042005 Il'ichev et al. May 2006 B2
7078694 Polonsky Jul 2006 B2
7095227 Tarutani Aug 2006 B2
7113967 Cleve Sep 2006 B2
7129870 Hirano Oct 2006 B2
7135701 Amin Nov 2006 B2
7230266 Hilton Jun 2007 B2
7253654 Amin Aug 2007 B2
7268576 Amin Sep 2007 B2
7268713 Suzuki Sep 2007 B2
7280623 Gupta Oct 2007 B2
7307275 Lidar Dec 2007 B2
7313199 Gupta Dec 2007 B2
7321884 Burkard Jan 2008 B2
7332738 Blais Feb 2008 B2
7335909 Amin Feb 2008 B2
7362125 Gupta Apr 2008 B2
7364923 Lidar Apr 2008 B2
7365663 Rylov Apr 2008 B2
7400282 Tanaka Jul 2008 B2
7418283 Amin Aug 2008 B2
7428562 Beausoleil Sep 2008 B2
7440490 Kidiyarova-Shevchenko Oct 2008 B2
7443719 Kirichenko Oct 2008 B2
7468630 Inamdar Dec 2008 B2
7498832 Baumgardner Mar 2009 B2
7505310 Nagasawa Mar 2009 B2
7508230 Kirichenko Mar 2009 B2
7533068 Maassen van den Brink May 2009 B2
7550759 Hakonen Jun 2009 B2
7554369 Kirichenko Jun 2009 B2
7570075 Gupta Aug 2009 B2
7598897 Kirichenko Oct 2009 B2
7605600 Harris Oct 2009 B2
7613764 Hilton Nov 2009 B1
7613765 Hilton Nov 2009 B1
7619437 Thom Nov 2009 B2
7624088 Johnson Nov 2009 B2
7639035 Berkley Dec 2009 B2
7687938 Bunyk Mar 2010 B2
7689068 Wang Mar 2010 B1
7714605 Baumgardner May 2010 B2
7724020 Herr May 2010 B2
7724083 Herring May 2010 B2
7749922 Bezryadin Jul 2010 B2
7772871 Herr Aug 2010 B2
7782077 Herr Aug 2010 B2
7786748 Herr Aug 2010 B1
7788192 Amin Aug 2010 B2
7800395 Johnson Sep 2010 B2
7843209 Berkley Nov 2010 B2
7844656 Macready Nov 2010 B2
7847615 Yorozu Dec 2010 B2
7852106 Herr Dec 2010 B2
7858966 Kitaev Dec 2010 B2
7863892 Morley Jan 2011 B2
7868645 Herr Jan 2011 B2
7870087 Macready Jan 2011 B2
7875876 Wandzura Jan 2011 B1
7876145 Koch Jan 2011 B2
7876248 Berkley Jan 2011 B2
7877333 Macready Jan 2011 B2
7880529 Amin Feb 2011 B2
7889992 DiVincenzo Feb 2011 B1
7893708 Baumgardner Feb 2011 B2
7898282 Harris Mar 2011 B2
7899852 Amin Mar 2011 B2
7912656 Berns Mar 2011 B2
7925614 Burkard Apr 2011 B2
7932514 Farinelli Apr 2011 B2
7932515 Bunyk Apr 2011 B2
7969178 Przybysz Jun 2011 B2
7969805 Thom Jun 2011 B2
7977668 Nevirkovets Jul 2011 B2
7982646 Herr Jul 2011 B2
7984012 Coury Jul 2011 B2
7990662 Berkley Aug 2011 B2
8008942 van den Brink Aug 2011 B2
8008991 Tcaciuc Aug 2011 B2
8018244 Berkley Sep 2011 B2
8032474 Macready Oct 2011 B2
8035540 Berkley Oct 2011 B2
8063657 Rose Nov 2011 B2
8073808 Rose Dec 2011 B2
8089286 Silva Jan 2012 B2
8098179 Bunyk Jan 2012 B2
8102185 Johansson Jan 2012 B2
8111083 Pesetski Feb 2012 B1
8138784 Przybysz Mar 2012 B2
8138880 Keefe Mar 2012 B2
8159313 Uchaykin Apr 2012 B2
8169231 Berkley May 2012 B2
8174305 Harris May 2012 B2
8175995 Amin May 2012 B2
8190548 Choi May 2012 B2
8195596 Rose Jun 2012 B2
8195726 Macready Jun 2012 B2
8222899 Horng Jul 2012 B2
8228688 Uchaykin Jul 2012 B2
8229863 Amin Jul 2012 B2
8234103 Biamonte Jul 2012 B2
8244650 Rose Aug 2012 B2
8244662 Coury Aug 2012 B2
8247799 Bunyk Aug 2012 B2
8275428 Bonderson Sep 2012 B2
8279022 Thom Oct 2012 B2
8283943 van den Brink Oct 2012 B2
8284585 Maekawa Oct 2012 B2
8294138 Farinelli Oct 2012 B2
8315969 Roetteler Nov 2012 B2
8355765 Uchaykin Jan 2013 B2
8386554 Macready Feb 2013 B2
8405468 Uchaykin Mar 2013 B2
8421053 Bunyk Apr 2013 B2
8437168 Maekawa May 2013 B2
8441329 Thom May 2013 B2
8461862 Pesetski Jun 2013 B2
8494993 Harris Jul 2013 B2
8504497 Amin Aug 2013 B2
8508280 Naaman Aug 2013 B2
8536566 Johansson Sep 2013 B2
8560282 Macready Oct 2013 B2
8560470 Amin Oct 2013 B2
8571614 Mukhanov Oct 2013 B1
8604944 Berkley Dec 2013 B2
8606341 Bonderson Dec 2013 B2
8611974 Maibaum Dec 2013 B2
8648331 Bonderson Feb 2014 B2
8654578 Lewis Feb 2014 B2
8655828 Rose Feb 2014 B2
8659007 Bonderson Feb 2014 B2
8670807 Rose Mar 2014 B2
8686751 van den Brink Apr 2014 B2
8738105 Berkley May 2014 B2
8745850 Farinelli Jun 2014 B2
8748196 Bonderson Jun 2014 B2
8748950 Levy Jun 2014 B2
8772759 Bunyk Jul 2014 B2
8786476 Bunyk Jul 2014 B2
8812066 Lanting Aug 2014 B2
8841764 Poletto Sep 2014 B2
8854074 Berkley Oct 2014 B2
8861619 McDermott Oct 2014 B2
8872360 Chow Oct 2014 B2
8874629 Macready Oct 2014 B2
8892857 Ozols Nov 2014 B2
8922239 Pesetski Dec 2014 B2
8928391 Naaman Jan 2015 B2
8951808 Ladizinsky Feb 2015 B2
8975912 Chow Mar 2015 B2
8977576 Macready Mar 2015 B2
9015215 Berkley Apr 2015 B2
9026574 Macready May 2015 B2
9040959 Lutchyn May 2015 B2
9041427 Gambetta May 2015 B2
9059674 Chow Jun 2015 B2
9059707 Gambetta Jun 2015 B2
9069928 van den Brink Jun 2015 B2
9129224 Lanting Sep 2015 B2
9130116 Tolpygo Sep 2015 B1
9134047 Black Sep 2015 B2
9152923 Harris Oct 2015 B2
9152924 Bonderson Oct 2015 B2
9162881 Biamonte Oct 2015 B2
9170278 Neufeld Oct 2015 B2
9178154 Bunyk Nov 2015 B2
9183508 King Nov 2015 B2
9192085 Chavez Nov 2015 B2
9207672 Williams Dec 2015 B2
9208446 Pesetski Dec 2015 B2
9218567 Macready Dec 2015 B2
9231181 Thom Jan 2016 B2
9235811 Stoltz Jan 2016 B2
9240773 Mukhanov Jan 2016 B1
9256834 Bonderson Feb 2016 B2
9275011 Svore Mar 2016 B2
9335385 Lanting May 2016 B2
9344092 Abraham May 2016 B2
9350460 Paik May 2016 B2
9355364 Miller May 2016 B2
9355365 Berkley May 2016 B2
9361169 Berkley Jun 2016 B2
9369133 Naaman Jun 2016 B2
9379303 Gambetta Jun 2016 B2
9384827 Reohr Jul 2016 B1
9385293 Nayfeh Jul 2016 B1
9385294 Rigetti Jul 2016 B2
9396440 Macready Jul 2016 B2
9400499 Williams Jul 2016 B2
9405876 Macready Aug 2016 B2
9406026 Bunyk Aug 2016 B2
9412074 Troyer Aug 2016 B2
9424526 Ranjbar Aug 2016 B2
9425377 Moyerman Aug 2016 B2
9425804 McDermott, III Aug 2016 B2
9432024 Chow Aug 2016 B2
9437800 McDermott, III Sep 2016 B1
9438246 Naaman Sep 2016 B1
9454061 Abdo Sep 2016 B1
9455391 Nayfeh Sep 2016 B1
9460397 Apalkov Oct 2016 B2
9461588 Naaman Oct 2016 B1
9471880 Williams Oct 2016 B2
9473124 Mukhanov Oct 2016 B1
9490296 Ladizinsky Nov 2016 B2
9495644 Chudak Nov 2016 B2
9501747 Roy Nov 2016 B2
9501748 Naaman Nov 2016 B2
9503063 Abraham Nov 2016 B1
9509274 Naaman Nov 2016 B2
9514415 Bocharov Dec 2016 B2
9520180 Mukhanov Dec 2016 B1
9524470 Chow Dec 2016 B1
9547826 King Jan 2017 B2
9548742 Abdo Jan 2017 B1
9559284 Chang Jan 2017 B2
9588940 Hamze Mar 2017 B2
9594726 Macready Mar 2017 B2
9595969 Miller Mar 2017 B2
9607270 Harris Mar 2017 B2
9614532 Bulzacchelli Apr 2017 B1
9633314 Kwon Apr 2017 B2
9646682 Miller May 2017 B1
9647662 Abutaleb May 2017 B1
9663358 Cory May 2017 B1
9665539 Macready May 2017 B1
9680452 Abdo Jun 2017 B1
9685935 Strand Jun 2017 B2
9692423 McDermott, III Jun 2017 B2
9697473 Abdo Jul 2017 B2
9699266 Rose Jul 2017 B2
9710758 Bunyk Jul 2017 B2
9727527 Maassen van den Brink Aug 2017 B2
9727823 Amin Aug 2017 B2
9727824 Rose Aug 2017 B2
9735776 Abdo Aug 2017 B1
9741918 Yohannes Aug 2017 B2
9741920 Tolpygo Aug 2017 B1
9748976 Naaman Aug 2017 B2
9755133 Nayfeh Sep 2017 B1
9761305 Reohr Sep 2017 B2
9762200 Thom Sep 2017 B2
9767238 Oberg Sep 2017 B2
9768371 Ladizinsky Sep 2017 B2
9768771 Naaman Sep 2017 B2
9779360 Bunyk Oct 2017 B2
9780764 Pesetski Oct 2017 B2
9780765 Naaman Oct 2017 B2
9787278 Abdo Oct 2017 B1
9787312 Herr Oct 2017 B2
9793913 Bulzacchelli Oct 2017 B2
9806711 Abdo Oct 2017 B1
9812836 Osborn Nov 2017 B1
9818064 Abdo Nov 2017 B1
9836699 Rigetti Dec 2017 B1
9845153 Sekelsky Dec 2017 B2
9853645 Mukhanov Dec 2017 B1
9865648 Bunyk Jan 2018 B2
9870277 Berkley Jan 2018 B2
9875215 Macready Jan 2018 B2
9875444 King Jan 2018 B2
9880365 Goutzoulis Jan 2018 B2
9881256 Hamze Jan 2018 B2
9882112 Kwon Jan 2018 B2
9887000 Mukhanov Feb 2018 B1
9892365 Rigetti Feb 2018 B2
9909460 Allen Mar 2018 B2
9913414 Sadleir Mar 2018 B2
9917580 Naaman Mar 2018 B2
9922289 Abdo Mar 2018 B2
9928948 Naaman Mar 2018 B2
9929978 Naaman Mar 2018 B2
9935252 Abraham Apr 2018 B2
9940586 Epstein Apr 2018 B1
9945917 Drake Apr 2018 B2
9948254 Narla Apr 2018 B2
9952830 Tomaru Apr 2018 B2
9953268 Abdo Apr 2018 B2
9953269 Chow Apr 2018 B2
9966926 Abdo May 2018 B2
9971970 Rigetti May 2018 B1
9978020 Gambetta May 2018 B1
9978809 Ladizinsky May 2018 B2
9984333 Biamonte May 2018 B2
9991864 Strong Jun 2018 B2
9996801 Shim Jun 2018 B2
9998122 Hamilton Jun 2018 B2
10002107 Lanting Jun 2018 B2
10006859 Ashrafi Jun 2018 B2
10012704 Coar Jul 2018 B2
10013657 Bourassa Jul 2018 B2
10014859 Abdo Jul 2018 B2
10020438 Yazdani Jul 2018 B2
10031887 Raymond Jul 2018 B2
10037493 Harris Jul 2018 B2
10042805 Naaman Aug 2018 B2
10044638 Dadashikelayeh Aug 2018 B2
10050630 Reagor Aug 2018 B2
10056540 Abraham Aug 2018 B2
10056908 Rigetti Aug 2018 B2
10062828 Abdo Aug 2018 B2
10062829 Abdo Aug 2018 B1
10068180 Amin Sep 2018 B2
10068181 Rigetti Sep 2018 B1
10068184 Hertzberg Sep 2018 B1
10074056 Epstein Sep 2018 B2
10074792 Ferguson Sep 2018 B1
10074793 Abdo Sep 2018 B2
10084436 Goto Sep 2018 B2
10084454 Braun Sep 2018 B1
10097143 Abdo Oct 2018 B2
10097151 Thom Oct 2018 B2
10097186 Epstein Oct 2018 B1
10097281 Vernik Oct 2018 B1
10103730 Abdo Oct 2018 B1
10108071 Abdo Oct 2018 B2
10121754 Oliver Nov 2018 B2
10122351 Naaman Nov 2018 B1
10127500 Abdo Nov 2018 B2
10133959 Ahn Nov 2018 B2
10133984 Clarke Nov 2018 B2
10134972 Oliver Nov 2018 B2
10140248 Maassen van den Brink Nov 2018 B2
10140404 Rigetti Nov 2018 B2
10141493 Tuckerman Nov 2018 B2
10141928 Abdo Nov 2018 B2
10147865 Tahan Dec 2018 B1
10158343 Keane Dec 2018 B1
10161870 Ashrafi Dec 2018 B2
10164606 Keane Dec 2018 B1
10169714 Chow Jan 2019 B2
10170680 Abraham Jan 2019 B2
10170681 Rosenblatt Jan 2019 B1
10171077 Abdo Jan 2019 B2
10176432 Abdo Jan 2019 B2
10177297 Marcus Jan 2019 B2
10187065 Kerman Jan 2019 B2
10192168 Rigetti Jan 2019 B2
10197497 Kolkowitz Feb 2019 B2
10199553 Oliver Feb 2019 B1
10209192 Ashrafi Feb 2019 B2
10210460 Abdo Feb 2019 B2
10211798 Abdo Feb 2019 B2
10229355 Ronagh Mar 2019 B2
10229366 Gambetta Mar 2019 B2
10230038 Abdo Mar 2019 B2
10235634 Chen Mar 2019 B1
10235635 Abdo Mar 2019 B1
10236432 Abdo Mar 2019 B2
10242968 Das Mar 2019 B2
10243132 Rosenblatt Mar 2019 B1
10250271 Goto Apr 2019 B2
10255557 Epstein Apr 2019 B2
10256206 Falcon Apr 2019 B2
10256392 Brink Apr 2019 B1
10262276 Puri Apr 2019 B2
10262727 Przybysz Apr 2019 B2
10263170 Brink Apr 2019 B1
10268622 Hilton Apr 2019 B2
10268968 Abraham Apr 2019 B2
10275422 Israel Apr 2019 B2
10275556 Sarpeshkar Apr 2019 B2
10275718 Kerman Apr 2019 B2
10276771 Abdo Apr 2019 B2
10276772 Abdo Apr 2019 B2
10281278 Moxley, III May 2019 B2
10282675 Bloom May 2019 B2
10283693 Kerman May 2019 B2
10283694 Yohannes May 2019 B2
10289960 Chow May 2019 B2
10290798 Harris May 2019 B2
10291227 Abdo May 2019 B2
10304004 Chow May 2019 B2
10304005 Chow May 2019 B2
10305015 Brink May 2019 B1
10311369 Epstein Jun 2019 B2
10318880 Pereverzev Jun 2019 B2
10318881 Rose Jun 2019 B2
10319896 Falcon Jun 2019 B2
10320331 Abdo Jun 2019 B1
10320383 Abdo Jun 2019 B2
10326071 Uchaykin Jun 2019 B2
10332023 Mezzacapo Jun 2019 B2
10332024 Scheer Jun 2019 B2
10333046 Abdo Jun 2019 B2
10333047 Gilbert Jun 2019 B2
10333048 Barkeshli Jun 2019 B2
10339239 Oberg Jul 2019 B2
10340438 Rosenblatt Jul 2019 B2
10345678 Abdo Jul 2019 B2
10346348 Hastings Jul 2019 B2
10346349 Maassen van den Brink Jul 2019 B2
10346508 Amin Jul 2019 B2
10346760 Mohseni Jul 2019 B2
10346761 Clarke Jul 2019 B2
10347813 Abdo Jul 2019 B2
10348245 Abdo Jul 2019 B1
10352992 Zeng Jul 2019 B1
10353844 Naaman Jul 2019 B2
10354198 Filipp Jul 2019 B1
10355193 Rosenblatt Jul 2019 B2
10355677 Miller Jul 2019 B1
10366340 Przybysz Jul 2019 B2
10367132 Krogstrup Jul 2019 B2
10367133 Tahan Jul 2019 B1
10374612 Sinclair Aug 2019 B1
10379174 Hahn Aug 2019 B2
10379420 Wang Aug 2019 B1
10380494 Abraham Aug 2019 B2
10380495 Leek Aug 2019 B2
10380496 Elsherbini Aug 2019 B2
10381541 Das Aug 2019 B2
10381542 Chang Aug 2019 B2
10389336 Miller Aug 2019 B1
10396269 Oliver Aug 2019 B2
10396782 Abdo Aug 2019 B2
10396801 Kerman Aug 2019 B2
10398031 Abdo Aug 2019 B2
10403809 Krogstrup Sep 2019 B2
10404214 Szöcs Sep 2019 B2
10411321 Mueller Sep 2019 B2
10417574 Babbush Sep 2019 B2
10418540 Orcutt Sep 2019 B2
10423888 Hertzberg Sep 2019 B1
10424711 Schoelkopf, III Sep 2019 B2
10424712 Schoelkopf, III Sep 2019 B2
10424713 Rosenblatt Sep 2019 B2
10444148 Ashrafi Oct 2019 B2
10452991 Ganzhorn Oct 2019 B1
10453894 Ladizinsky Oct 2019 B2
10454015 Lanting Oct 2019 B2
10454016 Fong Oct 2019 B2
10460796 Mukhanov Oct 2019 B1
10461385 Sliwa Oct 2019 B2
10467543 Macready Nov 2019 B2
10467544 Filipp Nov 2019 B2
10467545 Harris Nov 2019 B2
10468578 Elsherbini Nov 2019 B2
10468740 Minev Nov 2019 B2
10468793 Petroff Nov 2019 B2
10475983 Rosenblatt Nov 2019 B1
10482388 Jock Nov 2019 B1
10483980 Sete Nov 2019 B2
10488469 Martinis Nov 2019 B2
10489477 Lanting Nov 2019 B2
10490600 Freedman Nov 2019 B2
10491178 Naaman Nov 2019 B2
10491221 McKay Nov 2019 B1
10496933 Karzig Dec 2019 B1
10496934 Rigetti Dec 2019 B2
10497853 Mutus Dec 2019 B2
10510015 Mohseni Dec 2019 B2
10510943 Topaloglu Dec 2019 B1
10527746 Hansen Jan 2020 B2
10528885 Chow Jan 2020 B2
10528886 Boothby Jan 2020 B2
10528887 Chen Jan 2020 B2
10535013 Abdo Jan 2020 B2
10535809 Vodrahalli Jan 2020 B1
10540603 Naaman Jan 2020 B2
10540604 Papageorge Jan 2020 B1
10541659 Abdo Jan 2020 B2
10546992 Fuhrer Jan 2020 B2
10546993 Ferguson Jan 2020 B2
