The present invention relates to a system and method of providing a platform for managing a campaign for publishing data content on social networks.
Social networks have emerged as major platform for communication over the years, with hundreds of millions of interactions created by users every day. Marketing experts have long recognized that an effective marketing strategy must include a presence on social networks. For many corporate users that desire to post data content (also referred to as content data or content herein), one of their goals when broadcasting content (e.g., messages) is to capture the attention of a large number of audience members on these social networks so that such audience members may react to the posted content. The likelihood that audience members react to posted content may differ depending on various factors such as location, daily and weekly behavior patterns, time zone and volume of other content competing for the attention of the audience members. To address this, Lithium Technologies, Inc. developed a technique or system to formulate a user's schedule for broadcasting content on a social network, in order to increase audience members' reactions. “When-To-Post on Social Networks,” Spasojevic et al., Association For Computing Machinery 2015, which is incorporated by reference herein. While the system described in Spasojevic et al. is effective for its intended purpose, it would be advantageous to provide improvements to this system.
Embodiments of a system and method for managing a campaign for publishing data content on social networks are disclosed.
In accordance with an embodiment of this disclosure, a computer-implemented system is disclosed for providing a platform for managing a campaign for publishing content on social networks to increase audience member reaction to the content, the system comprising: a data store: a content items database, wherein data associated with content items on one or more topics that is intended to be posted on social networks are stored; a schedule database, wherein data associated with schedules for posting the content items are stored; user account database, wherein data associated with registered users are stored; one or more servers coupled to the data store, wherein the one or more servers are programmed to execute computer program steps, the computer program steps comprising: collecting data from a first social network and a second social network relating to the activities of a plurality of users on the first and second social networks; collecting data associated with the first and second social networks relating to the users' audience; estimating a post to reaction filter for the first social network and the second social network by aggregating post to reaction times for all posted content and reactions to the posted content on the first social network and the second social network; calculating self reaction profiles for the plurality of users by aggregating data relating to user reactions to posts on the first and second social networks; calculating a user audience post reaction profile for the first social network and the second social network as a function of the post to reaction filter; generating a first schedule for posting the content on the first social network and a second schedule for posting the content on the second social network as a function of the audience post reaction profiles; and estimating a transformation function, based on post to reaction filter data, self reaction profiles and audience post reaction profiles, to transform the first schedule for posting content on the first social network into the second schedule for posting content on the second network, the transformation function thereby establishing a relationship between the first schedule for posting content on the first social network and the second schedule for posting content on the second social network.
In yet another embodiment of the disclosure, a computer-implemented system is disclosed for providing a platform for managing a campaign for publishing data content on social networks to increase audience member reaction to the data content, the system comprising: a data store: a content items database, wherein data associated with content items on one or more topics that is intended to be posted on social networks are stored; a schedule database, wherein data associated with schedules for posting the content items are stored; user account database, wherein data associated with registered users are stored; one or more servers coupled to the data store, wherein the one or more servers are programmed to execute computer program steps, the computer program steps comprising: collecting data from a first social network and a second social network relating to the activities of a plurality of users on the first and second social networks; collecting data associated with the first and second social networks relating to the users' audience; estimating a post reaction filter for first social network and second social network by aggregating post to reaction times for all posted content and reactions to the posted content on the first social network and the second social networks; calculating a self reaction profiles for the plurality of users by aggregating data relating to user reactions to posts on the first and second social networks; calculating a user audience post reaction profile for the first social network and the second social network as a function of the post to reaction filter; generate a first schedule for posting the content on the first social network and a second schedule for posting the content on the social network as a function of the audience post reaction profiles, thereby establishing a relationship between the first schedule for posting content on the first social network and the second schedule for posting content on the second social network; and estimate a user's schedule for posting a user's content on the second social network as a function of the relationship between the first schedule for posting content on the first social network and the second schedule for posting content on the second social network.
