Field of the Invention
The present invention generally relates to charging of an electric vehicle. More specifically, the present invention relates to a system and method of predicting future demand of a charging station.
Background Information
An electric vehicle (EV) stores electricity received from an external power source. The stored electricity powers the EV. The range of the EV is limited by the amount of stored electricity. The range of an EV is typically less than the range of a traditional internal combustion engine (ICE) vehicle. Additionally, there are fewer charging stations for EVs than gas stations for ICE vehicles. Due to having fewer charging options, a problem exists for EV users regarding whether a charging station is available for charging when needed.
Some services are provided to EV users to facilitate charging the EV. A global positioning system (GPS) can provide a geographical location of a charging station. Locations can be provided for the charging station nearest the current location of the EV. Additionally, locations of charging stations along a planned route can be provided. Availability information, such as the business hours of the charging station and the number of charging spots provided at the charging station, can also be provided with the geographical location of the charging station to further facilitate charging by the EV user. Still further, real-time vacancy information can be provided to the EV user as to the current availability of a charging spot at a charging station.
However, a problem with providing real-time vacancy information to the EV user is that by the time the EV user arrives at the charging location, the charging spot indicated as being available could be in use by another EV. Public chargers take approximately thirty (30) minutes to fast or quick charge the EV to approximately 100%. As shown in
It has been discovered that to avoid waiting to charge an EV at a charging location, information regarding a likelihood of availability of a charging station is provided to a requesting EV. The likelihood of availability is provided as a predicted future demand associated with a particular charging station based on a history of charging activity at that charging station.
In view of the state of the known technology, one aspect of the present invention is a method of predicting future demand of a charging station. Probe data is collected from a plurality of electric vehicles. The probe data includes charging activity history of the plurality of electric vehicles. A usage pattern of a charging station is determined based on the probe data for the charging station. A future demand for the charging station is predicted by applying the usage pattern to a factor associated with a requesting electric vehicle. The predicted future demand for the charging station is provided to the requesting electric vehicle.
Another aspect of the present invention provides a system of predicting future demand of a charging station. A data center includes a data collector configured to collect probe data from a plurality of electric vehicles. The probe data includes charging activity history of the plurality of electric vehicles. A determination unit of the data center is configured to determine a usage pattern of a charging station based on the probe data for the charging station and to predict a future demand for the charging station by applying the usage pattern to a requesting electric vehicle. A transmitting unit of the data center is configured to transmit the predicted future demand. A requesting electric vehicle includes a communication unit configured to receive the predicted future demand for the charging station from the transmitting unit. A display of the requesting electric vehicle is configured to display the predicted future demand.
Referring now to the attached drawings which form a part of this original disclosure;
Selected exemplary embodiments will now be explained with reference to the drawings. It will be apparent to those skilled in the art from this disclosure that the following descriptions of the exemplary embodiments are provided for illustration only and not for the purpose of limiting the invention as defined by the appended claims and their equivalents.
As shown in
The EV 11 has a data logger 14 configured to store data associated with a charging event. The stored data regarding the EV's usage history data is probe data. The probe data includes, but is not limited to, location of the charging station, an arrival time at the charging station, a start time for the start of charging, and an end time for the end of charging. Situational identifiers can also be stored by the data logger. The situational identifiers can include, but are not limited to, a power on time for when the EV is powered on, a running time for the length of time the EV is being driven while powered on, a power off time for when the EV is powered off, and a route path indicating the route the EV has taken. Additionally, the data logger 14 can store the state of charge (SOC), i.e., the remaining battery life, associated with any of the other stored data. For example, the remaining battery life can be stored with the time associated with powering on the EV.
The data logger 14 is connected to a navigation and display unit 21, as shown in
The data center 16 includes a data collector or data collection unit 17 configured to receive probe data from a plurality of EVs 8, 9 and 10, as shown in
A charging history statistics calculation unit or calculator 18 receives the probe data and compiles relevant statistics regarding usage history of a charging station, as shown in
The transmitting unit 20 transmits a usage value associated with the particular charging station to the communication unit 15 of the requesting electric vehicle, as shown in
The navigation/display unit 21 of the EV 11 is configured to communicate with a global positioning system 22, as shown in
Information relating to the status of a charging station, such as whether the charging station is in use or has an available charger, is valuable to plan the route to be followed to reach the desired destination 24. The availability of a charging station along a route is unlikely to be the same by the time the EV reaches the charging station. This can be problematic, particularly when on a longer route in which charging the EV might be required.
The probe data collected by the data center 16 from a plurality of EVs 8, 9 and 10 provides information such that the current and predicted usage condition of the charging station can be determined, as shown in
As shown in
When plotting the travel route 25, the usage values of the charging stations 27, 28 and 29 on and near the route 25 can be shown with an associated indication of congestion. Accordingly, the user of the EV can select a desired route most advantageous with regard to the probability of accessing an available charger at a charging station.