10552755 Lanting Feb 2020 B2
10552757 Amin Feb 2020 B2
10553775 Goto Feb 2020 B2
10554207 Herr Feb 2020 B1
10560103 Reagor Feb 2020 B2
10565515 Lampert Feb 2020 B2
10567100 Abdo Feb 2020 B2
10571530 Hansen Feb 2020 B2
10572816 Vavilov Feb 2020 B1
10578891 Schmeing Mar 2020 B1
10581394 Abdo Mar 2020 B2
10586908 Rosen Mar 2020 B2
10586909 Das Mar 2020 B2
10586911 Sandberg Mar 2020 B1
10593858 Brink Mar 2020 B2
10593879 Schrade Mar 2020 B2
10599988 Thom Mar 2020 B2
10599990 Leek Mar 2020 B2
10608044 Herr Mar 2020 B1
10614372 Mohseni Apr 2020 B2
10615223 Rosenblatt Apr 2020 B2
10615783 Powell, III Apr 2020 B2
10621140 Raymond Apr 2020 B2
10621502 Solgun Apr 2020 B2
10622977 Naaman Apr 2020 B2
10622998 Najafi-Yazdi Apr 2020 B1
10628752 Abdo Apr 2020 B2
10628753 Kelly Apr 2020 B2
10629978 Abdo Apr 2020 B2
10635988 Lutchyn Apr 2020 B2
10635989 Blais Apr 2020 B2
10637142 Tran Apr 2020 B1
10637479 Hamilton Apr 2020 B2
10643143 Bloom May 2020 B2
10644217 Rosenblatt May 2020 B2
10644809 Vernik May 2020 B1
10650319 Medford May 2020 B2
10650320 Chen May 2020 B2
10650322 Temme May 2020 B1
10650323 Epstein May 2020 B2
10651361 Brink May 2020 B2
10651808 Egan May 2020 B2
10657198 Amin May 2020 B2
10657455 Barzegar May 2020 B2
10657456 Kharzeev May 2020 B1
10658424 Oliver May 2020 B2
10665635 Sandberg May 2020 B1
10665701 Freedman May 2020 B2
10665769 Caudillo May 2020 B2
10665918 Mueller May 2020 B2
10671559 Mohseni Jun 2020 B2
10671937 Yarkoni Jun 2020 B2
10677953 Stetson Jun 2020 B2
10686007 George Jun 2020 B2
10686115 Abdo Jun 2020 B2
10691633 Maassen van den Brink Jun 2020 B2
10692010 Freedman Jun 2020 B2
10693566 Sliwa Jun 2020 B2
10700256 Ladizinsky Jun 2020 B2
10700257 Jinka Jun 2020 B2
10705163 Barry Jul 2020 B2
10706366 Scheer Jul 2020 B2
10707402 Rosenblatt Jul 2020 B2
10707812 Abdo Jul 2020 B2
10707873 Katam Jul 2020 B2
10712408 Pham Jul 2020 B2
10713584 Mohseni Jul 2020 B2
10715083 Abdo Jul 2020 B2
10719775 Kerman Jul 2020 B2
10719776 Kelly Jul 2020 B1
10720562 Krogstrup Jul 2020 B2
10720563 Jeffrey Jul 2020 B1
10720887 Abdo Jul 2020 B2
10725131 Clerk Jul 2020 B2
10726351 Li Jul 2020 B1
10726353 Ashrafi Jul 2020 B2
10735003 Kerman Aug 2020 B2
10740688 Selvanayagam Aug 2020 B2
10741742 David Aug 2020 B2
10741744 Moodera Aug 2020 B2
10748078 Filipp Aug 2020 B2
10748079 Boothby Aug 2020 B2
10748082 Rigetti Aug 2020 B2
10748960 Michalak Aug 2020 B2
10748961 Michalak Aug 2020 B2
10749095 Ferguson Aug 2020 B2
10749096 Przybysz Aug 2020 B2
10755190 Tcaciuc Aug 2020 B2
10755194 Mohseni Aug 2020 B2
10756004 Elsherbini Aug 2020 B1
10756712 Braun Aug 2020 B2
10763420 Yoscovits Sep 2020 B2
10769545 Amin Sep 2020 B2
10769546 Rigetti Sep 2020 B1
10775173 Moxley, III Sep 2020 B2
10776709 Shen Sep 2020 B2
10784432 Rosenblatt Sep 2020 B2
10784569 Ashrafi Sep 2020 B2
10789123 Ioffe Sep 2020 B2
10789329 Lanting Sep 2020 B2
10789541 Mohseni Sep 2020 B2
10790566 Gumann Sep 2020 B2
10797684 Benz Oct 2020 B1
10803396 Yoscovits Oct 2020 B2
10804874 Abdo Oct 2020 B2
10810506 Zota Oct 2020 B1
10810507 Temme Oct 2020 B2
10811276 Megrant Oct 2020 B2
10811588 Olivadese Oct 2020 B2
10813219 Abdo Oct 2020 B2
10817463 DeBenedictis Oct 2020 B1
10817796 Macready Oct 2020 B2
10819281 Goto Oct 2020 B2
10826845 Dadashikelayeh Nov 2020 B2
10832155 Lechner Nov 2020 B2
10832156 Chen Nov 2020 B2
10833121 Rosenblatt Nov 2020 B2
10833242 Orcutt Nov 2020 B2
10833243 Tolpygo Nov 2020 B1
10833680 McKay Nov 2020 B2
10839305 Ian Nov 2020 B2
10839306 Mezzacapo Nov 2020 B2
10840295 Sandberg Nov 2020 B2
10847705 Lampert Nov 2020 B2
10852346 Zeng Dec 2020 B1
10852366 Ferguson Dec 2020 B2
10858239 Painter Dec 2020 B2
10858240 Painter Dec 2020 B2
10859641 Petrashov Dec 2020 B2
10868540 Herr Dec 2020 B2
10872021 Tezak Dec 2020 B1
10879202 Lewandowski Dec 2020 B1
10879446 Caudillo Dec 2020 B2
10884033 Przybysz Jan 2021 B2
10885459 Biamonte Jan 2021 B2
10886049 Strong Jan 2021 B2
10886454 Rosenblatt Jan 2021 B2
10891554 Harris Jan 2021 B2
10892751 Abdo Jan 2021 B2
10901062 Walsworth Jan 2021 B2
10903411 Marcus Jan 2021 B2
10903809 White Jan 2021 B2
10914969 Schmeing Feb 2021 B2
10915832 Mohseni Feb 2021 B2
10916690 Adiga Feb 2021 B2
10916821 Painter Feb 2021 B2
10917096 Mukhanov Feb 2021 B1
10922381 Amin Feb 2021 B2
10922617 Babbush Feb 2021 B2
10922619 Mohseni Feb 2021 B2
10924095 McKay Feb 2021 B1
10929576 Ronagh Feb 2021 B2
10937941 Abraham Mar 2021 B2
10938346 Berkley Mar 2021 B2
10942804 Kerman Mar 2021 B2
10943180 Abdo Mar 2021 B2
10944362 Abdo Mar 2021 B2
10946219 Tahar Mar 2021 B2
10949769 Chen Mar 2021 B2
10950299 Mukhanov Mar 2021 B1
10950654 Kelly Mar 2021 B2
10950778 Graninger Mar 2021 B2
10956267 Kapit Mar 2021 B2
10957841 Megrant Mar 2021 B2
10958274 Najafi-Yazdi Mar 2021 B2
10964997 Schuster Mar 2021 B2
10969443 Martinis Apr 2021 B2
10971672 Olivadese Apr 2021 B2
10972190 Henningsen Apr 2021 B2
10978425 White Apr 2021 B2
10978632 Kallaher Apr 2021 B2
10984336 Herr Apr 2021 B2
10985308 Vodrahalli Apr 2021 B1
10985701 Abdo Apr 2021 B1
10989767 Ferguson Apr 2021 B2
10990017 Burkett Apr 2021 B2
10991755 Ladizinsky Apr 2021 B2
10996979 Bishop May 2021 B2
10998869 Miano May 2021 B2
11002677 Ashrafi May 2021 B2
11010145 Smith May 2021 B1
11010683 Amin May 2021 B2
11011693 Lampert May 2021 B2
11017289 Crawford May 2021 B2
11017310 Chu May 2021 B2
11018290 David May 2021 B2
11031537 Harris Jun 2021 B2
11038095 Huang Jun 2021 B2
11050009 Topaloglu Jun 2021 B2
11050010 Jinka Jun 2021 B2
11055625 Kenawy Jul 2021 B2
11057000 Abdo Jul 2021 B2
11064637 Sterling Jul 2021 B2
11070210 Reagor Jul 2021 B2
11079354 Chen Aug 2021 B2
11083807 Ashrafi Aug 2021 B2
11088312 Schueffelgen Aug 2021 B2
11093440 Maassen van den Brink Aug 2021 B2
11100418 Bunyk Aug 2021 B2
11106980 Kapit Aug 2021 B2
11108398 Sete Aug 2021 B2
11112842 Smith Sep 2021 B1
11120357 Zeng Sep 2021 B2
11127893 Johnson Sep 2021 B2
11133450 Mutus Sep 2021 B2
11133451 Mutus Sep 2021 B2
11138511 Yarkoni Oct 2021 B2
11152471 Teo Oct 2021 B1
11156460 Moxley, III Oct 2021 B2
11164103 Bloom Nov 2021 B2
11164104 Ashrafi Nov 2021 B2
11164677 Harris Nov 2021 B1
11170317 Chow Nov 2021 B2
11170318 Ashrafi Nov 2021 B2
11170846 Bosman Nov 2021 B2
11176082 Novotny Nov 2021 B2
11177428 Jinka Nov 2021 B2
11177912 Elsherbini Nov 2021 B2
11183989 Thorbeck Nov 2021 B1
11188843 Barzegar Nov 2021 B2
11194573 Smith Dec 2021 B1
11194659 Versluis Dec 2021 B2
11197365 Lucero Dec 2021 B2
11201274 Abdo Dec 2021 B2
11210600 Von Salis Dec 2021 B2
11223005 Sandberg Jan 2022 B2
11223355 Smith Jan 2022 B2
11238131 Hamze Feb 2022 B2
11258415 Shainline Feb 2022 B2
11271533 Narla Mar 2022 B2
11281524 Egger Mar 2022 B1
11283002 Shainline Mar 2022 B2
11289639 Gilbert Mar 2022 B2
11294986 Mezzacapo Apr 2022 B2
11295225 Hoskinson Apr 2022 B2
11302856 Lescanne Apr 2022 B2
11307242 Zeng Apr 2022 B1
11309478 David Apr 2022 B2
11313925 Zhou Apr 2022 B2
11321627 Arriola May 2022 B1
11341425 Tomaru May 2022 B2
11342493 Oliver May 2022 B2
11346872 Whiteley May 2022 B1
11348024 Harris May 2022 B2
11348025 Barends May 2022 B2
11348026 Thom May 2022 B2
11348027 Huang May 2022 B1
11356148 Ashrafi Jun 2022 B2
11361240 Roberts Jun 2022 B2
11362656 Beck Jun 2022 B1
11367011 Kelly Jun 2022 B2
11367012 Abdo Jun 2022 B2
11374537 Abdo Jun 2022 B2
11374554 Sun Jun 2022 B2
11392848 Clarke Jul 2022 B2
11403168 Abdo Aug 2022 B2
11406583 Mukhanov Aug 2022 B1
11409426 Thom Aug 2022 B2
11411158 Phung Aug 2022 B2
11411159 White Aug 2022 B1
11415642 Pellegrino Aug 2022 B2
11423115 Lanting Aug 2022 B2
11424521 Whittaker Aug 2022 B2
11429887 Ferguson Aug 2022 B2
11430831 Gumann Aug 2022 B2
11436398 Noh Sep 2022 B2
11449784 Sterling Sep 2022 B2
11455207 Chamberland Sep 2022 B2
11456741 Ahonen Sep 2022 B2
11468219 Chamberland Oct 2022 B2
11469485 Lauer Oct 2022 B2
11476836 Goto Oct 2022 B1
11481669 Rolfe Oct 2022 B2
11482656 Neill Oct 2022 B2
11482657 Topaloglu Oct 2022 B2
11488050 Shah Nov 2022 B2
11494681 Peterson Nov 2022 B1
11494683 Amin Nov 2022 B2
11501195 Rose Nov 2022 B2
11501196 Frisch Nov 2022 B2
11507875 Bauer Nov 2022 B2
11508896 Yohannes Nov 2022 B1
11514223 Molavi Nov 2022 B2
11515851 Vesterinen Nov 2022 B2
11526463 Maassen van den Brink Dec 2022 B2
11531924 Chen Dec 2022 B2
11536780 Beck Dec 2022 B2
11545974 Phung Jan 2023 B2
11552238 Shabani Jan 2023 B2
11552239 Abdo Jan 2023 B2
11562284 Ryan Jan 2023 B1
11567762 Smith Jan 2023 B1
11567887 Black Jan 2023 B2
11569205 White Jan 2023 B2
11569428 Roberts Jan 2023 B2
11573259 Zeng Feb 2023 B1
11580436 Chamberland Feb 2023 B2
11586448 Lauer Feb 2023 B2
11586702 Shehab Feb 2023 B2
11593698 Bloom Feb 2023 B2
11599819 Abdo Mar 2023 B2
11600588 Yao Mar 2023 B1
11605772 Olivadese Mar 2023 B2
11615336 Oliver Mar 2023 B2
11616187 Graninger Mar 2023 B2
11620560 McKay Apr 2023 B2
11620561 Novotny Apr 2023 B2
11621386 Hart Apr 2023 B2
11626227 Choi Apr 2023 B2
11626555 Finck Apr 2023 B2
11646734 Marakov May 2023 B1
11651263 Martinis May 2023 B2
11658660 Finck May 2023 B1
11664570 Underwood May 2023 B2
11664801 Finck May 2023 B1
11672187 Holmes Jun 2023 B2
11675222 Karinou Jun 2023 B2
11677402 Sete Jun 2023 B2
11678590 Schueffelgen Jun 2023 B2
11681940 King Jun 2023 B2
11683996 Hart Jun 2023 B2
11687819 Jin Jun 2023 B2
11694106 McKay Jul 2023 B2
11695417 Winik Jul 2023 B1
11695418 Archambault Jul 2023 B2
11699091 Woods Jul 2023 B2
11700777 Rosenblatt Jul 2023 B2
11701441 Ashrafi Jul 2023 B2
11704012 Thom Jul 2023 B2
11704586 Thom Jul 2023 B2
11708595 Chen Jul 2023 B2
11714142 Phung Aug 2023 B2
11717475 Mukhanov Aug 2023 B1
11727295 Hart Aug 2023 B2
11727296 Pereverzev Aug 2023 B2
11727297 Stehlik Aug 2023 B2
11728772 Abdo Aug 2023 B2
11730066 Johnson Aug 2023 B2
11734387 Mezzacapo Aug 2023 B2
11735291 Stober Aug 2023 B2
11736122 Yoder Aug 2023 B1
11737376 Frattini Aug 2023 B2
11741279 Campbell Aug 2023 B2
11742831 Goto Aug 2023 B2
11748650 Huang Sep 2023 B2
11750175 Kumph Sep 2023 B2
11751489 Finck Sep 2023 B2
11755940 Jin Sep 2023 B2
11757467 Knee Sep 2023 B2
11764780 Yamaguchi Sep 2023 B2
11765986 Topaloglu Sep 2023 B2
11769069 Jin Sep 2023 B2
11774522 Beck Oct 2023 B2
11775711 Marthaler Oct 2023 B2
11778928 Hyyppä Oct 2023 B2
11786616 Ashrafi Oct 2023 B2
11789812 Lauer Oct 2023 B2
11790259 Harris Oct 2023 B2
11790261 Rosenthal Oct 2023 B2
11791818 Mundhada Oct 2023 B2
11797874 Bunyk Oct 2023 B2
11803441 Chen Oct 2023 B2
11812671 Rosenblatt Nov 2023 B2
11816536 Biamonte Nov 2023 B2
11823997 Thomas Nov 2023 B2
11829753 Smith Nov 2023 B1
11836574 Amin Dec 2023 B2
11839164 Swenson Dec 2023 B2
11846590 Wang Dec 2023 B2
11856871 Lanting Dec 2023 B2
11863279 Jamieson Jan 2024 B2
11868847 Stehlik Jan 2024 B2
11875222 Reagor Jan 2024 B1
11876512 Beck Jan 2024 B1
11879950 Swenson Jan 2024 B2
11880742 Suttle Jan 2024 B2
11886092 Spence Jan 2024 B2
11900219 Ryan Feb 2024 B1
11901957 Henningsen Feb 2024 B2
11906877 Mukhanov Feb 2024 B2
11908756 Abraham Feb 2024 B2
11917928 Gao Feb 2024 B2
11922276 Barends Mar 2024 B2
11928004 Earnest-Noble Mar 2024 B2
11929711 Bardin Mar 2024 B2
11930721 Ladizinsky Mar 2024 B2
11937516 Topaloglu Mar 2024 B2
20010020701 Zagoskin Sep 2001 A1
20010023943 Zagoskin Sep 2001 A1
20010025012 Tarutani Sep 2001 A1
20010035524 Zehe Nov 2001 A1
20010040447 Tanaka Nov 2001 A1
20010055669 Schultz Dec 2001 A1
20010055775 Schultz Dec 2001 A1
20020060635 Gupta May 2002 A1
20020066936 Maris Jun 2002 A1
20020075057 Tanaka Jun 2002 A1
20020095765 Zhou Jul 2002 A1
20020097047 Odawara Jul 2002 A1
20020102674 Anderson Aug 2002 A1
20020105948 Glomb Aug 2002 A1
20020115571 Yokosawa Aug 2002 A1
20020117467 Tanda Aug 2002 A1
20020117656 Amin Aug 2002 A1
20020117738 Amin Aug 2002 A1
20020119243 Schultz Aug 2002 A1
20020121636 Amin Sep 2002 A1
20020128156 Morooka Sep 2002 A1
20020130313 Zagoskin Sep 2002 A1
20020130315 Zagoskin Sep 2002 A1
20020152810 Couture Oct 2002 A1
20020169079 Suzuki Nov 2002 A1
20020177529 Ustinov Nov 2002 A1
20020177769 Orbach Nov 2002 A1
20020179937 Ivanov Dec 2002 A1
20020179939 Ivanov Dec 2002 A1
20020180006 Franz Dec 2002 A1
20020188578 Amin Dec 2002 A1
20020190381 Herr Dec 2002 A1
20030011398 Herr Jan 2003 A1
20030016010 Kandori Jan 2003 A1
20030016069 Furuta Jan 2003 A1
20030017949 Akimitsu Jan 2003 A1
20030027724 Rose Feb 2003 A1
20030028338 Hidaka Feb 2003 A1
20030038285 Amin Feb 2003 A1
20030039138 Herr Feb 2003 A1
20030040440 Wire Feb 2003 A1
20030042481 Tzalenchuk Mar 2003 A1
20030054960 Bedard Mar 2003 A1
20030057441 Ivanov Mar 2003 A1
20030058026 Johnson Mar 2003 A1
20030068832 Koval Apr 2003 A1
20030071246 Grigorov Apr 2003 A1
20030071258 Zagoskin Apr 2003 A1
20030076251 Gupta Apr 2003 A1
20030077224 Pines Apr 2003 A1
20030094606 Newns May 2003 A1
20030098455 Amin May 2003 A1
20030102470 Il'ichev et al. Jun 2003 A1
20030107033 Tzalenchuk Jun 2003 A1
20030111659 Tzalenchuk Jun 2003 A1
20030111661 Tzalenchuk Jun 2003 A1
20030115401 Herr Jun 2003 A1
20030121028 Coury Jun 2003 A1
20030134089 Schultz Jul 2003 A1
20030141868 Bakharev Jul 2003 A1
20030146429 Tzalenchuk Aug 2003 A1
20030146430 Tzalenchuk Aug 2003 A1