In accordance with yet another embodiment of the disclosure, a computer-implemented system is disclosed for providing a platform for managing a campaign for publishing data content on social networks to increase audience member reaction to the published data content, the system comprising: a data store: a content items database, wherein data associated with content items on one or more topics that is intended to be posted on social networks are stored; a schedule database, wherein data associated with schedules for posting the content items are stored; user account database, wherein data associated with registered users are stored; one or more servers coupled to the data store, wherein the one or more servers are programmed to execute computer program steps, the computer program steps comprising: collecting data from a social network relating to the activities of a plurality of users on the social network; attributing one or more domains to each user in the social network; calculating a post to reaction filter for the social network relative to the one or more domains; calculating a domain reaction profile for the social network by aggregating reaction of users in connection with a domain; calculating a post reaction profile for the social network; and generate a domain posting schedule for the social network independent of a user's audience on the social network.
In accordance with another embodiment of this disclosure, a method is disclosed of providing a platform for managing a campaign for publishing data content on social networks to increase reactions to the published content, the method is implemented in one or more servers programmed to execute the method, the method comprising: retrieving data content item and other metadata intended to be posted on a social network; detect one or more domains from the data content item using natural language processing; generating a posting schedule for each of the one or more domains for the social network as a function of a post to reaction filter for the social network for each domain of the one or more domains and the domain reaction profile for the social network; fetching one or more schedules for the one or more domains respectively, combining the one or more schedules for the one or more domains; and deriving a schedule for posting the data content item, the schedule derived independent of user audience reaction.
In accordance with another embodiment of this disclosure, a method is disclosed of providing a platform for managing a campaign for publishing data content on social networks to increase reactions to the published content, the method is implemented in one or more servers programmed to execute the method, the method comprising: (1) receiving a request for an interval of time in which a user desires to post a content item on a social network; (2) receiving a schedule for posting a content item and a post to reaction filter for the interval of time; (3) calculating the schedule for posting a content item on the social network and the post to reaction filter based on an interval of time that is refined with greater granularity; (4) modeling a decay function as a function of the post to reaction filter, the decay function representative of a level of interest of an audience of the user; (5) determining an optimal time to post the content item on the social network as a function of the decay function; and (6) recomputing the schedule as a function of the decay function and received schedule for posting the content item on the social network.
In accordance with yet another embodiment of the disclosure, a computer-implemented system is disclosed for providing a platform for managing a campaign for publishing data content on social networks to increase audience member reaction to the data content, the system comprising: a data store: a content items database, wherein data associated with content items on one or more topics that is intended to be posted on social networks are stored; a schedule database, wherein data associated with schedules for posting the content items are stored; user account database, wherein data associated with registered users are stored; one or more servers coupled to the data store, wherein the one or more servers are programmed to execute computer program steps, the computer program steps comprising: receiving content items from content database that are associated with a topic selected by a user for posting on a social network, wherein the one or more content items are associated with one or more URLs; estimating a post to a reaction filter for a time interval for the social network for the user, the post to a reaction filter representative of the probability distribution that a reaction to a posted content will occur within the time interval; calculating a reaction profile associated with reactions to posts on the social network by aggregating reaction time of a plurality of users on the social network for one or more content items posted on the social network; determining a schedule for posting the content items on the social network as a function of the post to reaction filter and reaction profile; and posting the content items on the social network in accordance with the schedule.
Embodiments of the present disclosure are described herein with reference to the drawing figures.
Central system 102 incorporates platform 200 for managing a campaign for publishing data content on social networks (described below). Platform 200 incorporates several computer software modules and databases as described in
Content sources 104 are a system of one or more servers that comprise any number of social networks (herein after also referred to as social networks 104). Social networks 104, as known to those skilled in the art, are typically web-based systems that allow users to create a profile, post content, connect to other users, react with posted content and create a list of users with whom to share such content (e.g., social media data). Users of social networks may refer to users that post content or users that react to the content, i.e., users' audience members. Reactions to posted content are also referred to herein as interactions or engagements such as likes, favorites, clicks, user shares, comments and other reactions. The content may be photos, videos, articles or any other information and/or links linking to such content. Examples of social networks 104 include LinkedIn, Twitter, Facebook, Google Plus as shown in
Content sources 104 may also include a system of one or more servers that comprise news or other sources of information that provide RSS feeds to enable users to access such information as known to those skilled in the art as well as any number of events, articles, PDFs, videos, photos or other (together “articles”) that users may access via a URL (uniform resource identifier) posted on social networks 104 that link to such articles as known to those skilled in the art. The one or more servers may include a web server as known to those skilled in the art.
