As railroad systems continue to evolve, efficiency demands will require that current dispatch protocols and methods be upgraded and optimized. It is expected that there will be a metamorphosis from a collection of territories governed by manual dispatch procedures to larger territories, and ultimately to a single all-encompassing territory, governed by an automated dispatch system.
At present, dispatchers control within a local territory. This practice recognizes the need for a dispatcher to possess local knowledge in performing dispatcher duties. As a result of this present structure, train dispatch is at best locally optimized. It is a byword in optimization theory that local optimization is almost invariably globally suboptimal. To move to fewer but wider dispatch territories would require significantly more data exchange and concomitantly much greater computational power in order to optimize a more nearly global scenario.
In one aspect of the present disclosure, in order to move forward in broadening and consolidating dispatch territories, it is desirable to identify and resolve exceptions at a centralized location or under a centralized authority. As the automation of dispatch control and exception handling progresses, the dispatch routines will be increasingly better tuned and fewer exceptions will arise. In another aspect, all rail traffic information, rail track information including rail track conditions, weather data, crew scheduling and availability information, is collected and territory tasks and their priorities across the broadened territory are merged, interleaved, melded, to produce a globally optimized list of tasks and their priorities.
In another aspect of the present disclosure, the past behavior of a train crew can be used to more accurately predict train performance against the movement plan, which becomes a more important factor as dispatch territories are merged. Because the actual control of the train is left to the engineer operating the train, there will be late arrivals and in general a non-uniformity of behavior across train movements and the variance exhibited across engineer timeliness and other operational signatures may not be completely controllable and therefore must be presumed to persist. The individual engineer performances can reduce the dispatch system's efficiency on most territorial scales and certainly the loss of efficiency becomes more pronounced as the territories grow larger.
In one embodiment, a behavioral model for each crew can be created using an associated transfer function that will predict the movements and positions of the trains controlled by that specific crew under the railroad conditions experienced at the time of prediction. The transfer function is crafted in order to reduce the variance of the effect of the different crews, thereby allowing better planning for anticipated delays and signature behaviors. The model data can be shared across territories and more efficient global planning will result.
Using the behavior model for each consist, a graph of expected performance for each consist can be generated.
The variance of expected arrival time 370 for consist #1310 is however much larger than the variance of expected arrival time 380 for consist #2330 and therefore the railroad traffic optimizer may elect to delay consist #1310 and allow consist #2330 to precede it onto the merged track 360. Such a decision would be expected to delay operations for consist #1310, but the delay may have nominal implications compared to the possibility of a significantly longer delay for both consists #1310 and #2330 should the decision be made to schedule consist #1310 onto the merged track 360 ahead of consist #2330. In prior art scheduling systems, the behavior of the crew was not taken into account, and in the present example, consist #1310 would always be scheduled to precede consist #2330 onto the merged track 360. Thus, by modeling each specific crew's behavior, important information can be collected and utilized to more precisely plan the movement of trains.
The behavior of a specific crew can be modeled as a function of the past performance of the crew. For example, a data base may be maintained that collects train performance information mapped to each individual member of a train crew. This performance data may also be mapped to the rail conditions that existed at the time of the train movement. This collected data can be analyzed to evaluate the past performance of a specific crew in the specified rail conditions and can be used to predict the future performance of the crew as a function of the predicted rail conditions. For example, it may be able to predict that crew A typically operates consist Y ahead of schedule for the predicted rail conditions, or more specifically when engineer X is operating consist Y, consist Y runs on average twelve minutes ahead of schedule for the predicted rail conditions.
The embodiments disclosed herein for planning the movement of the trains can be implemented using computer usable medium having a computer readable code executed by special purpose or general purpose computers.
While embodiments of the present disclosure have been described, it is understood that the embodiments described are illustrative only and the scope of the disclosure is to be defined solely by the appended claims when accorded a full range of equivalence, many variations and modifications naturally occurring to those of skill in the art from a perusal hereof.
The present application is related to the commonly owned U.S. patent application Ser. No. 11/415,273 entitled “Method of Planning Train Movement Using A Front End Cost Function”, Filed May 2, 2006, and U.S. patent application Ser. No. 11/476,552 entitled “Method of Planning Train Movement Using A Three Step Optimization Engine”, Filed Jun. 29, 2006, both of which are hereby incorporated herein by reference.