20030146746 Bakharev Aug 2003 A1
20030169041 Coury Sep 2003 A1
20030169142 Vicci Sep 2003 A1
20030173498 Blais Sep 2003 A1
20030173997 Blais Sep 2003 A1
20030183935 Herr Oct 2003 A1
20030189203 Talroze Oct 2003 A1
20030193097 Il'ichev et al. Oct 2003 A1
20030199395 Zhou Oct 2003 A1
20030207766 Esteve Nov 2003 A1
20030224944 Il'ichev et al. Dec 2003 A1
20030230732 Sasaki Dec 2003 A1
20040000666 Lidar Jan 2004 A1
20040012388 Pedersen Jan 2004 A1
20040012407 Amin Jan 2004 A1
20040014077 Schultz Jan 2004 A1
20040016918 Amin Jan 2004 A1
20040022332 Gupta Feb 2004 A1
20040027125 Clarke Feb 2004 A1
20040077503 Blais Apr 2004 A1
20040095803 Ustinov May 2004 A1
20040098443 Omelyanchouk May 2004 A1
20040099861 Shoji May 2004 A1
20040104410 Gilbert Jun 2004 A1
20040119061 Wu Jun 2004 A1
20040120299 Kidiyarova-Shevchenko Jun 2004 A1
20040126304 Zhao Jul 2004 A1
20040130311 Humphreys Jul 2004 A1
20040134967 Moeckly Jul 2004 A1
20040135139 Koval Jul 2004 A1
20040140537 Il'ichev et al. Jul 2004 A1
20040145366 Baudenbacher Jul 2004 A1
20040150458 Gupta Aug 2004 A1
20040154704 Schultz Aug 2004 A1
20040165454 Amin Aug 2004 A1
20040167036 Amin Aug 2004 A1
20040170047 Amin Sep 2004 A1
20040173787 Blais Sep 2004 A1
20040173792 Blais Sep 2004 A1
20040173793 Blais Sep 2004 A1
20040201400 Herr Oct 2004 A1
20040223380 Hato Nov 2004 A1
20040232405 Horibe Nov 2004 A1
20040232912 Tsukamoto Nov 2004 A1
20040239319 Tralshawala Dec 2004 A1
20040266497 Reagor Dec 2004 A1
20040266627 Moeckly Dec 2004 A1
20050001209 Hilton Jan 2005 A1
20050023518 Herr Feb 2005 A1
20050029512 Hato Feb 2005 A1
20050035368 Bunyk Feb 2005 A1
20050040843 Eaton Feb 2005 A1
20050043185 Suzuki Feb 2005 A1
20050045869 Talroze Mar 2005 A1
20050045872 Newns Mar 2005 A1
20050047245 Furuta Mar 2005 A1
20050052181 Lam Mar 2005 A1
20050057248 Woods Mar 2005 A1
20050062131 Murduck Mar 2005 A1
20050074220 Rey Apr 2005 A1
20050078022 Hirano Apr 2005 A1
20050082519 Amin Apr 2005 A1
20050088174 Lee Apr 2005 A1
20050098773 Vion May 2005 A1
20050101489 Blais May 2005 A1
20050106313 Lee May 2005 A1
20050107262 Tanaka May 2005 A1
20050109879 Patterson May 2005 A1
20050116719 Fardmanesh Jun 2005 A1
20050123674 Stasiak Jun 2005 A1
20050134262 Clarke Jun 2005 A1
20050143791 Hameroff Jun 2005 A1
20050149002 Wang Jul 2005 A1
20050149169 Wang Jul 2005 A1
20050162302 Omelyanchouk Jul 2005 A1
20050171421 Eden Aug 2005 A1
20050184284 Burkard Aug 2005 A1
20050197254 Stasiak Sep 2005 A1
20050202572 Seki Sep 2005 A1
20050206376 Matthews Sep 2005 A1
20050215436 Takano Sep 2005 A1
20050224784 Amin Oct 2005 A1
20050231196 Tarutani Oct 2005 A1
20050241394 Clark Nov 2005 A1
20050243708 Bunyk Nov 2005 A1
20050250651 Amin Nov 2005 A1
20050255680 Rokhvarger Nov 2005 A1
20050256007 Amin Nov 2005 A1
20060022671 Levin Feb 2006 A1
20060049891 Crete Mar 2006 A1
20060079402 Akimitsu Apr 2006 A1
20060091881 Clarke May 2006 A1
20060095220 Vrba May 2006 A1
20060097746 Amin May 2006 A1
20060097747 Amin May 2006 A1
20060104889 Harutyunyan May 2006 A1
20060145694 Oppenlander Jul 2006 A1
20060147154 Thom Jul 2006 A1
20060148514 Reagor Jul 2006 A1
20060164081 Ganther Jul 2006 A1
20060176054 Clarke Aug 2006 A1
20060186881 Tilbrook Aug 2006 A1
20060220641 Pannetier Oct 2006 A1
20060225165 Maassen van den Brink Oct 2006 A1
20060237660 Sasaki Oct 2006 A1
20060247131 Horibe Nov 2006 A1
20060248618 Berkley Nov 2006 A1
20060255987 Nagasawa Nov 2006 A1
20060290553 Furuta Dec 2006 A1
20070007956 Min Jan 2007 A1
20070018643 Clarke Jan 2007 A1
20070038067 Kandori Feb 2007 A1
20070049097 Hirano Mar 2007 A1
20070052441 Taguchi Mar 2007 A1
20070069339 Hato Mar 2007 A1
20070075729 Kirichenko Apr 2007 A1
20070075752 Kirichenko Apr 2007 A1
20070077906 Kirichenko Apr 2007 A1
20070080341 MacReady Apr 2007 A1
20070085534 Seki Apr 2007 A1
20070096730 Meyer May 2007 A1
20070114994 Kobayashi May 2007 A1
20070116629 Harutyunyan May 2007 A1
20070158791 Wakana Jul 2007 A1
20070167723 Park Jul 2007 A1
20070174227 Johnson Jul 2007 A1
20070180586 Amin Aug 2007 A1
20070194225 Zorn Aug 2007 A1
20070197900 Baudenbacher Aug 2007 A1
20070212794 Tsukamoto Sep 2007 A1
20070236245 Bedard Oct 2007 A1
20070241746 Kim Oct 2007 A1
20070241747 Morley Oct 2007 A1
20070254375 Tsukamoto Nov 2007 A1
20070263432 Pertti Nov 2007 A1
20070293160 Gupta Dec 2007 A1
20070295954 Burkard Dec 2007 A1
20080001599 Wu Jan 2008 A1
20080024126 Sasaki Jan 2008 A1
20080047367 Choi Feb 2008 A1
20080048762 Inamdar Feb 2008 A1
20080048902 Rylov Feb 2008 A1
20080051291 Tanaka Feb 2008 A1
20080051292 Wakana Feb 2008 A1
20080052055 Rose Feb 2008 A1
20080065573 Macready Mar 2008 A1
20080074110 Mito Mar 2008 A1
20080074113 Clarke Mar 2008 A1
20080084898 Miyaho Apr 2008 A1
20080086438 Amin Apr 2008 A1
20080100175 Clark May 2008 A1
20080101444 Gupta May 2008 A1
20080101501 Gupta May 2008 A1
20080101503 Gupta May 2008 A1
20080107213 Gupta May 2008 A1
20080108503 Simizu May 2008 A1
20080109500 Macready May 2008 A1
20080116448 Kitaev May 2008 A1
20080116449 Macready May 2008 A1
20080122434 Chieh May 2008 A1
20080146449 Lesueur Jun 2008 A1
20080162613 Amin Jul 2008 A1
20080176750 Rose Jul 2008 A1
20080186064 Kirichenko Aug 2008 A1
20080215850 Berkley Sep 2008 A1
20080218519 Coury Sep 2008 A1
20080231353 Filippov Sep 2008 A1
20080238531 Harris Oct 2008 A1
20080258753 Harris Oct 2008 A1
20080260257 Rose Oct 2008 A1
20080274898 Johnson Nov 2008 A1
20080284413 Tsukamoto Nov 2008 A1
20080313114 Rose Dec 2008 A1
20080313430 Bunyk Dec 2008 A1
20090002014 Gupta Jan 2009 A1
20090008632 Bunyk Jan 2009 A1
20090014714 Koch Jan 2009 A1
20090015317 Vincenzo Jan 2009 A1
20090033369 Baumgardner Feb 2009 A1
20090034657 Nikolova Feb 2009 A1
20090057652 Nevirkovets Mar 2009 A1
20090070402 Rose Mar 2009 A1
20090072828 Penanen Mar 2009 A1
20090073017 Kim Mar 2009 A1
20090075825 Rose Mar 2009 A1
20090077001 Macready Mar 2009 A1
20090078931 Berkley Mar 2009 A1
20090078932 Amin Mar 2009 A1
20090082209 Bunyk Mar 2009 A1
20090102580 Uchaykin Apr 2009 A1
20090121215 Choi May 2009 A1
20090122508 Uchaykin May 2009 A1
20090143665 Seki Jun 2009 A1
20090153180 Herr Jun 2009 A1
20090153381 Kirichenko Jun 2009 A1
20090167342 van den Brink Jul 2009 A1
20090168286 Berkley Jul 2009 A1
20090173936 Bunyk Jul 2009 A1
20090189633 Bedard Jul 2009 A1
20090192041 Johansson Jul 2009 A1
20090206871 Baumgardner Aug 2009 A1
20090227044 Dosev Sep 2009 A1
20090233798 Maeda Sep 2009 A1
20090237106 Kirichenko Sep 2009 A1
20090244958 Bulzacchelli Oct 2009 A1
20090256561 Ledbetter Oct 2009 A1
20090261319 Maekawa Oct 2009 A1
20090267635 Herr Oct 2009 A1
20090274609 Harutyunyan Nov 2009 A1
20090289638 Farinelli Nov 2009 A1
20090299947 Amin Dec 2009 A1
20090302844 Saito Dec 2009 A1
20090319757 Berkley Dec 2009 A1
20090321720 Rose Dec 2009 A1
20090322374 Przybysz Dec 2009 A1
20090324484 Harutyunyan Dec 2009 A1
20100006825 Wakana Jan 2010 A1
20100026447 Keefe Feb 2010 A1
20100026537 Kirichenko Feb 2010 A1
20100033206 Herr Feb 2010 A1
20100033252 Herr Feb 2010 A1
20100066576 Kirichenko Mar 2010 A1
20100085827 Thom Apr 2010 A1
20100094796 Roetteler Apr 2010 A1
20100097056 Lam Apr 2010 A1
20100102904 Kusmartsev Apr 2010 A1
20100109638 Berns May 2010 A1
20100109669 Penanen May 2010 A1
20100133514 Bunyk Jun 2010 A1
20100148841 Kirichenko Jun 2010 A1
20100148853 Harris Jun 2010 A1
20100157552 Thom Jun 2010 A1
20100164536 Herr Jul 2010 A1
20100176840 Bedard Jul 2010 A1
20100182039 Baumgardner Jul 2010 A1
20100194466 Yorozu Aug 2010 A1
20100207622 Finkler Aug 2010 A1
20100207657 Herr Aug 2010 A1
20100237899 Herr Sep 2010 A1
20100239489 Harutyunyan Sep 2010 A1
20100281885 Black Nov 2010 A1
20100301855 Hyde Dec 2010 A1
20100301856 Hyde Dec 2010 A1
20100301857 Hyde Dec 2010 A1
20100303731 Hyde Dec 2010 A1
20100303733 Hyde Dec 2010 A1
20100306142 Amin Dec 2010 A1
20100327861 Nagasaka Dec 2010 A1
20100327865 Nagasaka Dec 2010 A1
20100330704 Nakahama Dec 2010 A1
20110009274 Uchaykin Jan 2011 A1
20110010412 Macready Jan 2011 A1
20110018612 Harris Jan 2011 A1
20110022820 Bunyk Jan 2011 A1
20110031994 Berkley Feb 2011 A1
20110047201 Macready Feb 2011 A1
20110054236 Yang Mar 2011 A1
20110054876 Biamonte Mar 2011 A1
20110055520 Berkley Mar 2011 A1
20110057169 Harris Mar 2011 A1
20110060710 Amin Mar 2011 A1
20110060711 Macready Mar 2011 A1
20110060780 Berkley Mar 2011 A1
20110063016 Tanaka Mar 2011 A1
20110065585 Lanting Mar 2011 A1
20110065586 Maibaum Mar 2011 A1
20110068789 Hwang Mar 2011 A1
20110089405 Ladizinsky Apr 2011 A1
20110098623 Zhang Apr 2011 A1
20110102068 Bouchiat May 2011 A1
20110133770 Przybysz Jun 2011 A1
20110152104 Farinelli Jun 2011 A1
20110175061 Berkley Jul 2011 A1
20110175062 Farinelli Jul 2011 A1
20110175628 Kohlstedt Jul 2011 A1
20110210738 Penanen Sep 2011 A1
20110231462 Macready Sep 2011 A1
20110238607 Coury Sep 2011 A1
20110241765 Pesetski Oct 2011 A1
20110254583 Herr Oct 2011 A1
20110267878 Herr Nov 2011 A1
20110285393 Zakosarenko Nov 2011 A1
20110287941 Bonderson Nov 2011 A1
20110288823 Gupta Nov 2011 A1
20110298489 van den Brink Dec 2011 A1
20120005456 Berkley Jan 2012 A1
20120012818 Wakana Jan 2012 A1
20120023053 Harris Jan 2012 A1
20120028806 Bonderson Feb 2012 A1
20120045136 Rose Feb 2012 A1
20120053059 Hatsukade Mar 2012 A1
20120088674 Faley Apr 2012 A1
20120094838 Bunyk Apr 2012 A1
20120108434 Bulzacchelli May 2012 A1
20120112168 Bonderson May 2012 A1
20120135867 Thom May 2012 A1
20120144159 Pesetski Jun 2012 A1
20120157319 Tsukamoto Jun 2012 A1
20120157321 Kirichenko Jun 2012 A1
20120172233 Uchaykin Jul 2012 A1
20120184445 Mukhanov Jul 2012 A1
20120187378 Bonderson Jul 2012 A1
20120187872 Camacho de Bermúdez Jul 2012 A1
20120212375 Depree, Iv Aug 2012 A1
20120215821 Macready Aug 2012 A1
20120225411 Puente Sep 2012 A1
20120238860 Kim Sep 2012 A1
20120252678 Kim Oct 2012 A1
20120254586 Amin Oct 2012 A1
20120258861 Bonderson Oct 2012 A1
20120265718 Amin Oct 2012 A1
20120274494 Kirichenko Nov 2012 A1
20120278057 Biamonte Nov 2012 A1
20120302446 Ryazanov Nov 2012 A1
20120314490 Okhi Dec 2012 A1
20120319684 Gambetta Dec 2012 A1
20120320668 Lewis Dec 2012 A1
20120326130 Maekawa Dec 2012 A1
20120326720 Gambetta Dec 2012 A1
20130005580 Bunyk Jan 2013 A1
20130007087 van den Brink Jan 2013 A1
20130009677 Naaman Jan 2013 A1
20130038330 Hyde Feb 2013 A1
20130040818 Herr Feb 2013 A1
20130043945 McDermott Feb 2013 A1
20130048950 Levy Feb 2013 A1
20130096825 Mohanty Apr 2013 A1
20130117200 Thom May 2013 A1
20130144925 Macready Jun 2013 A1
20130190185 Chavez Jul 2013 A1
20130201316 Binder Aug 2013 A1
20130221960 Nagasaka Aug 2013 A1
20130231249 Black Sep 2013 A1
20130233077 Chen Sep 2013 A1
20130245402 Ziaie Sep 2013 A1
20130271142 Penanen Oct 2013 A1
20130272453 Gupta Oct 2013 A1
20130278265 Kim Oct 2013 A1
20130278283 Berkley Oct 2013 A1
20130282636 Macready Oct 2013 A1
20130303379 Bulzacchelli Nov 2013 A1
20130313526 Harris Nov 2013 A1
20130324832 Wu Dec 2013 A1
20140000630 Ford Jan 2014 A1
20140025606 Macready Jan 2014 A1
20140050475 Bonderson Feb 2014 A1
20140097405 Bunyk Apr 2014 A1
20140113828 Gilbert Apr 2014 A1
20140175380 Suzuki Jun 2014 A1
20140187427 Macready Jul 2014 A1
20140203838 Pesetski Jul 2014 A1
20140223224 Berkley Aug 2014 A1
20140228222 Berkley Aug 2014 A1
20140229705 van den Brink Aug 2014 A1
20140229722 Harris Aug 2014 A1
20140232400 Kim Aug 2014 A1
20140235450 Chow Aug 2014 A1
20140245249 Macready Aug 2014 A1
20140246763 Bunyk Sep 2014 A1
20140249033 Orozco Sep 2014 A1
20140250288 Roy Sep 2014 A1
20140253111 Orozco Sep 2014 A1
20140264285 Chow Sep 2014 A1
20140286465 Gupta Sep 2014 A1
20140296076 Okhi Oct 2014 A1
20140314419 Paik Oct 2014 A1
20140315723 Moyerman Oct 2014 A1
20140324933 Macready Oct 2014 A1
20140329687 Bunyk Nov 2014 A1
20140343397 Kim Nov 2014 A1
20140344322 Ranjbar Nov 2014 A1
20140354326 Bonderson Dec 2014 A1
20140368234 Chow Dec 2014 A1
20150006443 Rose Jan 2015 A1
20150028970 Chow Jan 2015 A1
20150032991 Lanting Jan 2015 A1
20150032993 Amin Jan 2015 A1
20150032994 Chudak Jan 2015 A1
20150043273 Naaman Feb 2015 A1
20150046681 King Feb 2015 A1
20150078290 Gupta Mar 2015 A1
20150087945 Ziaie Mar 2015 A1
20150092465 Herr Apr 2015 A1
20150094207 Herr Apr 2015 A1
20150111754 Harris Apr 2015 A1
20150119252 Ladizinsky Apr 2015 A1
20150119253 Yohannes Apr 2015 A1
20150143817 Gervais May 2015 A1
20150161524 Hamze Jun 2015 A1
20150178432 Muller Jun 2015 A1
20150179913 Pramanik Jun 2015 A1
20150179914 Greer Jun 2015 A1
20150179915 Greer Jun 2015 A1
20150179916 Pramanik Jun 2015 A1
20150179918 Greer Jun 2015 A1
20150184286 Barabash Jul 2015 A1
20150187840 Ladizinsky Jul 2015 A1
20150205759 Israel Jul 2015 A1
20150212166 Kandori Jul 2015 A1
20150219730 Tsukamoto Aug 2015 A1
20150229343 Gupta Aug 2015 A1
20150241481 Narla Aug 2015 A1
20150242758 Bonderson Aug 2015 A1
20150254571 Miller Sep 2015 A1
20150260812 Drake Sep 2015 A1
20150262073 Lanting Sep 2015 A1
20150263260 Thom Sep 2015 A1
20150263736 Herr Sep 2015 A1
20150269124 Hamze Sep 2015 A1
20150310350 Niskanen Oct 2015 A1
20150318095 Ishikawa Nov 2015 A1