Clients 208 include laptops, personal computers and mobile devices. The personal computer includes several internal components (e.g., processor, memory, drives, etc.), operating system, databases, software modules and applications (e.g., browser) as known to those skilled in the art. The mobile devices as known to those skilled in the art could be smartphones, cellular telephones, tablets, PDAs, or other devices equipped with industry standard (e.g., HTML, HTTP etc.) browsers or any other application having wired (e.g., Ethernet) or wireless access (e.g., cellular, Bluetooth, IEEE 802.11b etc.) via networking (e.g., TCP/IP) to nearby and/or remote computers, peripherals, and appliances, etc. TCP/IP (transfer control protocol/Internet protocol) is the most common means of communication today between clients or between clients and central system 102 or other systems (i.e., one or more servers), each client having an internal TCP/IP/hardware protocol stack, where the “hardware” portion of the protocol stack could be Ethernet, Token Ring, Bluetooth, IEEE 802.11b, or whatever software protocol is needed to facilitate the transfer of IP packets over a local area network. Each client 108 may access the Internet directly or through a network of one or more servers that communicates with Internet as known to those skilled in the art.
As shown in
Platform 200 for managing a campaign for publishing data content on social networks comprises computer software modules and databases including campaign user interface module, 202, identity managing module 204, content discovery module 206, scheduling module 208, security-authorization and approval module 210, data analytics engine module 212, user account database 214, content database 216 and schedule database 218.
Campaign user interface module (UI) 202 is a user (who desires to post content) interface as known to those skilled in the art, that enables a user to engage with platform 200 to select content for posting and time parts for such posting. For example, module 202 enables user to (1) use a calendar to set a date and time (day parts) for posting content, (2) select content discovered or user selected, (3) select social networks in which the user desires to post such content and (4) review data metrics of all data computed (e.g., reactions and the audience members) by the data analytics module.
Identity management module 204 is a module that associates users and their login credentials with social networks to enable platform 200 to post content on such networks. Identity management module 204 communicates with user account database 214 and content database 216.
Content discovery module 206 is a module for discovering content that is used as recommendations for posting. The content is associated with topics that may be of interest to the user's audience members. Content discovery may be achieved in several ways. Klout, Inc. (Owned by Lithium Technologies, Inc.) offers a platform for content discovery. Content discovery may be achieved by employing the technology described in U.S. patent application Ser. No. 14/702,696, filed May 2, 2015, entitled “System and Method of Providing a Content Discovery Platform For Optimizing Social Network Engagements,” which is incorporated by reference herein. With the platform described in that application, the platform collects social media data, RSS feeds and articles, creates URL summarization documents from the collected data, creates features for capturing different aspect of an article's relevance using machine learning and trains models on subsets of articles to determine the weights for each feature. Models may be trained with different objectives. For example, the models may be trained to optimize for different social network user interactions such as favorites, likes, clicks, user shares, audience reactions etc. The described platform given topics scores the URL summarization documents (URLs) using the trained models and the top articles are retrieved in order of score (rank) and presented to the user. Topics may for which content is uncovered may be manually selected by user, or system can leverage automatically assigned topic of users expertise, or aggregate audience topic interest. Examples of topic generation is disclosed in U.S. patent application Ser. No. 14/627,151, filed Feb. 20, 2015, entitled “Domain Generic Large Scale Topic Expertise and Interest Mining Across Multiple Online Social Networks” which is incorporated by reference herein. Module 206 communicates with content database 216. Content discovery module 206 is described in more detail below. Also, content discovery may be tuned to brand owned content where data is sourced only by the brand owned web property some of which may include blogs, communities (e.g., via Lithium Technologies, Inc. Community Platforms) etc.
