1. Field of the Invention
The present invention relates generally to the field of corrosion prevention and more particularly to a system and method to prevent the corrosion of vehicle rims.
2. Description of Related Art
The problem of galvanic corrosion between hubs and rims on vehicles made of dissimilar metals has largely gone without solution. Rims are routinely mounted directly on hubs with bolts without regard to the presence of dissimilar metals. Numerous cases of corrosion into the rim metal have been observed. The phenomena causes expensive damage to rims and is also a safety hazard because it is possible under prolonged exposure for rims to fail totally. Moisture, salt, and road conditions simply make the matter worse and speed up the corrosion process.
Corrosion control is known in the art and is usually practiced by sealing an area susceptible to corrosion. U.S. Pat. No. 5,906,463 teaches a means for protecting a screw from corrosion with a protective ring. U.S. Pat. No. 4,421,821 attempts to combat rim corrosion by the use of paint.
In some cases, a corrosion resistant plating is used. U.S. Pat. No. 5,636,906 teaches using chromium plating on a composite wheel.
It is known in the art to place spacers between a wheel hub and a rim for purposes other than corrosion control. U.S. Pat. No. 5,435,420 teaches a thermal gasket made of ceramic or stainless steel between a disk brake drum and a wheel. The purpose of this spacer is to prevent heat transfer from the brake into the rim. This spacer will not prevent corrosion unless care is taken to also prevent electrical currents from flowing from the hub to the rim.
Attempts have been reported of trying to prevent this corrosion by the use of pastes or other compounds between the components. On a vehicle, this usually fails because the rim is pressed very tightly against the hub by the lug bolts. Any paste or other compound is squeezed into a very thin layer. This layer is not generally thick enough to prevent the corrosion; also, the paste deteriorates with exposure to the elements and loses effectiveness.
What is badly needed is a system and method that will almost completely prevent expensive and dangerous corrosion between rims and the dissimilar metal where the rim is mounted on all types of vehicles including cars, vans, trucks, aircraft, and any other type of vehicle that may have a rim.
The present invention relates to a system and method for stopping the corrosive process between a rim and a mounting hub (dissimilar metals) on a vehicle. The process occurs because of the presence of at least two dissimilar metals in the presence of an electrolyte. The electrolyte is provided by dirt, salt, and other materials in the presence of moisture caused by humidity from the air. The combination of two dissimilar metals in an electrolyte results in a battery action where an electrical current made up of electrons flows out of the anode part through an external path back to the cathode. Negative ions flow in the electrolyte from the cathode to the anode, while positive ions flow in the electrolyte from the anode to the cathode. The anode which is giving off electrons becomes damaged because the positive ions that are left (after electrons leave) leave the surface and also flow to the cathode. In the case of a rim/hub combination, it is the rim itself that suffers the most damage because the rim is the anode.
As just explained, batter action in the electrolyte causes positive metal ions (cat-ions) flow through the electrolyte from the anode to the cathode. In the case of an aluminum rim and a steel hub, the aluminum will be the anode and the steel will be the cathode. This can be seen from comparing the electronegativities of the aluminum and iron (steel). The electronegativity value for aluminum is 1.69 volts, while the value for iron is 0.44 volts (iron oxidized to iron++)(Iron++ oxidized to Iron+++ is −0.771 volts). Thus, a potential difference of between 1.25 volts and 2.5 volts can exist in an Al/Fe battery. Since the value for aluminum is more positive than iron, it liberates electrons which flow through any conducting path to the Iron. Anions such as chloride (minus) ions flow from the hub to the rim, while sodium and aluminum cat-ions flow from the rim to the hub (assuming the electrolyte is sodium chloride salt). The process at the anode (the rim) is called oxidation and will damage the rim and possibly ultimately destroy it. Anything that interrupts the external flow of electrons or the flow of ions in the electrolyte will stop the corrosive action.
It is known in the automotive art to make rims from other metal alloys besides aluminum. In particular, magnesium alloys and nickel alloys are also used. The result is similar. The voltage of a magnesium/iron combination is 1.9 volts and the voltage of a nickel/iron combination is 0.17 volts. It can be seen that there is more tendency to corrode with magnesium and less with nickel; however, even with nickel, there is some corrosion danger.
The present invention is a system and method of preventing the flow of ions from the face of the rim to the face of the hub. The present invention contains an electrically insulting gasket that can be fitted between the rim and the hub causing most of the electrolyte electrical current path to be blocked between the two dissimilar metals. This gasket can be cut to fit any rims on any type of vehicle with holes cut to match the locations of the lug nuts. It should be noted that the lugs and lug bolts make a tight electrical contact between the hub and the rim. Without the electrically insulating gasket, this was the primary electron return path from the anode to the cathode (rim to hub). The fact that this path still exists is unimportant because the major path for metal ions in the electrolyte has been interrupted, and it has been interrupted over the large surface contact area between the hub and rim. Since the total remaining electrical contact surface area with the bolts is small, any additional electrolyte in voids between the lug nuts and rim is very small and has almost no effect.
Any electrically insulating material can be used to fabricate the gasket insulator as long as it is strong enough to withstand the stress of being squeezed between the rim and the hub, and as long as it does not deteriorate with use. A cork-nitrile material has been used successfully; however, rubber, paper, or other insulating material is also within the scope of the present invention. It should be noted that metals cannot be used directly in this application as all metals are electrical conductors. However, an insulator can be made of a composite laminate with a metal layer as long as that layer is electrically insulated from either the hub, the rim, or both.
It should be noted that the drawings are provided to illustrate and explain the present invention. Many other embodiments and designs are within the scope of the invention that are not shown in the drawings.
Turning to
The rim 7 is metal (usually aluminum alloy) and slips onto the hub 2 over the lugs 4. The lugs 4 mate to aligned holes 8 in the rim 7. A gasket 5 that can be made of non-conducting material also contains a set of aligned holes 6 that match the lugs 4. The gasket effectively forms an electrically insulating barrier between the hub face 3 and the rim 7 preventing electrical current from flowing in either direction between the rim 7 and the hub face 3. Nothing other than the insulating gasket 5 is necessary to prevent the corrosion process; however, it is optionally possible to coat the gasket with a material such as silicon grease to further protect the system by decreasing the electrical conductivity of the system.
In the embodiment of
While the present invention has been described with a separate gasket, it is entirely within the scope of the present invention to have the gasket material attached or bonded to either the rim or the hub. This could be accomplished by various means of bonding known in the art including with glue. In such an embodiment, the rim and/or hub would be supplied with the gasket or gasket like material in place.
While the preferred embodiments of the present invention have been shown and described, it is to be understood that various modifications and changes would be recognized by one skilled in the art as being within the scope of the present invention. It is understood that the means shown to accomplish the invention are for illustration only; many other means are within the scope of the present invention. The scope of the present invention is defined by the claims that follow and not the foregoing description.
This application is a continuation of co-pending application Ser. No. 10/096,767 filed Mar. 13, 2002 which claimed priority from U.S. Provisional patent application 60/326,944 file Oct. 4, 2001. Application No. 60/326,944 is hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
60326944 | Oct 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10096767 | Mar 2002 | US |
Child | 11104231 | Apr 2005 | US |