20150332164 Maassen van den Brink Nov 2015 A1
20150346291 Lanting Dec 2015 A1
20150349780 Naaman Dec 2015 A1
20150358022 McDermott, III Dec 2015 A1
20150363708 Amin Dec 2015 A1
20150379418 Harris Dec 2015 A1
20160012346 Biamonte Jan 2016 A1
20160012347 King Jan 2016 A1
20160012882 Bleloch Jan 2016 A1
20160013791 Herr Jan 2016 A1
20160019468 Bunyk Jan 2016 A1
20160023906 Harutyunyan Jan 2016 A1
20160028402 McCaughan Jan 2016 A1
20160028403 McCaughan Jan 2016 A1
20160032904 Kaplan Feb 2016 A1
20160034609 Herr Feb 2016 A1
20160035404 Ohki Feb 2016 A1
20160042294 Macready Feb 2016 A1
20160045841 Kaplan Feb 2016 A1
20160065693 Rose Mar 2016 A1
20160071021 Raymond Mar 2016 A1
20160071903 Herr Mar 2016 A1
20160079968 Strand Mar 2016 A1
20160085616 Berkley Mar 2016 A1
20160087598 Thom Mar 2016 A1
20160087599 Naaman Mar 2016 A1
20160103192 Reiner Apr 2016 A1
20160112031 Abraham Apr 2016 A1
20160132785 Amin May 2016 A1
20160139213 Shams May 2016 A1
20160148112 Kwon May 2016 A1
20160149111 Cybart May 2016 A1
20160154068 Barakat Jun 2016 A1
20160156357 Miller Jun 2016 A1
20160164505 Naaman Jun 2016 A1
20160191060 McDermott, III Jun 2016 A1
20160197628 Gupta Jul 2016 A1
20160221825 Allen Aug 2016 A1
20160233405 Crete Aug 2016 A1
20160233860 Naaman Aug 2016 A1
20160254434 McDermott, III Sep 2016 A1
20160267032 Rigetti Sep 2016 A1
20160267964 Herr Sep 2016 A1
20160283857 Babbush Sep 2016 A1
20160292586 Rigetti Oct 2016 A1
20160292587 Rigetti Oct 2016 A1
20160296145 Bajaj Oct 2016 A1
20160314407 Bunyk Oct 2016 A1
20160321559 Rose Nov 2016 A1
20160328208 Tomaru Nov 2016 A1
20160335558 Bunyk Nov 2016 A1
20160335559 Pereverzev Nov 2016 A1
20160351306 Faley Dec 2016 A1
20160371227 Macready Dec 2016 A1
20160380636 Abdo Dec 2016 A1
20170000375 Demas Jan 2017 A1
20170017742 Oberg Jan 2017 A1
20170017894 Lanting Jan 2017 A1
20170039481 Abdo Feb 2017 A1
20170045592 Berggren Feb 2017 A1
20170045800 Brandenburg Feb 2017 A1
20170062107 Naaman Mar 2017 A1
20170069367 Ohki Mar 2017 A1
20170069415 Faley Mar 2017 A1
20170071082 Sadleir Mar 2017 A1
20170077380 Uchaykin Mar 2017 A1
20170077381 Abdo Mar 2017 A1
20170078400 Binder Mar 2017 A1
20170085231 Abdo Mar 2017 A1
20170086281 Avrahamy Mar 2017 A1
20170089961 Abdo Mar 2017 A1
20170091647 Abdo Mar 2017 A1
20170091649 Clarke Mar 2017 A1
20170091650 King Mar 2017 A1
20170098682 Ladizinsky Apr 2017 A1
20170104491 Shauck Apr 2017 A1
20170104493 Goto Apr 2017 A1
20170104695 Naaman Apr 2017 A1
20170109605 Ahn Apr 2017 A1
20170116159 Hamze Apr 2017 A1
20170116542 Shim Apr 2017 A1
20170117901 Carmean Apr 2017 A1
20170123171 Goutzoulis May 2017 A1
20170133336 Oliver May 2017 A1
20170133576 Marcus May 2017 A1
20170133577 Cybart May 2017 A1
20170138851 Ashrafi May 2017 A1
20170141286 Kerman May 2017 A1
20170141287 Barkeshli May 2017 A1
20170141769 Miller May 2017 A1
20170146618 Leese De Escobar May 2017 A1
20170162778 Harris Jun 2017 A1
20170163301 Gupta Jun 2017 A1
20170168123 Kandori Jun 2017 A1
20170177534 Mohseni Jun 2017 A1
20170177751 Macready Jun 2017 A1
20170178017 Roy Jun 2017 A1
20170178018 Tcaciuc Jun 2017 A1
20170184689 Wang Jun 2017 A1
20170186934 Kwon Jun 2017 A1
20170193388 Filipp Jul 2017 A1
20170199036 Moxley, III Jul 2017 A1
20170201224 Strong Jul 2017 A1
20170212860 Naaman Jul 2017 A1
20170228483 Rigetti Aug 2017 A1
20170229167 Reohr Aug 2017 A1
20170229631 Abdo Aug 2017 A1
20170229632 Abdo Aug 2017 A1
20170229633 Abdo Aug 2017 A1
20170230050 Rigetti Aug 2017 A1
20170237144 Tobar Aug 2017 A1
20170241953 Kagawa Aug 2017 A1
20170255629 Thom Sep 2017 A1
20170255871 Macready Sep 2017 A1
20170255872 Hamze Sep 2017 A1
20170262765 Bourassa Sep 2017 A1
20170265158 Gupta Sep 2017 A1
20170265287 Avrahamy Sep 2017 A1
20170276827 Gulian Sep 2017 A1
20170286859 Harris Oct 2017 A1
20170296169 Yates Oct 2017 A1
20170296177 Harris Oct 2017 A1
20170296178 Miller Oct 2017 A1
20170296179 Shelton, IV Oct 2017 A1
20170296180 Harris Oct 2017 A1
20170296183 Shelton, IV Oct 2017 A1
20170296184 Harris Oct 2017 A1
20170296185 Swensgard Oct 2017 A1
20170296189 Vendely Oct 2017 A1
20170296213 Swensgard Oct 2017 A1
20170300454 Maassen van den Brink Oct 2017 A1
20170300808 Ronagh Oct 2017 A1
20170300827 Amin Oct 2017 A1
20170301444 Doi Oct 2017 A1
20170323195 Crawford Nov 2017 A1
20170324019 Ware Nov 2017 A1
20170329883 Oberg Nov 2017 A1
20170331899 Binder Nov 2017 A1
20170337155 Novotny Nov 2017 A1
20170344898 Karimi Nov 2017 A1
20170345990 Yohannes Nov 2017 A1
20170351974 Rose Dec 2017 A1
20170359072 Hamilton Dec 2017 A1
20170373044 Das Dec 2017 A1
20170373369 Abdo Dec 2017 A1
20170373658 Thom Dec 2017 A1
20180012932 Oliver Jan 2018 A1
20180013052 Oliver Jan 2018 A1
20180013426 Deurloo Jan 2018 A1
20180019737 Goto Jan 2018 A1
20180025775 Ambrose Jan 2018 A1
20180026633 Naaman Jan 2018 A1
20180032893 Epstein Feb 2018 A1
20180033944 Ladizinsky Feb 2018 A1
20180034425 Bell Feb 2018 A1
20180034912 Binder Feb 2018 A1
20180040935 Sliwa Feb 2018 A1
20180054201 Reagor Feb 2018 A1
20180062765 Puthoff Mar 2018 A1
20180067182 Clerk Mar 2018 A1
20180076777 Hofheinz Mar 2018 A1
20180090661 McCaughan Mar 2018 A1
20180091115 Abdo Mar 2018 A1
20180091141 Abdo Mar 2018 A1
20180091142 Abdo Mar 2018 A1
20180091143 Abdo Mar 2018 A1
20180091440 Dadashikelayeh Mar 2018 A1
20180092313 Avrahamy Apr 2018 A1
20180101784 Rolfe Apr 2018 A1
20180101786 Boothby Apr 2018 A1
20180101787 Abdo Apr 2018 A1
20180102166 Braiman Apr 2018 A1
20180102469 Das Apr 2018 A1
20180102470 Das Apr 2018 A1
20180107092 Abdo Apr 2018 A1
20180114568 Burnett Apr 2018 A1
20180118573 Harutyunyan May 2018 A1
20180123544 Abdo May 2018 A1
20180124181 Binder May 2018 A1
20180128739 Ashrafi May 2018 A9
20180131376 Ryan May 2018 A1
20180137428 Abdo May 2018 A1
20180138987 Sliwa May 2018 A1
20180145631 Berkley May 2018 A1
20180145664 Herr May 2018 A1
20180150579 Sarpeshkar May 2018 A1
20180150760 Sarpeshkar May 2018 A1
20180150761 Sarpeshkar May 2018 A1
20180157775 Ronagh Jun 2018 A1
20180164385 Chesca Jun 2018 A1
20180188107 Zen Jul 2018 A1
20180196780 Amin Jul 2018 A1
20180198427 Narla Jul 2018 A1
20180211158 Shainline Jul 2018 A1
20180218279 Lechner Aug 2018 A1
20180218280 Harris Aug 2018 A1
20180218281 Reinhardt Aug 2018 A1
20180219150 Lanting Aug 2018 A1
20180225586 Chow Aug 2018 A1
20180226974 Harms Aug 2018 A1
20180226975 Braun Aug 2018 A1
20180232652 Curtis Aug 2018 A1
20180232653 Selvanayagam Aug 2018 A1
20180232654 Epstein Aug 2018 A1
20180240033 Leek Aug 2018 A1
20180240034 Harris Aug 2018 A1
20180240035 Scheer Aug 2018 A1
20180246848 Douglass Aug 2018 A1
20180247974 Oliver Aug 2018 A1
20180248103 Ivry Aug 2018 A1
20180248104 Bouzdine Aug 2018 A1
20180260245 Smith Sep 2018 A1
20180260729 Abdo Sep 2018 A1
20180260731 Zeng Sep 2018 A1
20180260732 Bloom Sep 2018 A1
20180261752 Ferguson Sep 2018 A1
20180267115 Petrashov Sep 2018 A1
20180267116 De Andrade Sep 2018 A1
20180267933 Lanting Sep 2018 A1
20180275057 Kolkowitz Sep 2018 A1
20180276550 Yarkoni Sep 2018 A1
20180277733 Abdo Sep 2018 A1
20180278693 Binder Sep 2018 A1
20180278694 Binder Sep 2018 A1
20180285761 Gambetta Oct 2018 A1
20180287041 Abdo Oct 2018 A1
20180294401 Tuckerman Oct 2018 A1
20180294815 Hamilton Oct 2018 A1
20180300286 Raymond Oct 2018 A1
20180306716 Ashrafi Oct 2018 A1
20180306723 Ashrafi Oct 2018 A1
20180308007 Amin Oct 2018 A1
20180308896 Ladizinsky Oct 2018 A1
20180309452 Kerman Oct 2018 A1
20180314968 Biamonte Nov 2018 A1
20180314970 Harris Nov 2018 A1
20180322408 Chen Nov 2018 A1
20180323364 Abdo Nov 2018 A1
20180330264 Lanting Nov 2018 A1
20180330267 Rigetti Nov 2018 A1
20180335683 Abdo Nov 2018 A1
20180336153 Naaman Nov 2018 A1
20180337138 Luu Nov 2018 A1
20180342663 Ferguson Nov 2018 A1
20180343304 Binder Nov 2018 A1
20180348310 Martinis Dec 2018 A1
20180350411 Ware Dec 2018 A1
20180350749 Abraham Dec 2018 A1
20180351521 Abdo Dec 2018 A1
20180359718 Gupta Dec 2018 A1
20180365587 Barzegar Dec 2018 A1
20180366634 Mutus Dec 2018 A1
20180373995 Tomaru Dec 2018 A1
20180373996 Amin Dec 2018 A1
20180375790 Dadashikelayeh Dec 2018 A1
20180375940 Binder Dec 2018 A1
20190005403 Blais Jan 2019 A1
20190006572 Falcon Jan 2019 A1
20190007051 Sete Jan 2019 A1
20190013065 Przybysz Jan 2019 A1
20190019098 Przybysz Jan 2019 A1
20190019099 Hoskinson Jan 2019 A1
20190019938 Braun Jan 2019 A1
20190034819 Ian Jan 2019 A1
20190036515 Naaman Jan 2019 A1
20190042964 Elsherbini Feb 2019 A1
20190042967 Yoscovits Feb 2019 A1
20190042968 Lampert Feb 2019 A1
20190043822 Falcon Feb 2019 A1
20190043919 George Feb 2019 A1
20190044044 Lampert Feb 2019 A1
20190044046 Caudillo Feb 2019 A1
20190044047 Elsherbini Feb 2019 A1
20190044051 Caudillo Feb 2019 A1
20190044668 Elsherbini Feb 2019 A1
20190058105 Pais Feb 2019 A1
20190065889 Ahn Feb 2019 A1
20190065981 Chen Feb 2019 A1
20190065982 Clarke Feb 2019 A1
20190070438 Tahar Mar 2019 A1
20190073439 Sarpeshkar Mar 2019 A1
20190074808 Petroff Mar 2019 A1
20190079145 Leese De Escobar Mar 2019 A1
20190081629 Reagor Mar 2019 A1
20190082997 Lee Mar 2019 A1
20190087385 Maassen van den Brink Mar 2019 A1
20190095811 Antonio Mar 2019 A1
20190098090 Binder Mar 2019 A1
20190102691 Chow Apr 2019 A1
20190104614 Abdo Apr 2019 A1
20190109904 Binder Apr 2019 A1
20190121834 Tomaru Apr 2019 A1
20190122133 Zohren Apr 2019 A1
20190123743 Abdo Apr 2019 A1
20190123744 Abdo Apr 2019 A1
20190128808 Ashrafi May 2019 A1
20190131511 Clarke May 2019 A1
20190131683 Abdo May 2019 A1
20190131944 Naaman May 2019 A1
20190147359 Chen May 2019 A1
20190149139 Braun May 2019 A1
20190156237 Epstein May 2019 A1
20190156238 Abdo May 2019 A1
20190158098 Kerman May 2019 A1
20190164077 Roberts May 2019 A1
20190164959 Thomas May 2019 A1
20190165245 Rosenblatt May 2019 A1
20190165246 Rosenblatt May 2019 A1
20190182995 Sterling Jun 2019 A1
20190187075 Jach Jun 2019 A1
20190188596 Ipek Jun 2019 A1
20190188597 Chen Jun 2019 A1
20190190463 Smith Jun 2019 A1
20190204372 Astafiev Jul 2019 A1
20190204753 Burkett Jul 2019 A1
20190207076 Schneider Jul 2019 A1
20190212147 Moxley, III Jul 2019 A1
20190214561 Schrade Jul 2019 A1
20190214971 Keane Jul 2019 A1
20190215952 Lucero Jul 2019 A1
20190220771 Boothby Jul 2019 A1
20190227439 Megrant Jul 2019 A1
20190228331 Harris Jul 2019 A1
20190229094 White Jul 2019 A1
20190229690 White Jul 2019 A1
20190236476 Pereverzev Aug 2019 A1
20190237648 Przybysz Aug 2019 A1
20190238137 Powell, III Aug 2019 A1
20190245538 Abdo Aug 2019 A1
20190245544 Herr Aug 2019 A1
20190251466 Mezzacapo Aug 2019 A1
20190252754 Mueller Aug 2019 A1
20190259931 Megrant Aug 2019 A1
20190266508 Bunyk Aug 2019 A1
20190266510 Yarkoni Aug 2019 A1
20190267154 Sheng Aug 2019 A1
20190267532 David Aug 2019 A1
20190267692 Roberts Aug 2019 A1
20190273196 Marcus Sep 2019 A1
20190273197 Roberts Sep 2019 A1
20190288174 Cybart Sep 2019 A1
20190288176 Yoscovits Sep 2019 A1
20190288178 Cybart Sep 2019 A1
20190288367 Schuster Sep 2019 A1
20190294025 Brandenburg Sep 2019 A1
20190294991 Filipp Sep 2019 A1
20190296214 Yoscovits Sep 2019 A1
20190296743 Pedram Sep 2019 A1
20190302107 Kauffman Oct 2019 A1
20190302194 Lemay Oct 2019 A1
20190303242 Kapit Oct 2019 A1
20190303788 Kelly Oct 2019 A1
20190305037 Michalak Oct 2019 A1
20190305038 Michalak Oct 2019 A1
20190305206 Harris Oct 2019 A1
20190317167 LaBorde Oct 2019 A1
20190317978 Amin Oct 2019 A1
20190321039 Harris Oct 2019 A1
20190324941 Maassen van den Brink Oct 2019 A1
20190326501 Gilbert Oct 2019 A1
20190339339 Berggren Nov 2019 A1
20190341540 Megrant Nov 2019 A1
20190343002 Abdo Nov 2019 A1
20190343003 Abdo Nov 2019 A1
20190347576 Von Salis Nov 2019 A1
20190348597 Pais Nov 2019 A1
20190354890 Scheer Nov 2019 A1
20190362260 Leek Nov 2019 A1
20190362780 Burnett Nov 2019 A1
20190363239 Yoscovits Nov 2019 A1
20190363688 Egan Nov 2019 A1
20190369171 Swenson Dec 2019 A1
20190370679 Curtis Dec 2019 A1
20190370680 Novotny Dec 2019 A1
20190372192 Mueller Dec 2019 A1
20190378874 Rosenblatt Dec 2019 A1
20190385088 Naaman Dec 2019 A1
20190385673 Bosman Dec 2019 A1
20190391214 Ferguson Dec 2019 A1
20190392344 Kelly Dec 2019 A1
20190392878 Murduck Dec 2019 A1
20200000468 Shelton, IV Jan 2020 A1
20200006421 Ladizinsky Jan 2020 A1
20200006620 Mutus Jan 2020 A1
20200006621 Mutus Jan 2020 A1
20200008800 Shelton, IV Jan 2020 A1
20200012961 Kelly Jan 2020 A1
20200018803 Lemay Jan 2020 A1
20200027030 Freedman Jan 2020 A1
20200027502 Berggren Jan 2020 A1
20200027971 Freedman Jan 2020 A1
20200028480 Abdo Jan 2020 A1
20200028512 Reohr Jan 2020 A1
20200036330 Abdo Jan 2020 A1
20200036331 Abdo Jan 2020 A1
20200036332 Abdo Jan 2020 A1
20200036333 Abdo Jan 2020 A1
20200041410 Ashrafi Feb 2020 A1
20200044137 Gen Feb 2020 A1
20200044632 Powell, III Feb 2020 A1
20200044656 Herr Feb 2020 A1
20200046348 Shelton, IV Feb 2020 A1
20200049776 Wood Feb 2020 A1
20200050958 Bloom Feb 2020 A1
20200050961 Abdo Feb 2020 A1
20200052183 Shainline Feb 2020 A1
20200052359 Painter Feb 2020 A1
20200058702 Kelly Feb 2020 A1
20200064412 Martinis Feb 2020 A1
20200065696 Chow Feb 2020 A1
20200074345 Solgun Mar 2020 A1
20200075093 Naaman Mar 2020 A1