Scheduling module 208 is a module that functions to schedule to determine an optimal time to post content (e.g., a message) within a specified time period in order to maximize the probability of receiving reactions from audience members. This module also performs user personalized schedule generation (also known as auto-scheduling) including estimating audience reaction, domain specific schedule personalization (tuning) and user strategy for scheduling multiple posts. This is described in more detail below.
Security—authorization and approval module 210 is a module that functions to provide security layers or levels at different stages of the process of posting content. Module 210 for example enables a user to identify authorized users to approve and post content.
Data analytics engine module 212 is a module that functions to provide data metrics with those audience members that react to a user's posted content. For example, the data analytics engine may analyze all reactions for forecasting results.
User account database 214 is a database, as known to those skilled in the art, that stores user account credentials for platform 200 as well as social networks in which users desire to post content for audience member reaction.
Content database 216 is a database, as known to those skilled in the art, for storing content generated by discovery module 206.
Schedule database 218 is a database, as known to those skilled in the art, for storing schedules generated by the scheduling module 208.
The databases described on one form of data storage but those skilled in the art know that any data storage or strategy other than a database be used for storing the data disclosed in this disclosure.
Next, once the content, day parts and social network selections are received from the user, execution proceeds to step 310 wherein a schedule for posting the selected content on the social networks is determined (by scheduling module 212). That is, the schedule is formulated to determine the optimal time to post content (e.g., a message) within a specified time period in order to maximize the probability of receiving reactions from audience members. Optionally, schedule determination may include estimating audience reaction (on one social network as a function of reaction on another), domain specific schedule personalization (tuning) and user strategy for scheduling multiple posts. This is described in more detail below. Execution proceeds to step 312 wherein the selected content as authorized by the user is posted on the social network(s). Following, the number of reactions (engagements) and the number of audience members that post such reactions are monitored (collected) at step 314 and analyzed (by data analytics engine 212). Metrics for such data are generated and displayed for the user to review. This is described in more detail below.
Platform 200 will process user (data) graph as user in-graph data and user out-graph data User out-graph data is data relating to those who follow a posting user and user in-graph is data relating to those following the posting user as known to those skilled in the art. With Facebook for example, the in-graph data and out-graph data are typically the same for followers known as “friends” but different for those following (use designated as a “like”) a specific Facebook branding pages like Nike's Facebook page.
Platform 200 will process the user graph data to generate a creation profile, a post to reaction profile and self reaction profile. For each posting user, a creation profile is created that represents the posts created by the user in each time bucket. As described below, a time bucket is short period of time (e.g., 15 minutes). The self reaction profile represents the user responses or reactions to the post that a user sees. The post to reaction (filter) profile (PTR(x)) represents a discrete probability distribution over the event that a reaction occurs within a time interval. Each of these three profiles are depicted below their respective blocks as graphs in
The user-out graph, post to reaction profile and reaction profile are used to generate or estimate a user schedule for posting content. The user schedule is essentially broken down into two types of schedules: first degree schedule for posting content and a second degree schedule for posting content. In order to distinguish between the two schedules, an example is in order. As part of a social graph as known to those skilled in the art, user u0 for example has audience of other members a1 so Uout(u0)={a0, a1, . . . am}. So, when u0 creates a post on social network (x), the post may be seen by potentially all audience members ai of her audience. Now, a sample audience member a0 of u1 also belongs as an audience member of other users bi and may view posts that are created by each of those users. This relationship between the users as Uin (b0)={u0, u1, . . . um}. So, to derive the post schedule S(u1) for user u1, first degree schedule and a second degree schedule for posting content are two different approaches to calculating the expected number of reaction received from Uout (u0) for a post created in the time bucket t.
This first degree schedule takes into account the reactions of u0's audience Uout (u0), ignoring the second degree effects of the other posting users ui. The sum of delayed reactions per bucket t gives us the estimated audience reaction profile Q(u0) for the user as described in more detail below, where the elements of the vector are given by:
where rd is the delayed reaction profile Rd for an audience as described in detail below.