The probe data received from at least one EV is used to analyze and predict the charging demand for each charging station. The predicted charging demand is provided to EV users as a usage value for each charging station. The usage value can be represented, as described above, as an indication of congestion of the charging station. The provided usage value provides load balancing for charging station usage, thereby allowing EV users to select charging stations having a higher probability of availability to more evenly distribute usage of the existing charging stations. The navigation and display unit 21 can generate a travel route 25 to a most reasonable charging station based on the predicted congestion of the charging station and the remaining battery charge of the EV.
The determination of the usage value associated with a charging station 33 is illustrated in
Using the history data of EVs, the charging station's occupancy situation can be predicted or forecast. Statistics for each charging station's usage history can be made, such as illustrated in maps 52-54 of
The current locations of the EVs can be included with the probe data such that a relationship can be determined between the location distribution of the EVs and the usage patterns of the charging stations. A trend model for each pattern characteristic can be made. The most similar EV distribution situation can be determined for a particular period (e.g., the present) and the corresponding occupancy trend can be provided to the requesting EV as forecasting information.
The departure and arriving locations of the EVs, as shown in map 35 of
The trajectory or travel route of each EV can be included with the probe data, as shown in map 35 of
The state of charge of the EVs can be included in the probe data. The probabilities of the EVs using the charging station based on the state of charge of the EVs is determined. Thus, the charging demands for the charging station are estimated based on the received states of charge, i.e., remaining battery life of the EVs. The state of charge levels for EVs are determined at a specific time period, e.g., the present, for EVs proximal the charging station and the occupancy trend is determined and provided to the requesting EV as forecasting information.
The destination settings for the EVs can be included in the probe data, as shown in the map 35 of
The probe data can include charging status of the EVs or of a particular charging station, such as when charging is occurring. Estimated vacant or availability time for the charging station can be predicted and provided to the requesting EV.
Additionally, the aforementioned factors can be combined in any desirable combination when determining an occupancy trend for a particular charging station. The resulting occupancy trend is then provided to the requesting EV to facilitate adequately planning a route in view of the current and/or predicated availability of charging stations along or proximal the route.
In accordance with an exemplary embodiment of the present invention, as shown in
The probe data sent by the plurality of EVs in step S11 can include a location of the charging station and start and end timestamps of charging activity at the charging station. The data center 16 can predict a vacant, or available, time of the charging station based on the received start and end timestamps.
The probe data can also include a charging indicator when one of the plurality of electric vehicles is presently charging at the charging station. The data center 16 can provide the requesting EV 11 with an estimated vacant, or available, time of the charging station based on the charging status of the presently charging vehicle.
The probe data can include a current location and a state of charge, i.e., remaining battery life, of the requesting EV 11. When the current location of the EV is proximal a charging station and the state of charge of the EV is not increasing (i.e., the EV is not being charged), the usage value of the proximal charging station indicates a waiting time for use of the charging station.
The usage value provided in step S13 can be provided as an average waiting time for the charging station or as a waiting probability (i.e., likelihood that the charging station is in use). The usage value can be converted into an indication of congestion associated with the charging station 27, as shown in
In accordance with another exemplary embodiment of the present invention, as shown in
The usage patterns determined in step S22 can be created based on occupancy, waiting time or queuing volume at the charging station 33, as shown in
The probe data sent by the plurality of EVs in step S21 can include a location of the charging station and start and end timestamps of charging activity at the charging station.
Predicting the future demand in step S23 can include applying a plurality of usage patterns determined in step S22 based on at least two different types of probe data. For example, the probe data on which the usage patterns are determined can include a location of the charging station, a day of the week and a time period, or any other desirable factor.
The probe data sent in step S21 can include the current locations of the plurality of electric vehicles 8, 9 and 10. In step S22, determining the usage pattern can include determining relationships between the plurality of electric vehicles and the charging station 33 (
The probe data sent in step S21 can include information regarding arrival and departure of the plurality of electric vehicles at the charging station 33 (
The probe data send in step S21 can include a state of charge of the plurality of EVs. The usage pattern determined in step S22 includes predicting charging activity based on the current state of charge received from the plurality of EVs. An occupancy trend at the charging station can then be predicted based on the EVs proximal to the charging station.
The probe data sent in step S21 includes destination settings for the plurality of electric vehicles, as shown in
Additionally, a similar pattern for departures of the plurality of EVs 8, 9 and 10 can be determined. A corresponding occupancy trend based on the departure pattern is sent to the requesting EV 11. To facilitate determining the departure patterns, the probe data sent in step S21 includes a direction of travel of the plurality of electric vehicles. A relationship between the occupancy pattern of the charging station 33 (
In accordance with another exemplary embodiment of the present invention, as shown in
In step S32, when determining the charging station associated with the requesting EV 11 (
The charging activity history collected in step S31 can include a location and charging start and end timestamps of the plurality of charging stations. The charging activity history can be the probe data received from the plurality of EVs.