20200075832 Burchard Mar 2020 A1
20200075833 Topaloglu Mar 2020 A1
20200075834 Topaloglu Mar 2020 A1
20200078015 Miller Mar 2020 A1
20200081075 Leese de Escobar Mar 2020 A1
20200081076 Leese de Escobar Mar 2020 A1
20200083424 Sandberg Mar 2020 A1
20200090738 Naaman Mar 2020 A1
20200091396 Ferguson Mar 2020 A1
20200091397 Iwanaka Mar 2020 A1
20200091867 Goto Mar 2020 A1
20200106444 Herr Apr 2020 A1
20200106445 Kerman Apr 2020 A1
20200111016 Boothby Apr 2020 A1
20200111944 Moodera Apr 2020 A1
20200112310 Najafi-Yazdi Apr 2020 A1
20200118026 Ashrafi Apr 2020 A1
20200119251 Yohannes Apr 2020 A1
20200119254 Jinka Apr 2020 A1
20200119737 Hamilton Apr 2020 A1
20200120812 Abdo Apr 2020 A1
20200125625 Lanting Apr 2020 A1
20200127678 Inamdar Apr 2020 A1
20200134503 Lupton Apr 2020 A1
20200136008 Gingrich Apr 2020 A1
20200136626 Rylov Apr 2020 A1
20200138434 Miller May 2020 A1
20200138437 Vendely May 2020 A1
20200144476 Huang May 2020 A1
20200152696 Rosenblatt May 2020 A1
20200152851 Lanting May 2020 A1
20200152853 Rosenblatt May 2020 A1
20200152854 Sandberg May 2020 A1
20200156955 Rieken May 2020 A1
20200160205 Leipold May 2020 A1
20200161446 Anderson May 2020 A1
20200161531 Olivadese May 2020 A1
20200162047 Bell May 2020 A1
20200162078 Mckay May 2020 A1
20200166586 Lemay May 2020 A1
20200167683 Frisch May 2020 A1
20200167684 Frisch May 2020 A1
20200167685 Thom May 2020 A1
20200176409 Lucero Jun 2020 A1
20200176662 Dayton Jun 2020 A1
20200183768 Berkley Jun 2020 A1
20200184364 Abdo Jun 2020 A1
20200186132 Braun Jun 2020 A1
20200204181 Sete Jun 2020 A1
20200220064 Graninger Jul 2020 A1
20200228208 Henningsen Jul 2020 A1
20200234171 Chu Jul 2020 A1
20200235277 Jinka Jul 2020 A1
20200242452 Tschirhart Jul 2020 A1
20200242501 Babbush Jul 2020 A1
20200242503 Chen Jul 2020 A1
20200243132 Loving Jul 2020 A1
20200243133 Gingrich Jul 2020 A1
20200250567 Yu Aug 2020 A1
20200250569 Kelly Aug 2020 A1
20200250570 Barzegar Aug 2020 A1
20200251419 Abraham Aug 2020 A1
20200257644 Mohseni Aug 2020 A1
20200258003 Rigetti Aug 2020 A1
20200259066 Braeuninger-Weimer Aug 2020 A1
20200259483 Wise Aug 2020 A1
20200264130 Chen Aug 2020 A1
20200264213 Przybysz Aug 2020 A1
20200265334 Haider Aug 2020 A1
20200266234 Boothby Aug 2020 A1
20200272910 Kapit Aug 2020 A1
20200272929 McKay Aug 2020 A1
20200274049 Ambrose Aug 2020 A1
20200274050 Ladizinsky Aug 2020 A1
20200274929 Binder Aug 2020 A1
20200278308 Kalenychenko Sep 2020 A1
20200279013 Amin Sep 2020 A1
20200279184 Kenawy Sep 2020 A1
20200279186 Ferguson Sep 2020 A1
20200279990 Burkett Sep 2020 A1
20200280316 Reagor Sep 2020 A1
20200280607 Binder Sep 2020 A1
20200284855 Fisher Sep 2020 A1
20200284859 Bertet Sep 2020 A1
20200287118 Herr Sep 2020 A1
20200287122 Rosenblatt Sep 2020 A1
20200287540 Smith Sep 2020 A1
20200287550 Rylov Sep 2020 A1
20200293486 Maassen van den Brink Sep 2020 A1
20200293938 Solgun Sep 2020 A1
20200294401 Kerecsen Sep 2020 A1
20200294557 Ware Sep 2020 A1
20200299146 Zhao Sep 2020 A1
20200301874 Shainline Sep 2020 A1
20200311591 Bernoudy Oct 2020 A1
20200320420 Hart Oct 2020 A1
20200320424 Yarkoni Oct 2020 A1
20200320426 Amin Oct 2020 A1
20200321506 Kelly Oct 2020 A1
20200321508 Hart Oct 2020 A1
20200328339 Shabani Oct 2020 A1
20200333263 Abdo Oct 2020 A1
20200335683 David Oct 2020 A1
20200342296 Wynn Oct 2020 A1
20200345873 Ashrafi Nov 2020 A1
20200349326 King Nov 2020 A1
20200350083 Sorbom Nov 2020 A1
20200350880 Miano Nov 2020 A1
20200356889 Amin Nov 2020 A1
20200356890 Ashrafi Nov 2020 A1
20200358187 Tran Nov 2020 A1
20200359501 Abdo Nov 2020 A1
20200362384 Chen Nov 2020 A1
20200363206 Moxley, III Nov 2020 A1
20200364600 Elsherbini Nov 2020 A1
20200365397 Megrant Nov 2020 A1
20200371974 Boothby Nov 2020 A1
20200372094 Shehab Nov 2020 A1
20200373351 Roberts Nov 2020 A1
20200373475 Rufenacht Nov 2020 A1
20200379768 Berkley Dec 2020 A1
20200380396 Raymond Dec 2020 A1
20200381608 Olivadese Dec 2020 A1
20200381609 Megrant Dec 2020 A1
20200394524 Vainsencher Dec 2020 A1
20200394548 Das Dec 2020 A1
20200395405 Barends Dec 2020 A1
20200396008 Henningsen Dec 2020 A1
20200401649 Lanting Dec 2020 A1
20200401922 Clarke Dec 2020 A1
20200403137 Lampert Dec 2020 A1
20200411937 Whittaker Dec 2020 A1
20200411938 Mannhart Dec 2020 A1
20210005249 Naaman Jan 2021 A1
20210013391 Johnson Jan 2021 A1
20210018575 Mitchell Jan 2021 A1
20210019223 Chamberland Jan 2021 A1
20210019646 Sterling Jan 2021 A1
20210019647 Macready Jan 2021 A1
20210021245 Frattini Jan 2021 A1
20210028343 McCaughan Jan 2021 A1
20210028345 Hart Jan 2021 A1
20210033683 Ferguson Feb 2021 A1
20210035004 Herr Feb 2021 A1
20210035005 Martinis Feb 2021 A1
20210036206 Neill Feb 2021 A1
20210043824 Yan Feb 2021 A1
20210047913 Santamarina Feb 2021 A1
20210056454 Bloom Feb 2021 A1
20210056455 Shehab Feb 2021 A1
20210057135 Choi Feb 2021 A1
20210057484 Rosenblatt Feb 2021 A1
20210057631 Swenson Feb 2021 A1
20210066570 Luethi Mar 2021 A1
20210068320 Bogorin Mar 2021 A1
20210073667 Harris Mar 2021 A1
20210075860 Binder Mar 2021 A1
20210075861 Binder Mar 2021 A1
20210083167 Jespersen Mar 2021 A1
20210083168 Rosenblatt Mar 2021 A1
20210083676 Herr Mar 2021 A1
20210085316 Harris Mar 2021 A1
20210085317 Miller Mar 2021 A1
20210085675 Zheng Mar 2021 A1
20210089954 Kapit Mar 2021 A1
20210091062 Boothby Mar 2021 A1
20210099129 Abdo Apr 2021 A1
20210099201 Winick Apr 2021 A1
20210103012 Yasui Apr 2021 A1
20210103018 Biber Apr 2021 A1
20210110290 Jin Apr 2021 A1
20210110291 Abdo Apr 2021 A1
20210110868 Gingrich Apr 2021 A1
20210116499 Yamamoto Apr 2021 A1
20210125096 Puri Apr 2021 A1
20210132969 Smith May 2021 A1
20210133385 Molavi May 2021 A1
20210142215 Rigetti May 2021 A1
20210152127 Abdo May 2021 A1
20210157877 Mezzacapo May 2021 A1
20210159384 Abdo May 2021 A1
20210166133 Ronagh Jun 2021 A1
20210167272 Jinka Jun 2021 A1
20210184329 Schuster Jun 2021 A1
20210190885 Swenson Jun 2021 A1
20210192380 Jin Jun 2021 A1
20210193270 Stober Jun 2021 A1
20210209498 Jin Jul 2021 A1
20210226113 David Jul 2021 A1
20210226635 Mukhanov Jul 2021 A1
20210232739 Marthaler Jul 2021 A1
20210233617 Niroula Jul 2021 A1
20210233896 White Jul 2021 A1
20210234084 Abdo Jul 2021 A1
20210234086 Lescanne Jul 2021 A1
20210234087 Topaloglu Jul 2021 A1
20210241143 Amin Aug 2021 A1
20210241159 Heinsoo Aug 2021 A1
20210241160 Amin Aug 2021 A1
20210247329 Wang Aug 2021 A1
20210256412 Chen Aug 2021 A1
20210257969 Bardin Aug 2021 A1
20210257995 Sun Aug 2021 A1
20210258010 Smith Aug 2021 A9
20210263643 Thom Aug 2021 A1
20210265964 Miano Aug 2021 A1
20210271545 Abdo Sep 2021 A1
20210272008 Oliver Sep 2021 A1
20210279134 Versluis Sep 2021 A1
20210279627 Bauer Sep 2021 A1
20210287124 Ronagh Sep 2021 A1
20210288611 Abdo Sep 2021 A1
20210289020 Rolfe Sep 2021 A1
20210294680 Palmer Da Silva Sep 2021 A1
20210297056 Abdo Sep 2021 A1
20210302513 Perelshtein Sep 2021 A1
20210304050 Harris Sep 2021 A1
20210305374 Teo Sep 2021 A1
20210305480 Holmes Sep 2021 A1
20210314069 Henningsen Oct 2021 A1
20210326737 Jin Oct 2021 A1
20210330825 Ashrafi Oct 2021 A1
20210341411 Chen Nov 2021 A1
20210342161 Lauer Nov 2021 A1
20210342289 Maassen van den Brink Nov 2021 A1
20210342729 Scheer Nov 2021 A1
20210343923 Oliver Nov 2021 A1
20210350266 Hassel Nov 2021 A1
20210374590 Biamonte Dec 2021 A1
20210375516 Sterling Dec 2021 A1
20210384404 Finck Dec 2021 A1
20210384406 Huang Dec 2021 A1
20210390440 Shah Dec 2021 A1
20210399044 Gumann Dec 2021 A1
20210399200 Gen Dec 2021 A1
20210406746 Stehlik Dec 2021 A1
20220014192 Ahonen Jan 2022 A1
20220018801 Chen Jan 2022 A1
20220019929 Bunyk Jan 2022 A1
20220020913 Harris Jan 2022 A1
20220044143 Jin Feb 2022 A1
20220045416 Naaman Feb 2022 A1
20220054669 Ashrafi Feb 2022 A1
20220059919 Underwood Feb 2022 A1
20220065954 Beck Mar 2022 A1
20220066279 Spence Mar 2022 A1
20220076154 Wang Mar 2022 A1
20220083488 Black Mar 2022 A1
20220084085 Rigetti Mar 2022 A1
20220092152 Hamze Mar 2022 A1
20220092461 Bloom Mar 2022 A1
20220092462 Huai Mar 2022 A1
20220093500 Thomas Mar 2022 A1
20220093501 Thomas Mar 2022 A1
20220094029 Richman Mar 2022 A1
20220094320 Vesterinen Mar 2022 A1
20220094338 Kumph Mar 2022 A1
20220094341 Pellerano Mar 2022 A1
20220094358 Phung Mar 2022 A1
20220101171 Chen Mar 2022 A1
20220103172 Mundhada Mar 2022 A1
20220108200 Suttle Apr 2022 A1
20220115577 Beck Apr 2022 A1
20220121978 Woods Apr 2022 A1
20220123048 Swenson Apr 2022 A1
20220123449 Lauer Apr 2022 A1
20220129779 Moores Apr 2022 A1
20220138611 Siddiqi May 2022 A1
20220140223 Gao May 2022 A1
20220147859 Zhang May 2022 A1
20220155391 Juchem May 2022 A1
20220156441 Campbell May 2022 A1
20220156443 Chamberland May 2022 A1
20220156444 Noh May 2022 A1
20220156620 McDermott, III May 2022 A1
20220156621 Arrangoiz Arriola May 2022 A1
20220156622 Putterman May 2022 A1
20220164694 Rosenthal May 2022 A1
20220178995 Chamberland Jun 2022 A1
20220179732 Egger Jun 2022 A1
20220180236 Hann Jun 2022 A1
20220181534 Plourde Jun 2022 A1
20220187388 Phung Jun 2022 A1
20220188381 Mezzacapo Jun 2022 A1
20220188683 Goetz Jun 2022 A1
20220190027 Hyyppä Jun 2022 A1
20220199886 Phung Jun 2022 A1
20220207402 Lechner Jun 2022 A1
20220207403 Kapit Jun 2022 A1
20220207404 Boothby Jun 2022 A1
20220209844 Jamieson Jun 2022 A1
20220215282 Amin Jul 2022 A1
20220215283 Neill Jul 2022 A1
20220222567 Reagor Jul 2022 A1
20220223778 Kutsaev Jul 2022 A1
20220230760 Harris Jul 2022 A1
20220230761 Harris Jul 2022 A1
20220231690 Sete Jul 2022 A1
20220236593 Karinou Jul 2022 A1
20220236623 Mukhanov Jul 2022 A1
20220237489 Li Jul 2022 A1
20220237495 Yohannes Jul 2022 A1
20220245497 Zeng Aug 2022 A1
20220245501 Li Aug 2022 A1
20220246677 Kelly Aug 2022 A1
20220261680 Hasegawa Aug 2022 A1
20220263007 Lanting Aug 2022 A1
20220263483 Koh Aug 2022 A1
20220269968 Noguchi Aug 2022 A1
20220269970 Zhou Aug 2022 A1
20220277214 Kelly Sep 2022 A1
20220300844 Stehlik Sep 2022 A1
20220308134 Perelshtein Sep 2022 A2
20220309373 Huang Sep 2022 A1
20220311120 Schuster Sep 2022 A1
20220318660 Hasegawa Oct 2022 A1
20220327410 Chamberland Oct 2022 A1
20220335320 Thom Oct 2022 A1
20220343201 Lechner Oct 2022 A1
20220366291 Ni Nov 2022 A1
20220367090 Pixley Nov 2022 A1
20220374755 Didier Nov 2022 A1
20220374756 Doherty Nov 2022 A1
20220376161 Goto Nov 2022 A1
20220383179 Maksymov Dec 2022 A1
20220391081 Thom Dec 2022 A1
20220393089 Yohannes Dec 2022 A1
20220398482 Marthaler Dec 2022 A1
20220399145 Kirichenko Dec 2022 A1
20220399890 Archambault Dec 2022 A1
20220405649 Rastunkov Dec 2022 A1
20220407482 De Lange Dec 2022 A1
20220414513 Niroula Dec 2022 A1
20220414517 Sete Dec 2022 A1
20220416392 Lauer Dec 2022 A1
20230003813 Tanaka Jan 2023 A1
20230004850 Oreg Jan 2023 A1
20230004851 Harris Jan 2023 A1
20230006324 Whittaker Jan 2023 A1
20230006626 Naaman Jan 2023 A1
20230008279 Tillemann-Dick Jan 2023 A1
20230009670 Tillemann-Dick Jan 2023 A1
20230010205 Sank Jan 2023 A1
20230010758 Tillemann-Dick Jan 2023 A1
20230010920 Tillemann-Dick Jan 2023 A1
20230011913 Henriksen Jan 2023 A1
20230012324 Tillemann-Dick Jan 2023 A1
20230020389 Davis Jan 2023 A1
20230021319 Jin Jan 2023 A1
20230022450 Gilbert Jan 2023 A1
20230023319 Poccia Jan 2023 A1
20230026518 Burchard Jan 2023 A1
20230040584 Baker Feb 2023 A1
20230043001 Neill Feb 2023 A1
20230044102 Anderson Feb 2023 A1
20230044874 Goto Feb 2023 A1
20230059903 Shiokawa Feb 2023 A1
20230068284 Phung Mar 2023 A1
20230068621 Beck Mar 2023 A1
20230073224 Schuster Mar 2023 A1
20230080126 Chamberland Mar 2023 A1
20230085177 Shehab Mar 2023 A1
20230094612 Chen Mar 2023 A1
20230101616 Volkmann Mar 2023 A1
20230103370 Lahabi Apr 2023 A1
20230104058 Hopfmueller Apr 2023 A1
20230106489 Harris Apr 2023 A1
20230115065 Fischbacher Apr 2023 A1
20230127101 Yamaguchi Apr 2023 A1
20230142623 Leroux May 2023 A1
20230142878 Yamaji May 2023 A1
20230143506 Johnson May 2023 A1
20230153199 Lauer May 2023 A1
20230153667 Kandala May 2023 A1
20230153669 McKay May 2023 A1
20230155593 Abdo May 2023 A1
20230155594 Camirand Lemyre May 2023 A1
20230162080 Kikuchi May 2023 A1
20230163737 Vesterinen May 2023 A1
20230163762 Yamaji May 2023 A1
20230170889 Underwood Jun 2023 A1
20230172076 Xi Jun 2023 A1
20230172077 Finck Jun 2023 A1
20230176935 Earnest-Noble Jun 2023 A1
20230178519 White Jun 2023 A1
20230179205 Finck Jun 2023 A1
20230180631 Finck Jun 2023 A1
20230186132 Safavi-Naeini Jun 2023 A1
20230189665 Swenson Jun 2023 A1
20230189666 Noguchi Jun 2023 A1
20230196156 Chen Jun 2023 A1
20230196163 Mamin Jun 2023 A1
20230197539 Abraham Jun 2023 A1
20230198555 Phung Jun 2023 A1
20230207507 Yao Jun 2023 A1
20230216495 Yamaji Jul 2023 A1
20230225224 Abdo Jul 2023 A1
20230239054 Nissilä Jul 2023 A1
20230240154 Oh Jul 2023 A1
20230255123 Holmes Aug 2023 A1
20230270019 De Lange Aug 2023 A1
20230276719 Ma Aug 2023 A1
20230289400 Carroll Sep 2023 A1
20230289641 Palmer Sep 2023 A1
20230289642 Carroll Sep 2023 A1
20230291419 Yoder Sep 2023 A1
20230297869 Paul Sep 2023 A1
20230299791 Yoder Sep 2023 A1
20230309419 Kikuchi Sep 2023 A1
20230316117 Martinis Oct 2023 A1
20230318601 Yamaji Oct 2023 A1
20230325700 Jin Oct 2023 A1
20230337553 Yohannes Oct 2023 A1
20230341488 Apostolos Oct 2023 A1
20230351232 Stehlik Nov 2023 A1
20230353127 Goto Nov 2023 A1
20230359918 Phung Nov 2023 A1
20230360736 Stober Nov 2023 A1
20230363293 Miyata Nov 2023 A1
20230368059 McKay Nov 2023 A1
20230368063 Chancellor Nov 2023 A1
20230368065 Koike Akino Nov 2023 A1
20230370069 Amin Nov 2023 A1
20230371404 Hyyppä Nov 2023 A1
20230385668 Thom Nov 2023 A1
20230394342 Bloom Dec 2023 A1
20230400510 Whittaker Dec 2023 A1
20230401475 Finck Dec 2023 A1
20230401476 Finck Dec 2023 A1
20230409942 Sete Dec 2023 A1
20230409945 Miller, Jr. Dec 2023 A1
20230409946 Schwaller Dec 2023 A1
20230418706 Lauer Dec 2023 A1
20230419143 Ding Dec 2023 A1
20230419154 Lechner Dec 2023 A1
20230422635 Shabani Dec 2023 A1
20240008372 Sterling Jan 2024 A1
20240012749 Simmons Jan 2024 A1
20240013082 Ding Jan 2024 A1
20240013088 Kapit Jan 2024 A1
20240019514 Neufeld Jan 2024 A1
20240020562 Miano Jan 2024 A1
20240028537 Mariella Jan 2024 A1
20240028938 Berkley Jan 2024 A1
20240029902 Weggel Jan 2024 A1
20240029903 Ford Jan 2024 A1
20240030912 Beck Jan 2024 A1
20240038723 Nah Feb 2024 A1
20240046132 Kumph Feb 2024 A1
20240047277 Burkett Feb 2024 A1
20240049609 Li Feb 2024 A1
20240054379 Hodson Feb 2024 A1
20240057485 Altomare Feb 2024 A1
20240062088 Heya Feb 2024 A1
20240062089 Igarashi Feb 2024 A1
20240069079 Shi Feb 2024 A1
20240070502 Ethier-Majcher Feb 2024 A1
20240070510 Tsai Feb 2024 A1
20240070513 Shi Feb 2024 A1
20240072796 Ockeloen-Korppi Feb 2024 A1
20240077524 Kong Mar 2024 A1
20240078460 Finck Mar 2024 A1
20240086748 Bunyk Mar 2024 A1
20240086751 Finck Mar 2024 A1
20240090348 Yang Mar 2024 A1
20240095564 Underwood Mar 2024 A1
Foreign Referenced Citations (1)
Number Date Country
WO-2016000836 Jan 2016 WO
Non-Patent Literature Citations (198)
Entry
Quantum Computing Circuits and Devices, Travis S. Humble and Himanshu Thapliyal and Edgard Munoz-Coreas and Fahd A. Mohiyaddin and Ryan S. Bennink, 2018, https://arxiv.org/abs/1804.10648 (Year: 2018).
Abrams, Deanna M., Nicolas Didier, Blake R. Johnson, Marcus P. da Silva, and Colm A. Ryan. “Implementation of the XY interaction family with calibration of a single pulse.” arXiv preprint arXiv: 1912.04424 (2019).
Abrams, Deanna M., Nicolas Didier, Shane A. Caldwell, Blake R. Johnson, and Colm A. Ryan. “Methods for measuring magnetic flux crosstalk between tunable transmons.” Physical Review Applied 12, No. 6 (2019): 064022.
Ahmad, Meraj, Christos Giagkoulovits, Sergey Danilin, Martin Weides, and Hadi Heidari. “Scalable Cryoelectronics for Superconducting Qubit Control and Readout.” Advanced Intelligent Systems (2022): 2200079.
Allman, Michael S., Fabio Altomare, Jed D. Whittaker, Katarina Cicak, Dale Li, Adam Sirois, Joshua Strong, John D. Teufel, and Raymond W. Simmonds. “rf-Squid-mediated coherent tunable coupling between a superconducting phase qubit and a lumped-element resonator.” Physical review letters 104, No. 17 (2010): 177004.
Amparo, Denis, Mustafa Eren Çelik, Sagnik Nath, Joao P. Cerqueira, and Amol Inamdar. “Timing characterization for RSFQ cell library.” IEEE Transactions on Applied Superconductivity 29, No. 5 (2019): 1-9.
Antonov, I. V., R. S. Shaikhaidarov, V. N. Antonov, and O. V. Astafiev. “Superconducting ‘twin’qubit.” Physical Review B 102, No. 11 (2020): 115422.
Ash-Saki, Abdullah, Mahabubul Alam, and Swaroop Ghosh. “Experimental characterization, modeling, and analysis of crosstalk in a quantum computer.” IEEE Transactions on Quantum Engineering 1 (2020): 1-6.
Aumentado, Jose. “Superconducting parametric amplifiers: The state of the art in Josephson parametric amplifiers.” IEEE Microwave Magazine 21, No. 8 (2020): 45-59.
Bækkegaard, Thomas, L. B. Kristensen, Niels JS Loft, Christian Kraglund Andersen, David Petrosyan, and Nikolaj T. Zinner. “Realization of efficient quantum gates with a superconducting qubit-qutrit circuit.” Scientific reports 9, No. 1 (2019): 1-10.
Bairamkulov, Rassul, Tahereh Jabbari, and Eby G. Friedman. “QuCTS-single-flux quantum clock tree synthesis.” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 41, No. 10 (2021): 3346-3358.
Bardin, Joseph C. “Analog/Mixed-Signal Integrated Circuits for Quantum Computing.” In 2020 IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium (BCICTS), pp. 1-8. IEEE, 2020.
Bardin, Joseph C., Daniel Sank, Ofer Naaman, and Evan Jeffrey. “Quantum computing: An introduction for microwave engineers.” IEEE Microwave Magazine 21, No. 8 (2020): 24-44.
Bardin, Joseph C., Evan Jeffrey, Erik Lucero, Trent Huang, Ofer Naaman, Rami Barends, Ted White et al. “29.1 A 28nm bulk-CMOS 4-to-8GHz 2mW cryogenic pulse modulator for scalable quantum computing.” In 2019 IEEE International Solid-State Circuits Conference-(ISSCC), pp. 456-458. IEEE, 2019.
Barends, Rami, C. M. Quintana, A. G. Petukhov, Yu Chen, Dvir Kafri, Kostyantyn Kechedzhi, Roberto Collins et al. “Diabatic gates for frequency-tunable superconducting qubits.” Physical Review Letters 123, No. 21 (2019): 210501.
Barends, Rami, Julian Kelly, Anthony Megrant, Daniel Sank, Evan Jeffrey, Yu Chen, Yi Yin et al. “Coherent Josephson qubit suitable for scalable quantum integrated circuits.” Physical review letters 111, No. 8 (2013): 080502.
Berke, Christoph, Evangelos Varvelis, Simon Trebst, Alexander Altland, and David P. DiVincenzo. “Transmon platform for quantum computing challenged by chaotic fluctuations.” arXiv preprint arXiv:2012.05923 (2020).
Berke, Christoph, Evangelos Varvelis, Simon Trebst, Alexander Altland, and David P. DiVincenzo. “Transmon platform for quantum computing challenged by chaotic fluctuations.” Nature communications 13, No. 1 (2022): 2495.
Berkley, A. J., M. W. Johnson, P. Bunyk, R. Harris, J. Johansson, T. Lanting, E. Ladizinsky, E. Tolkacheva, M. H. S. Amin, and G. Rose. “A scalable readout system for a superconducting adiabatic quantum optimization system.” Superconductor Science and Technology 23, No. 10 (2010): 105014.
Besedin, Il'ya Stanislavovich, Gleb Petrovich Fedorov, A. Yu Dmitriev, and Valerii Vladimirovich Ryazanov. “Superconducting qubits in Russia.” Quantum Electronics 48, No. 10 (2018): 880.
Bhattacharyya, Shaman, and Somnath Bhattacharyya. “Demonstrating geometric phase acquisition in multi-path tunnel systems using a near-term quantum computer.” Journal of Applied Physics 130, No. 3 (2021): 034901.
Bocko, Mark F., Andrea M. Herr, and Marc J. Feldman. “Prospects for quantum coherent computation using superconducting electronics.” IEEE Transactions on Applied Superconductivity 7, No. 2 (1997): 3638-3641.
Boixo, Sergio, Tameem Albash, Federico M. Spedalieri, Nicholas Chancellor, and Daniel A. Lidar. “Experimental signature of programmable quantum annealing.” Nature communications 4, No. 1 (2013): 2067.
Boutin, Samuel, David M. Toyli, Aditya V. Venkatramani, Andrew W. Eddins, Irfan Siddiqi, and Alexandre Blais. “Effect of higher-order nonlinearities on amplification and squeezing in Josephson parametric amplifiers.” Physical Review Applied 8, No. 5 (2017): 054030.
Brink, Markus, Jerry M. Chow, Jared Hertzberg, Easwar Magesan, and Sami Rosenblatt. “Device challenges for near term superconducting quantum processors: frequency collisions.” In 2018 IEEE International Electron Devices Meeting (IEDM), pp. 6-1. IEEE, 2018.
Brock, Darren K. “RSFQ technology: Circuits and systems.” International journal of high speed electronics and systems 11, No. 01 (2001): 307-362.
Brock, Darren K., Elie K. Track, and John M. Rowell. “Superconductor ICs: the 100-GHz second generation.” IEEE spectrum 37, No. 12 (2000): 40-46.
Bunyk, Paul I., Emile M. Hoskinson, Mark W. Johnson, Elena Tolkacheva, Fabio Altomare, Andrew J. Berkley, Richard Harris et al. “Architectural considerations in the design of a superconducting quantum annealing processor.” IEEE Transactions on Applied Superconductivity 24, No. 4 (2014): 1-10.
Bunyk, Paul, Konstantin Likharev, and Dmitry Zinoviev. “RSFQ technology: Physics and devices.” International journal of high speed electronics and systems 11, No. 01 (2001): 257-305.
Cai, T-Q., X-Y. Han, Y-K. Wu, Y-L. Ma, J-H. Wang, Z-L. Wang, H-Y. Zhang, H-Y. Wang, Y-P. Song, and L-M. Duan. “Impact of Spectators on a Two-Qubit Gate in a Tunable Coupling Superconducting Circuit.” Physical Review Letters 127, No. 6 (2021): 060505.
Caldwell, S. A., N. Didier, C. A. Ryan, E. A. Sete, A. Hudson, P. Karalekas, R. Manenti et al. “Parametrically activated entangling gates using transmon qubits.” Physical Review Applied 10, No. 3 (2018): 034050.
Castellano, Maria Gabriella, Fabio Chiarello, Roberto Leoni, Guido Torrioli, Pasquale Carelli, Carlo Cosmelli, Marilena Di Bucchianico, Francesco Mattioli, Stefano Poletto, and Daniela Simeone. “A new flux/phase qubit with integrated readout.” IEEE transactions on applied superconductivity 15, No. 2 (2005): 849- 851.
Castellano, Maria Gabriella, Leif Grönberg, Pasquale Carelli, Fabio Chiarello, Carlo Cosmelli, Roberto Leoni, Stefano Poletto, Guido Torrioli, Juha Hassel, and Panu Helistö. “Characterization of a fabrication process for the integration of superconducting qubits and rapid-single-flux-quantum circuits.” Superconductor Science and Technology 19, No. 8 (2006): 860.
Çelik, Mustafa Eren, Timur V. Filippov, Anubhav Sahu, Dmitri E. Kirichenko, Saad M. Sarwana, A. Erik Lehmann, and Deepnarayan Gupta. “Fast RSFQ and ERSFQ parallel counters.” IEEE Transactions on Applied Superconductivity 30, No. 7 (2020): 1-4.
Chávez-Garcia, José M., Firat Solgun, Jared B. Hertzberg, Oblesh Jinka, Markus Brink, and Baleegh Abdo. “Weakly flux-tunable superconducting qubit.” Physical Review Applied 18, No. 3 (2022): 034057.
Christensen, B. G., C. D. Wilen, A. Opremcak, J. Nelson, F. Schlenker, C. H. Zimonick, L. Faoro et al. “Anomalous charge noise in superconducting qubits.” Physical Review B 100, No. 14 (2019): 140503.
Coffey, Mark W. “Quantum computing based on a superconducting quantum interference device: Exploiting the flux basis.” Journal of Modern Optics 49, No. 14-15 (2002): 2389-2398.
Cosmelli, C., M. G. Castellano, F. Chiarello, R. Leoni, D. Simeone, G. Torrioli, and P. Carelli. “Controllable flux coupling for the integration of flux qubits.” arXiv preprint cond-mat/0403690 (2004).
Crankshaw, Donald Shane. “Measurement and on-chip control of a niobium persistent current qubit.” PhD diss., Massachusetts Institute of Technology, 2003.
De Albornoz, Alejandro Cros Carrillo, John Taylor, and Vlad C{hacek over (a)}rare. “Time-optimal implementations of quantum algorithms.” Physical Review A 100, No. 3 (2019): 032329.
Di Paolo, Agustin, Catherine Leroux, Thomas M. Hazard, Kyle Serniak, Simon Gustavsson, Alexandre Blais, and William D. Oliver. “Extensible circuit-QED architecture via amplitude-and frequency-variable microwaves.” arXiv preprint arXiv:2204.08098 (2022).
Dickson, Neil G., M. William Johnson, M. H. Amin, R. Harris, F. Altomare, Andrew J. Berkley, P. Bunyk et al. “Thermally assisted quantum annealing of a 16-qubit problem.” Nature communications 4, No. 1 (2013): 1903.
Dragoman, Mircea, and Daniela Dragoman. “Quantum Computing.” In Atomic-Scale Electronics Beyond CMOS, pp. 157-186. Springer, Cham, 2021.
en.wikipedia.org/wiki/Frequency-locked_loop.
en.wikipedia.org/wiki/Phase-locked_loop.
Espinós, Hilario, Iván Panadero, Juan José García-Ripoll, and Erik Torrontegui. “Quantum control of tunable-coupling transmons using dynamical invariants of motion.” arXiv preprint arXiv:2205.06555 (2022).
Fedorov, Kirill G., Anastasia V. Shcherbakova, Michael J. Wolf, Detlef Beckmann, and Alexey V. Ustinov. “Fluxon readout of a superconducting qubit.” Physical review letters 112, No. 16 (2014): 160502.
Feng, Guanru, Shi-Yao Hou, Hongyang Zou, Wei Shi, Sheng Yu, Zikai Sheng, Xin Rao et al. “SpinQ Triangulum: a commercial three-qubit desktop quantum computer.” arXiv preprint arXiv:2202.02983 (2022).
Filippenko, L. V., V. K. Kaplunenko, M. I. Khabipov, V. P. Koshelets, K. K. Likharev, O. A. Mukhanov, S. V. Rylov, V. K. Semenov, and A. N. Vystavkin, “Experimental Implementation of Analog-to-Digital Converter Based on the Reversible Ripple Counter,” IEEE Trans. Magn., vol. MAG-27, No. 2, pp. 2464-2467, Mar. 1991.
Fong, Kin Chung, Evan Walsh, Gil-Ho Lee, Dmitri Efetov, Jesse Crossno, Leonardo Ranzani, Thomas Ohki, Philip Kim, and Dirk Englund. “Graphene Josephson Junction Microwave Detector.” In APS March Meeting Abstracts, vol. 2017, pp. S51-S011. 2017.
Foss-Feig, Michael, Stephen Ragole, Andrew Potter, Joan Dreiling, Caroline Figgatt, John Gaebler, Alex Hall et al. “Entanglement from Tensor Networks on a Trapped-Ion Quantum Computer.” Physical Review Letters 128, No. 15 (2022): 150504.
Gaj, Kris, Quentin P. Herr, Victor Adler, Darren K. Brock, Eby G. Friedman, and Marc J. Feldman. “Toward a systematic design methodology for large multigigahertz rapid single flux quantum circuits.” IEEE Transactions on Applied Superconductivity 9, No. 3 (1999): 4591-4606.