In step S33, the future demand can be predicted for a plurality of charging stations. In step S34, the predicted usage value can be provided for a plurality of charging stations.
A route to a most appropriate charging station can be provided to the requesting EV 11 based on the predicted usage value of step S34 and a state of charge of the requesting EV. The predicted usage value can be provided as an average waiting time at the charging station, as a segmented waiting probability based on a percentage of chargers utilized at the charging station, as an indication of congestion at the charging station, or any other suitable representative factor of interest. The indication of congestion can be color coded such that the charging station is represented with a color indicating the level of congestion. The indications can be “vacant” to indicate no waiting time, “rarely occupied” to indicate under approximately 10% vacant, “slightly congested” to indicate under approximately 30% vacant, “relatively crowded” to indicate between approximately 30 to approximately 60% vacant, and “crowded” to indicate over approximately 60% crowded. The predicted usage value of step S34 is displayed within the requesting EV 11, such as on a map showing the location of the charging station as shown in
The usage value predicted in step S34 is determined for a plurality of charging stations. The predicted usage values for the plurality of charging stations is provided to the requesting EV. The plurality of predicted usage values are displayed within the requesting EV, such as on a map showing the locations of the plurality of charging stations as shown in
The usage value can be sent from a server connected to the transmitting unit 20 of the data center 16 directly to a telematics unit, such as the communications unit 15, of the requesting electric vehicle 11.
In step S33, predicting future demand can include determining a pattern of charging activity of one of the plurality of charging stations and applying the determined pattern to the requesting electric vehicle, as shown in the maps 52-54 of
The units associated with the EV 11 and the data center 16 disclosed herein preferably include a microcomputer with a control program that controls the associated functions. The units can also include other conventional components such as an input interface circuit, an output interface circuit, and storage devices such as a ROM (Read Only Memory) device and a RAM (Random Access Memory) device. It will be apparent to those skilled in the art from this disclosure that the precise structure and algorithms for the units can be any combination of hardware and software that will carry out the functions of the present invention.
In understanding the scope of the present invention, the term “comprising” and its derivatives, as used herein, are intended to be open ended terms that specify the presence of the stated features, elements, components, groups, integers, and/or steps, but do not exclude the presence of other unstated features, elements, components, groups, integers and/or steps. The foregoing also applies to words having similar meanings such as the terms, “including”, “having” and their derivatives. Also, the terms “part,” “section,” “portion,” “member” or “element” when used in the singular can have the dual meaning of a single part or a plurality of parts. Also as used herein to describe the above embodiment(s), the following directional terms “forward”, “rearward”, “above”, “downward”. “vertical”, “horizontal”, “below” and “transverse” as well as any other similar directional terms refer to those directions of a vehicle.
The term “detect” as used herein to describe an operation or function carried out by a component, a section, a device or the like includes a component, a section, a device or the like that does not require physical detection, but rather includes determining, measuring, modeling, predicting or computing or the like to carry out the operation or function.
The term “configured” as used herein to describe a component, section or part of a device includes hardware and/or software that is constructed and/or programmed to carry out the desired function.
The terms of degree such as “substantially”, “about” and “approximately” as used herein mean a reasonable amount of deviation of the modified term such that the end result is not significantly changed.
While only selected embodiments have been chosen to illustrate the present invention, it will be apparent to those skilled in the art from this disclosure that various changes and modifications can be made herein without departing from the scope of the invention as defined in the appended claims. For example, the size, shape, location or orientation of the various components can be changed as needed and/or desired. Components that are shown directly connected or contacting each other can have intermediate structures disposed between them. The functions of one element can be performed by two, and vice versa. The structures and functions of one embodiment can be adopted in another embodiment. It is not necessary for all advantages to be present in a particular embodiment at the same time. Every feature which is unique from the prior art, alone or in combination with other features, also should be considered a separate description of further inventions by the applicant, including the structural and/or functional concepts embodied by such feature(s). Thus, the foregoing descriptions of the embodiments according to the present invention are provided for illustration only, and not for the purpose of limiting the invention as defined by the appended claims and their equivalents.
Number | Name | Date | Kind |
---|---|---|---|
8301323 | Niwa | Oct 2012 | B2 |
20110106329 | Donnelly et al. | May 2011 | A1 |
20110193522 | Uesugi | Aug 2011 | A1 |
20130096751 | Riley et al. | Apr 2013 | A1 |
20150298565 | Iwamura | Oct 2015 | A1 |
Entry |
---|
Tolosana-Calasanz et al. “A Distributed In-Transit Processing Infrastructure for Forecasting Electric Vehicle Charging Demand”, IEEE/ACM Symposium CCGC, 2013, pp. 538-545. |
Number | Date | Country | |
---|---|---|---|
20150294228 A1 | Oct 2015 | US |