Gamel, Omar. “Entangled Bloch spheres: Bloch matrix and two-qubit state space.” Physical Review A 93, No. 6 (2016): 062320.
Ganzhorn, Marc, Daniel J. Egger, Panagiotis Barkoutsos, Pauline Ollitrault, Gian Salis, Nikolaj Moll, M. Roth et al. “Gate-efficient simulation of molecular eigenstates on a quantum computer.” Physical Review Applied 11, No. 4 (2019): 044092.
García-Ripoll, J. J., A. Ruiz-Chamorro, and E. Torrontegui. “Quantum control of transmon superconducting qubits.” arXiv preprint arXiv:2002.10320 (2020).
García-Ripoll, Juan José, Andrés Ruiz-Chamorro, and E. Torrontegui. “Quantum Control of Frequency-Tunable Transmon Superconducting Qubits.” Physical Review Applied 14, No. 4 (2020): 044035.
Giustino, Feliciano, Jin Hong Lee, Felix Trier, Manuel Bibes, Stephen M. Winter, Roser Valentí, Young-Woo Son et al. “The 2021 quantum materials roadmap.” Journal of Physics: Materials 3, No. 4 (2021): 042006.
Graham, T. M., Y. Song, J. Scott, C. Poole, L. Phuttitarn, K. Jooya, P. Eichler et al. “Demonstration of multi-qubit entanglement and algorithms on a programmable neutral atom quantum computer.” arXiv preprint arXiv:2112.14589 (2021).
Graham, T. M., Y. Song, J. Scott, C. Poole, L. Phuttitarn, K. Jooya, P. Eichler et al. “Multi-qubit entanglement and algorithms on a neutral-atom quantum computer.” Nature 604, No. 7906 (2022): 457-462.
Granata, C., B. Ruggiero, M. Russo, A. Vettoliere, V. Corato, and P. Silvestrini. “Josephson devices for controllable flux qubit and interqubit coupling.” Applied Physics Letters 87, No. 17 (2005).
Groszkowski, Peter, Austin G. Fowler, Felix Motzoi, and Frank K. Wilhelm. “Tunable coupling between three qubits as a building block for a superconducting quantum computer.” Physical Review B 84, No. 14 (2011): 144516.
Hahn, Henning, Giorgio Zarantonello, Marius Schulte, Amado Bautista-Salvador, Klemens Hammerer, and Christian Ospelkaus. “Integrated 9Be+ multi-qubit gate device for the ion-trap quantum computer.” npj Quantum Information 5, No. 1 (2019): 1-5.
Han, X. Y., T. Q. Cai, X. G. Li, Y. K. Wu, Y. W. Ma, Y. L. Ma, J. H. Wang, H. Y. Zhang, Y. P. Song, and L. M. Duan. “Error analysis in suppression of unwanted qubit interactions for a parametric gate in a tunable superconducting circuit.” Physical Review A 102, No. 2 (2020): 022619.
Harris, R., A. J. Berkley, M. W. Johnson, P. Bunyk, S. Govorkov, M. C. Thom, S. Uchaikin et al. “Sign-and magnitude-tunable coupler for superconducting flux qubits.” Physical review letters 98, No. 17 (2007): 177001.
Harris, R., J. Johansson, A. J. Berkley, M. W. Johnson, T. Lanting, Siyuan Han, P. Bunyk et al. “Experimental demonstration of a robust and scalable flux qubit.” Physical Review B 81, No. 13 (2010): 134510.
Harris, R., T. Lanting, A. J. Berkley, J. Johansson, M. W. Johnson, P. Bunyk, E. Ladizinsky, N. Ladizinsky, T. Oh, and Siyuan Han. “Compound Josephson-junction coupler for flux qubits with minimal crosstalk.” Physical Review B 80, No. 5 (2009): 052506.
Harris, Richard, Mark W. Johnson, T. Lanting, A. J. Berkley, J. Johansson, P. Bunyk, E. Tolkacheva et al. “Experimental investigation of an eight-qubit unit cell in a superconducting optimization processor.” Physical Review B 82, No. 2 (2010): 024511.
Harris, Richard, Yuki Sato, Andrew J. Berkley, M. Reis, Fabio Altomare, M. H. Amin, Kelly Boothby et al. “Phase transitions in a programmable quantum spin glass simulator.” Science 361, No. 6398 (2018): 162-165.
Hatridge, Michael, Vijayaraghava . R., “Basics of quantum measurement with quantum Light”, PowerPoint Presentation, U. Pittsburgh (2018).
Hayakawa, Hisao, Nobuyuki Yoshikawa, Shinichi Yorozu, and Akira Fujimaki. “Superconducting digital electronics.” Proceedings of the IEEE 92, No. 10 (2004): 1549-1563.
He, Yongcheng, Jianshe Liu, Changhao Zhao, Rutian Huang, Genting Dai, and Wei Chen. “Control System of Superconducting Quantum Computers.” Journal of Superconductivity and Novel Magnetism (2022): 1-21.
Hill, Charles D., Muhammad Usman, and Lloyd CL Hollenberg. “An exchange-based surface-code quantum computer architecture in silicon.” ar Xiv preprint arXiv:2107.11981 (2021).
Hornibrook, J. M., J. I. Colless, ID Conway Lamb, S. J. Pauka, H. Lu, A. C. Gossard, J. D. Watson et al. “Cryogenic control architecture for large-scale quantum computing.” Physical Review Applied 3, No. 2 (2015): 024010.
Hou, Shi-Yao, Guanru Feng, Zipeng Wu, Hongyang Zou, Wei Shi, Jinfeng Zeng, Chenfeng Cao et al. “SpinQ Gemini: a desktop quantum computer for education and research.” arXiv preprint arXiv:2101.10017 (2021).
Huang, Ziwen, Yao Lu, Eliot Kapit, David I. Schuster, and Jens Koch. “Universal stabilization of single-qubit states using a tunable coupler.” Physical Review A 97, No. 6 (2018): 062345.
Humble, Travis S., Himanshu Thapliyal, Edgard Munoz-Coreas, Fahd A. Mohiyaddin, and Ryan S. Bennink. “Quantum computing circuits and devices.” IEEE Design & Test 36, No. 3 (2019): 69-94.
Hutchings, M. D., Jared B. Hertzberg, Yebin Liu, Nicholas T. Bronn, George A. Keefe, Markus Brink, Jerry M. Chow, and B. L. T. Plourde. “Tunable superconducting qubits with flux-independent coherence.” Physical Review Applied 8, No. 4 (2017): 044003.
Ilves, Jesper, Shingo Kono, Yoshiki Sunada, Shota Yamazaki, Minkyu Kim, Kazuki Koshino, and Yasunobu Nakamura. “On-demand generation and characterization of a microwave time-bin qubit.” npj Quantum Information 6, No. 1 (2020): 1-7.
Ireland, Jane, Oliver Kieler, Johannes Kohlmann, Helge Malmbekk, Jonathan M. Williams, Ralf Behr, Bjornar Karlsen et al. “Josephson arbitrary waveform system with optoelectronic drive.” In 2017 16th International Superconductive Electronics Conference (ISEC), pp. 1-4. IEEE, 2017.
Jin, Lijing. “Implementing High-fidelity Two-Qubit Gates in Superconducting Coupler Architecture with Novel Parameter Regions.” arXiv preprint arXiv:2105.13306 (2021).
Johnson, M. W., P. Bunyk, F. Maibaum, E. Tolkacheva, A. J. Berkley, E. M. Chapple, R. Harris et al. “A scalable control system for a superconducting adiabatic quantum optimization processor.” Superconductor Science and Technology 23, No. 6 (2010): 065004.
Johnson, Philip R., Frederick W. Strauch, Alex J. Dragt, James R. Anderson, Christopher J. Lobb, and Frederick C. Wellstood. “Quantum control of superconducting phase qubits.” In Quantum Information and Computation II, vol. 5436, pp. 232-241. International Society for Optics and Photonics, 2004.
Johnson, Philip R., Frederick W. Strauch, Alex J. Dragt, James R. Anderson, Christopher J. Lobb, and Frederick C. Wellstood. “Quantum control of superconducting phase qubits.” In Quantum Information and Computation II, vol. 5436, pp. 232-241. SPIE, 2004.
Kafri, Dvir, Chris Quintana, Yu Chen, Alireza Shabani, John M. Martinis, and Hartmut Neven. “Tunable inductive coupling of superconducting qubits in the strongly nonlinear regime.” Physical Review A 95, No. 5 (2017): 052333.
Kaivarainen, Alex, and Bo Lehnert. “Two Extended New Approaches to Vacuum, Matter and Fields.” ar Xiv preprint physics/0112027 (2001).
Karlsen, Bjørnar. “Optically operated pulse-driven Josephson junction arrays and range extension using voltage dividers and buffer amplifiers.” (2019); Karlsen, Bjørnar. “Optically operated pulse-driven Josephson junction arrays and range extension using voltage dividers and buffer amplifiers.” (2019).
Kelly, Julian, Rami Barends, Brooks Campbell, Yu Chen, Zijun Chen, Ben Chiaro, Andrew Dunsworth et al. “Optimal quantum control using randomized benchmarking.” Physical review letters 112, No. 24 (2014): 240504.
Khabipov, M. I., D. V. Balashov, F. Maibaum, A. B. Zorin, V. A. Oboznov, V. V. Bolginov, A. N. Rossolenko, and V. V. Ryazanov. “A single flux quantum circuit with a ferromagnet-based Josephson π-junction.” Superconductor Science and Technology 23, No. 4 (2010): 045032.
Kim, Dohun, Zhan Shi, C. B. Simmons, D. R. Ward, J. R. Prance, Teck Seng Koh, John King Gamble et al. “Quantum control and process tomography of a semiconductor quantum dot hybrid qubit.” Nature 511, No. 7507 (2014): 70-74.
King, Andrew D., Juan Carrasquilla, Jack Raymond, Isil Ozfidan, Evgeny Andriyash, Andrew Berkley, Mauricio Reis et al. “Observation of topological phenomena in a programmable lattice of 1,800 qubits.” Nature 560, No. 7719 (2018): 456-460.
Kito, Nobutaka, and Kazuyoshi Takagi. “An RSFQ flexible-precision multiplier utilizing bit-level processing.” In Journal of Physics: Conference Series, vol. 1975, No. 1, p. 012025. IOP Publishing, 2021.
Klenov, N. V., A. V. Kuznetsov, I. I. Soloviev, S. V. Bakurskiy, M. V. Denisenko, and A. M. Satanin. “Flux qubit interaction with rapid single-flux quantum logic circuits: Control and readout.” Low Temperature Physics 43, No. 7 (2017): 789-798.
Kono, Shingo, Kazuki Koshino, Yutaka Tabuchi, Atsushi Noguchi, and Yasunobu Nakamura. “Quantum non-demolition detection of an itinerant microwave photon.” Nature Physics 14, No. 6 (2018): 546-549.
Krantz, Philip, Morten Kjaergaard, Fei Yan, Terry P. Orlando, Simon Gustavsson, and William D. Oliver. “A quantum engineer's guide to superconducting qubits.” Applied physics reviews 6, No. 2 (2019).
Krantz, Philip, Morten Kjaergaard, Fei Yan, Terry P. Orlando, Simon Gustavsson, and William D. Oliver. “A quantum engineer's guide to superconducting qubits.” Applied Physics Reviews 6, No. 2 (2019): 021318.
Landig, Andreas J., Jonne V. Koski, Pasquale Scarlino, Clemens Müller, José C. Abadillo-Uriel, Benedikt Kratochwil, Christian Reichl et al. “Virtual-photon-mediated spin-qubit-transmon coupling.” Nature communications 10, No. 1 (2019): 1-7.
Lanting, Trevor, Anthony J. Przybysz, A. Yu Smirnov, Federico M. Spedalieri, Mohammad H. Amin, Andrew J. Berkley, Richard Harris et al. “Entanglement in a quantum annealing processor.” Physical Review X 4, No. 2 (2014): 021041.
Larsen, Thorvald Wadum, Karl David Petersson, Ferdinand Kuemmeth, Thomas Sand Jespersen, Peter Krogstrup, Jesper Nygård, and Charles M. Marcus. “Semiconductor-nanowire-based superconducting qubit.” Physical review letters 115, No. 12 (2015): 127001.
Leonard Jr, Edward, Matthew A. Beck, J. Nelson, Brad G. Christensen, Ted Thorbeck, Caleb Howington, Alexander Opremcak et al. “Digital coherent control of a superconducting qubit.” Physical Review Applied 11, No. 1 (2019): 014009.
Li, Kangbo, R. McDermott, and Maxim G. Vavilov. “Hardware-efficient qubit control with single-flux-quantum pulse sequences.” Physical Review Applied 12, No. 1 (2019): 014044.
Li, X., T. Cai, H. Yan, Z. Wang, X. Pan, Y. Ma, W. Cai et al. “Tunable coupler for realizing a controlled-phase gate with dynamically decoupled regime in a superconducting circuit.” Physical Review Applied 14, No. 2 (2020): 024070.
Liebermann, Per J., and Frank K. Wilhelm. “Optimal qubit control using single-flux quantum pulses.” Physical Review Applied 6, No. 2 (2016): 024022.
Likharev, Konstantin K., Oleg A. Mukhanov, and Vasilii K. Semenov. “Resistive single flux quantum logic for the Josephson-junction digital technology.” Squid 85 (1985): 1103-1108.
Lin, Shi-Zeng. “Josephson effect between a two-band superconductor with s++ or s±pairing symmetry and a conventional s-wave superconductor.” Physical Review B 86, No. 1 (2012): 014510.
Liu, Chenxu, Maria Mucci, Xi Cao, Michael Hatridge, and David Pekker. “Theory of an on-chip Josephson quantum micromaser.” Bulletin of the American Physical Society 65 (2020).
Lu, Yao, Srivatsan Chakram, Ngainam Leung, Nathan Earnest, Ravi K. Naik, Ziwen Huang, Peter Groszkowski, Eliot Kapit, Jens Koch, and David I. Schuster. “Universal stabilization of a parametrically coupled qubit.” Physical review letters 119, No. 15 (2017): 150502.
Lüders, Carolin, and Marc Aßmann. “Distinguishing intrinsic photon correlations from external noise with frequency-resolved homodyne detection.” Scientific Reports 10, No. 1 (2020): 1-11.
Machnes, Shai, Elie Assémat, David Tannor, and Frank K. Wilhelm. “Tunable, flexible, and efficient optimization of control pulses for practical qubits.” Physical review letters 120, No. 15 (2018): 150401.
Mali{hacek over (s)}, Momir, P. Kl Barkoutsos, Marc Ganzhorn, Stefan Filipp, Daniel J. Egger, Sara Bonella, and Ivano Tavernelli. “Local control theory for superconducting qubits.” Physical Review A 99, No. 5 (2019): 052316.
Marques, J. F., B. M. Varbanov, M. S. Moreira, Hany Ali, Nandini Muthusubramanian, Christos Zachariadis, Francesco Battistel et al. “Logical-qubit operations in an error-detecting surface code.” Nature Physics 18, No. 1 (2022): 80-86.
Massoli, Fabio Valerio, Lucia Vadicamo, Giuseppe Amato, and Fabrizio Falchi. “A leap among quantum computing and quantum neural networks: A survey.” ACM Computing Surveys 55, No. 5 (2022): 1-37.
McConkey, T. G., J. H. Béjanin, C. T. Earnest, C. R. H. McRae, Z. Pagel, J. R. Rinehart, and M. Mariantoni. “Mitigating leakage errors due to cavity modes in a superconducting quantum computer.” Quantum Science and Technology 3, No. 3 (2018): 034004.
McCourt, Trevor, Charles Neill, Kenny Lee, Chris Quintana, Yu Chen, Julian Kelly, V. N. Smelyanskiy et al. “Learning Noise via Dynamical Decoupling of Entangled Qubits.” arXiv preprint arXiv:2201.11173 (2022).
McDermott, R., and M. G. Vavilov. “Accurate qubit control with single flux quantum pulses.” Physical Review Applied 2, No. 1 (2014): 014007.
McDermott, R., M. G. Vavilov, B. L. T. Plourde, F. K. Wilhelm, P. J. Liebermann, O. A. Mukhanov, and T. A. Ohki. “Quantum-classical interface based on single flux quantum digital logic.” Quantum science and technology 3, No. 2 (2018): 024004.
McKay, David C., Christopher J. Wood, Sarah Sheldon, Jerry M. Chow, and Jay M. Gambetta. “Efficient Z gates for quantum computing.” Physical Review A 96, No. 2 (2017): 022330.
McKay, David C., Stefan Filipp, Antonio Mezzacapo, Easwar Magesan, Jerry M. Chow, and Jay M. Gambetta. “Tunable coupling between fixed-frequency superconducting transmon qubits, Part II: Implementing a two-qubit XX-90 gate.” In APS March Meeting Abstracts, vol. 2016, pp. F48-008. 2016.
Miano, Alessandro, and Oleg A. Mukhanov. “Symmetric traveling wave parametric amplifier.” IEEE Transactions on Applied Superconductivity 29, No. 5 (2019): 1-6.
Mukhanov, Oleg A, A. Kirichenko, C. Howington, J. Walter, M. Hutchings, I. Vernik, D. Yohannes, K. Dodge, A. Ballard, B. L.T. Plourde, A. Opremcak, C.-H. Liu, R. McDermott, “Scalable Quantum Computing Infrastructure Based on Superconducting Electronics,” 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA (2019): 31.2.1-31.2.4.
Mukhanov, Oleg A. “Energy-efficient single flux quantum technology.” IEEE Transactions on Applied Superconductivity 21, No. 3 (2011): 760-769.
Mundada, Pranav, Gengyan Zhang, Thomas Hazard, and Andrew Houck. “Suppression of qubit crosstalk in a tunable coupling superconducting circuit.” Physical Review Applied 12, No. 5 (2019): 054023.
Murch, K. W., S. J. Weber, Christopher Macklin, and Irfan Siddiqi. “Observing single quantum trajectories of a superconducting quantum bit.” Nature 502, No. 7470 (2013): 211-214.
Naaman, Ofer, J. A. Strong, D. G. Ferguson, J. Egan, N. Bailey, and R. T. Hinkey. “Josephson junction microwave modulators for qubit control.” Journal of Applied Physics 121, No. 7 (2017): 073904.
Naaman, Ofer, Joshua Strong, David Ferguson, Jonathan Egan, Nancyjane Bailey, and Robert Hinkey. “Josephson Junction Microwave Modulators.” In 2018 IEEE/MTT-S International Microwave Symposium-IMS, pp. 1003-1005. IEEE, 2018.
Nägele, Maximilian, Christian Schweizer, Federico Roy, and Stefan Filipp. “Effective non-local parity-dependent couplings in qubit chains.” arXiv preprint arXiv:2203.07331 (2022).
Nakahara, K., H. Nagaishi, H. Hasegawa, S. Kominami, H. Yamada, and T. Nishino. “Optical input/output interface system for Josephson junction integrated circuits.” IEEE transactions on applied superconductivity 4, No. 4 (1994): 223-227.
Negîrneac, V., H. Ali, N. Muthusubramanian, F. Battistel, R. Sagastizabal, M. S. Moreira, J. F. Marques, W. J. Vlothuizen, M. Beekman, C. Zachariadis, N. Haider, A. Bruno, and L. DiCarlo, “High-fidelity controlled-Z gate with maximal intermediate leakage operating at the speed limit in a superconducting quantum processor,” Phys. Rev. Letters 126 (2021): 220502.
Nguyen, Long Bao. “Toward the Fluxonium Quantum Processor.” PhD diss., University of Maryland, College Park, 2020.
Niskanen, A. O., Khalil Harrabi, F. Yoshihara, Y. Nakamura, S. Lloyd, and Jaw Shen Tsai. “Quantum coherent tunable coupling of superconducting qubits.” Science 316, No. 5825 (2007): 723-726.
Ohki, Thomas A., Michael Wulf, and Marc J. Feldman. “Low-Jc rapid single flux quantum (RSFQ) qubit control circuit.” IEEE transactions on applied superconductivity 17, No. 2 (2007): 154-157.
Ohzeki, Masayuki, Akira Miki, Masamichi J. Miyama, and Masayoshi Terabe. “Control of automated guided vehicles without collision by quantum annealer and digital devices.” Frontiers in Computer Science 1 (2019): 9.
Opremcak, A., I. V. Pechenezhskiy, C. Howington, B. G. Christensen, M. A. Beck, E. Leonard Jr, J. Suttle et al. “Measurement of a superconducting qubit with a microwave photon counter.” Science 361, No. 6408 (2018): 1239-1242.
Pasandi, Ghasem, and Massoud Pedram. “An efficient pipelined architecture for superconducting single flux quantum logic circuits utilizing dual clocks.” IEEE Transactions on Applied Superconductivity 30, No. 2 (2019): 1-12.
Pasieka, Aron, David W. Kribs, Raymond Laflamme, and Rajesh Pereira. “On the geometric interpretation of single qubit quantum operations on the Bloch sphere.” Acta applicandae mathematicae 108 (2009): 697-707.
Patra, Bishnu, Jeroen PG van Dijk, Sushil Subramanian, Andrea Corna, Xiao Xue, Charles Jeon, Farhana Sheikh et al. “19.1 a scalable cryo-CMOS 2-to-20GHz digitally intensive controller for 4× 32 frequency multiplexed spin qubits/transmons in 22nm FinFET technology for quantum computers.” In 2020 IEEE International Solid-State Circuits Conference-(ISSCC), pp. 304-306. IEEE, 2020.
Pezzagna, Sébastien, and Jan Meijer. “Quantum computer based on color centers in diamond.” Applied Physics Reviews 8, No. 1 (2021): 011308.
Pitalúa-García, Damián. “Spacetime symmetries and the qubit Bloch ball: A physical derivation of finite-dimensional quantum theory and the number of spatial dimensions.” Physical Review A 104, No. 3 (2021): 032220.
Planat, Luca, Arpit Ranadive, Rémy Dassonneville, Javier Puertas Martínez, Sébastien Léger, Cécile Naud, Olivier Buisson, Wiebke Hasch-Guichard, Denis M. Basko, and Nicolas Roch. “Photonic-crystal Josephson traveling-wave parametric amplifier.” Physical Review X 10, No. 2 (2020): 021021.
Qiao, Yuanxin, and Zhaoxian Yu. “Geometric Phase in a Quantum Computation with Josephson Qubits Using a Current-Biased Information Bus.” (2018). Advances in Condensed Matter Physics, 2018, 7(1), 7-11 Published Online Feb. 2018 in Hans. http://www.hanspub.org/journal/cmp https://doi.org/10.12677/cmp.2018.71002Coffey, Mark W. “Quantum computing based on a superconducting quantum interference device: Exploiting the flux basis.” Journal of Modern Optics 49, No. 14-15 (2002): 2389-2398.
Qu, Pei-Yao, Guang-Ming Tang, Jia-Hong Yang, Xiao-Chun Ye, Dong-Rui Fan, Zhi-Min Zhang, and Ning-Hui Sun. “Design of an 8-bit Bit-Parallel RSFQ Microprocessor.” IEEE Transactions on Applied Superconductivity 30, No. 7 (2020): 1-6.
Quintana, Chris, Yu Chen, D. Sank, D. Kafri, A. Megrant, T. C. White, A. Shabani et al. “Coplanar waveguide flux qubit suitable for quantum annealing.” In APS March Meeting Abstracts, vol. 2016, pp. K48-010. 2016.
Radparvar, Masoud. Digital Squid Magnetometers for Read-out of Detectors and Magnetic Particles. No. Phase II SBIR Final Report. Hypres, Inc., Elmsford, NY (United States), 2016.
Rol, M. A., F. Battistel, F. K. Malinowski, C. C. Bultink, B. M. Tarasinski, R. Vollmer, N. Haider et al. “A fast, low-leakage, high-fidelity two-qubit gate for a programmable superconducting quantum computer.” arXiv preprint arXiv: 1903.02492 (2019).
Rønnow, Troels F., Zhihui Wang, Joshua Job, Sergio Boixo, Sergei V. Isakov, David Wecker, John M. Martinis, Daniel A. Lidar, and Matthias Troyer. “Defining and detecting quantum speedup.” science 345, No. 6195 (2014): 420-424.
Rosenberg, D., D. Kim, R. Das, D. Yost, S. Gustavsson, D. Hover, P. Krantz et al. “3D integrated superconducting qubits.” npj quantum information 3, No. 1 (2017): 42.
Salmon, Neil A. “A quantum Bell Test homodyne interferometer at ambient temperature for millimetre wave entangled photons.” In Quantum Information Science and Technology IV, vol. 10803, p. 108030I. International Society for Optics and Photonics, 2018.
Schrade, Constantin, and Liang Fu. “Majorana superconducting qubit.” Physical Review Letters 121, No. 26 (2018): 267002.
Sete, Eyob A., Matthew J. Reagor, Nicolas Didier, and Chad T. Rigetti. “Charge-and flux-insensitive tunable superconducting qubit.” Physical Review Applied 8, No. 2 (2017): 024004.
Sheldon, Sarah, Easwar Magesan, Jerry M. Chow, and Jay M. Gambetta. “Procedure for systematically tuning up cross-talk in the cross-resonance gate.” Physical Review A 93, No. 6 (2016): 060302.
Shukla, Ashish, Dmitry Kirichenko, Timur Filippov, Anubhav Sahu, Mustafa Eren Celik, Mingoo Seok, and Deepnarayan Gupta. “Pulse Interfaces and Current Management Techniques for Serially Biased RSFQ Circuits.” IEEE Transactions on Applied Superconductivity (2022).
Sirois, Adam, Manuel Castellanos-Beltran, Anna Fox, Samuel Benz, and Peter Hopkins. “Josephson Microwave Sources Applied to Quantum Information Systems.” IEEE Transactions on Quantum Engineering (2020).
Sivak, V. V., Shyam Shankar, Gangqiang Liu, Jose Aumentado, and M. H. Devoret. “Josephson array-mode parametric amplifier.” Physical Review Applied 13, No. 2 (2020): 024014.
Soloviev, Igor I., Nikolay V. Klenov, Sergey V. Bakurskiy, Mikhail Yu Kupriyanov, Alexander L. Gudkov, and Anatoli S. Sidorenko. “Beyond Moore's technologies: operation principles of a superconductor alternative.” Beilstein journal of nanotechnology 8, No. 1 (2017): 2689-2710.
Song, Chao, Kai Xu, Hekang Li, Yu-Ran Zhang, Xu Zhang, Wuxin Liu, Qiujiang Guo et al. “Generation of multicomponent atomic Schrödinger cat states of up to 20 qubits.” Science 365, No. 6453 (2019): 574-577.
Stassi, Roberto, Mauro Cirio, and Franco Nori. “Scalable quantum computer with superconducting circuits in the ultrastrong coupling regime.” npj Quantum Information 6, No. 1 (2020): 1-6.
Stenger, John, Gilad Ben-Shach, David Pekker, and Nicholas T. Bronn. “Simulating spectroscopic detection of Majorana zero modes with a superconducting quantum computer.” arXiv preprint arXiv:2202.12910 (2022).
Sung, Youngkyu, Leon Ding, Jochen Braumüller, Antti Vepsäläinen, Bharath Kannan, Morten Kjaergaard, Ami Greene et al. “Realization of High-Fidelity CZ and Z Z-Free iSWAP Gates with a Tunable Coupler.” Physical Review X 11, No. 2 (2021): 021058.
Tolpygo, Sergey K. “Superconductor digital electronics: Scalability and energy efficiency issues.” Low Temperature Physics 42, No. 5 (2016): 361-379.
Tolpygo, Sergey K., and Vasili K. Semenov. “Increasing integration scale of superconductor electronics beyond one million Josephson junctions.” In Journal of Physics: Conference Series, vol. 1559, No. 1, p. 012002. IOP Publishing, 2020.
Tolpygo, Sergey K., Vladimir Bolkhovsky, Terence J. Weir, Alex Wynn, Daniel E. Oates, Leonard M. Johnson, and Mark A. Gouker. “Advanced fabrication processes for superconducting very large-scale integrated circuits.” IEEE Transactions on Applied Superconductivity 26, No. 3 (2016): 1-10.
Uilhoorn, Willemijntje. “Hybrid Josephson junction-based quantum devices in magnetic field.” (2021). Delft University of Technology.
Uilhoorn, Willemijntje. “Hybrid Josephson junction-based quantum devices in magnetic field.” (2021). Propositions accompanying the dissertation. Delft University of Technology.
Van Den Brink, Alec Maassen, A. J. Berkley, and M. Yalowsky. “Mediated tunable coupling of flux qubits.” New Journal of Physics 7, No. 1 (2005): 230.
Van der Ploeg, S. H. W., A. Izmalkov, Alec Maassen van den Brink, U. Hübner, M. Grajcar, E. Il'Ichev, H-G. Meyer, and A. M. Zagoskin. “Controllable coupling of superconducting flux qubits.” Physical review letters 98, No. 5 (2007): 057004.
Van Zeghbroeck, B. “Optical data communication between Josephson-junction circuits and room-temperature electronics.” IEEE transactions on applied superconductivity 3, No. 1 (1993): 2881-2884.
Venturelli, Davide, Salvatore Mandrà, Sergey Knysh, Bryan O'Gorman, Rupak Biswas, and Vadim Smelyanskiy. “Quantum optimization of fully connected spin glasses.” Physical Review X 5, No. 3 (2015): 031040.
Versluis, Richard, Stefano Poletto, Nader Khammassi, Brian Tarasinski, Nadia Haider, David J. Michalak, Alessandro Bruno, Koen Bertels, and Leonardo DiCarlo. “Scalable quantum circuit and control for a superconducting surface code.” Physical Review Applied 8, No. 3 (2017): 034021.
Volkmann, Mark H., Anubhav Sahu, Coenrad J. Fourie, and Oleg A. Mukhanov. “Implementation of energy efficient single flux quantum digital circuits with sub-aJ/bit operation.” Superconductor Science and Technology 26, No. 1 (2012): 015002.
Vrajitoarea, Andrei, Ziwen Huang, Peter Groszkowski, Jens Koch, and Andrew A. Houck. “Quantum control of an oscillator using a stimulated Josephson nonlinearity.” Nature Physics 16, No. 2 (2020): 211-217.
Wang, Joel, Daniel Rodan Legrain, Charlotte Boettcher, Landry Bretheau, Daniel Campbell, Bharath Kannan, David Kim et al. “Quantum coherent control of graphene-based transmon qubit.” In APS March Meeting Abstracts, vol. 2019, pp. C29-C010. 2019.
Wendin, Göran. “Quantum information processing with superconducting circuits: a review.” Reports on Progress in Physics 80, No. 10 (2017): 106001.
Winkel, Patrick, Ivan Takmakov, Dennis Rieger, Luca Planat, Wiebke Hasch-Guichard, Lukas Grünhaupt, Nataliya Maleeva et al. “Nondegenerate parametric amplifiers based on dispersion-engineered josephson-junction arrays.” Physical Review Applied 13, No. 2 (2020): 024015.
Wu, Xian, Spencer L. Tomarken, N. Anders Petersson, Luis A. Martinez, Yaniv J. Rosen, and Jonathan L. DuBois. “High-fidelity software-defined quantum logic on a superconducting qudit.” Physical Review Letters 125, No. 17 (2020): 170502.
Wulschner, Friedrich, Jan Goetz, Fabian R. Koessel, Elisabeth Hoffmann, Alexander Baust, Peter Eder, Michael Fischer et al. “Tunable coupling of transmission-line microwave resonators mediated by an rf SQUID.” EPJ Quantum Technology 3, No. 1 (2016): 1-10.
Xin, Tao, Shilin Huang, Sirui Lu, Keren Li, Zhihuang Luo, Zhangqi Yin, Jun Li, Dawei Lu, Guilu Long, and Bei Zeng. “NMRCloudQ: a quantum cloud experience on a nuclear magnetic resonance quantum computer.” Science Bulletin 63, No. 1 (2018): 17-23.
Xu, Huikai, Weiyang Liu, Zhiyuan Li, Jiaxiu Han, Jingning Zhang, Kehuan Linghu, Yongchao Li et al. “Realization of adiabatic and diabatic CZ gates in superconducting qubits coupled with a tunable coupler.” Chinese Physics B 30, No. 4 (2021): 044212.
Xu, Xuexin, and M. H. Ansari. “Parasitic-free gate: A protected switch between idle and entangled states.” ar Xiv preprint arXiv:2202.05208 (2022).
Xu, Yuan, Ji Chu, Jiahao Yuan, Jiawei Qiu, Yuxuan Zhou, Libo Zhang, Xinsheng Tan et al. “High-fidelity, high-scalability two-qubit gate scheme for superconducting qubits.” Physical Review Letters 125, No. 24 (2020): 240503.
Yamae, Taiki, Naoki Takeuchi, and Nobuyuki Yoshikawa. “Binary counters using adiabatic quantum-flux-parametron logic.” IEEE Transactions on Applied Superconductivity 31, No. 2 (2020): 1-5.
Yamanashi, Yuki, Sotaro Nakaishi, Akira Sugiyama, Naoki Takeuchi, and Nobuyuki Yoshikawa. “Design methodology of single-flux-quantum flip-flops composed of both 0-and π-shifted Josephson junctions.” Superconductor Science and Technology 31, No. 10 (2018): 105003.
Yamanashi, Yuki, Takanobu Nishigai, and Nobuyuki Yoshikawa. “Study of LR-loading technique for low-power single flux quantum circuits.” IEEE Transactions on applied superconductivity 17, No. 2 (2007): 150-153.
Yan, Fei, Philip Krantz, Youngkyu Sung, Morten Kjaergaard, Daniel L. Campbell, Terry P. Orlando, Simon Gustavsson, and William D. Oliver. “Tunable coupling scheme for implementing high-fidelity two-qubit gates.” Physical Review Applied 10, No. 5 (2018): 054062.
Yang, Chui-Ping, Qi-Ping Su, Shi-Biao Zheng, and Siyuan Han. “One-step transfer or exchange of arbitrary multipartite quantum states with a single-qubit coupler.” Physical Review B 92, No. 5 (2015): 054509.
Yeninas, Steven. “Tunnel-diode resonator and nuclear magnetic resonance studies of low-dimensional magnetic and superconducting systems.” Ph.D. Dissertation Iowa State University (2013).
Yohannes, D., M. Renzullo, J. Vivalda, A. C. Jacobs, M. Yu, J. Walter, A. F. Kirichenko, I. V. Vernik, and O. A. Mukhanov. “High density fabrication process for single flux quantum circuits.” Applied Physics Letters 122, No. 21 (2023).
Yoshikawa, Nobuyuki. “Superconducting digital electronics for controlling quantum computing systems.” IEICE Transactions on Electronics 102, No. 3 (2019): 217-223.
Youssefi, Amir, Itay Shomroni, Yash J. Joshi, Nathan R. Bernier, Anton Lukashchuk, Philipp Uhrich, Liu Qiu, and Tobias J. Kippenberg. “A cryogenic electro-optic interconnect for superconducting devices.” Nature Electronics (2021): 1-7.
Zajac, D. M., J. Stehlik, D. L. Underwood, T. Phung, J. Blair, S. Carnevale, D. Klaus et al. “Spectator errors in tunable coupling architectures.” arXiv preprint arXiv:2108.11221 (2021).
Zhang, Helin, Srivatsan Chakram, Tanay Roy, Nathan Earnest, Yao Lu, Ziwen Huang, Daniel Weiss, Jens Koch, and David I. Schuster, “Universal fast flux control of a coherent, low-frequency qubit,” Phys. Rev. X 11 (2021): 011010.
Zhang, Xian-Peng, Li-Tuo Shen, Zhang-Qi Yin, Luyan Sun, Huai-Zhi Wu, and Zhen-Biao Yang. “Multi-Resonator-Assisted Multi-Qubit Resetting in a Network.” arXiv preprint arXiv:1604.08393 (2016).
Zhou, Jian, Sai Li, Guo-Zhu Pan, Gang Zhang, Tao Chen, and Zheng-Yuan Xue. “Nonadiabatic geometric quantum gates that are insensitive to qubit-frequency drifts.” Physical Review A 103, No. 3 (2021): 032609.
Zhu, Daoquan, Tuomas Jaako, Qiongyi He, and Peter Rabl. “Quantum computing with superconducting circuits in the picosecond regime.” Physical Review Applied 16, No. 1 (2021): 014024.
Zhu, Na. “Integrated Cavity Magnonics.” PhD diss., Yale University, 2020.
Bardin, Joseph C., Evan Jeffrey, Erik Lucero, Trent Huang, Ofer Naaman, Rami Barends, Ted White et al. “29.1 A 28nm bulk-CMOS 4-to-8GHz 2mW cryogenic pulse modulator for scalable quantum computing.” In 2019 IEEE International Solid-State Circuits Conference-(ISSCC), pp. 456-458. IEEE, 2019.
Niskanen, A. O., K. Harrabi, F. Yoshihara, Y. Nakamura, S. Lloyd, and Jaw Shen Tsai. “Quantum coherent tunable coupling of superconducting qubits.” Science 316, No. 5825 (2007): 723-726.
Quintana, Chris, Yu Chen, D. Sank, D. Kafri, A. Megrant, T. C. White, A. Shabani et al. “Coplanar waveguide flux qubit suitable for quantum annealing.” In APS March Meeting Abstracts, vol. 2016, pp. K48-K010. 2016.
Uilhoorn, Willemijntje. “Hybrid Josephson junction-based quantum devices in magnetic field.” (2021).
Zhu, Daoquan, Tuomas Jaako, Qiongyi He, and Peter Rabl. “Quantum computing with superconducting circuits in the picosecond regime.” arXiv preprint arXiv:2101.05810 (2021).
Related Publications (1)
Number Date Country
20220399145 A1 Dec 2022 US
Provisional Applications (1)
Number Date Country
63209937 Jun 2021 US