Thus in this case, the probability of receiving a reaction in any given time bucket tk(u0) can then be computed from the audience post reaction profile Q(u0) as described in detail below. These probabilities determine the first degree reaction posting schedule S1(u0) as known to those skilled in the art.
The second degree schedule is estimated to account for cognitive overload of posts as depending on other user from which audience members are following. In short, a user desires that his/her post is visible to the audience for as long as possible. The second degree schedule is an estimate or function to account for that effect. The actions of the users ui above represent the second degree effects for user u0, since they affect how u0's first degree connection a0 reacts to messages. To consider these second-degree effects, a second-degree reaction schedule S2(u0) is derived from knowledge of the time when the users ui create posts, a time when a specific audience member b0 reacts to the posts create by ui and the probability that b0 reacts to a post in a certain time bucket t. Second degree schedules are described in detail in “When-To-Post on Social Networks,” Spasojevic et al., Association For Computing Machinery 2015, which is incorporated by reference herein. Therefore it will not be discussed here. For now, these two posting schedules will be described as the user posting schedule for simplicity.
Now, with the user posting schedule along with the other calculated data, platform 200 will perform several functions including (1) estimating a user posting schedule on one social network based on the estimated schedule on another social network (2) domain specific personalization and (3) optimizing for multiple postings. The results of all of these functions are presented to the posting user through any system that incorporates platform 220 such as the Klout (from Lithium Technologies, Inc.) system. All of this is described in detail below.
(1) Estimating a User Posting Schedule on One Social Network Based on Estimated Schedule on Another Social Network.
As indicated above, find the best times personalized for the user to post content on social networks in order to increase audience member responses. Platform 200 formulates schedules for users to post content on these social networks based on user data relating to user behavior on those social networks to optimize audience reaction. However, data collection from private social networks (e.g., Facebook, Instagram etc.) may be difficult to achieve. Hence, the ability to estimate or calculate a schedule for posting content on a private social network on the basis of user data collected on a public social network (e.g., Twitter).
Returning to
Execution proceeds to step 504 wherein a post to reaction filters PTR (x) and PTR (y) for social network (x) and social network (y) are (estimated) determined by aggregating post to reaction times across (for any number of user) post responses from social network (x) and social network (y). The post to reaction filter PTR (x) of social network (x) for example is a vector with a value in each bucket as follows PTR(x)={ptr(x, b0), ptr(x, b1), . . . , ptr(x, bi), . . . } where the value ptr(x, bi) is the probability that a reaction occurs within at bucket bi after a post is posted in network x. ptr(x, b) is calculated by looking at time content (e.g., message) is posted and time of reaction. The difference (delta) is used to create a histogram or distribution function as known to those skilled in the art. One example is described in “When-To-Post on Social Networks,” Spasojevic et al., Association For Computing Machinery 2015, which is incorporated by reference herein.
PTR(y) is similarly determined as PTR(y)={ptr(y, b0), ptr(y, b1), . . . , ptr(y, bi), . . . } with similar definitions except y is the social network (y).
Execution proceeds to 506 wherein self reaction profiles R(u,x) and R(u,y) for the usersN on social networks (x) and (y) are calculated by aggregating user audience member response (reaction) data. For example, given T, R(u,x) represents the self reaction profile of user u in social network x and R(u, x) represents a vector of values in each bucket as follows:
R(u,x)={r(u,x,b0),r(u,x,b1), . . . ,r(u,x,bi), . . . }
R(u, y) is calculated using the similar vector and definitions. There is usually a time an audience member reaction is mapped into buckets. Thus, a specific post may be visible in one time bucket but may only be reacted upon in a later time bucket in R(u, x). The post to reaction filter PTR(x) function represents the lag in terms of a time interval d. Therefore a delayed reaction profile for a user is computed by performing a discrete convolution operation of the original reaction profile R(u,x) with the post to reaction filter function PTR(x) is as follows:
Rd(u,x)=R(u,x)*PTR(x)
where * is a discrete convolution function as known to those skilled in the art. See for example, “When-To-Post on Social Networks,” Spasojevic et al., Association For Computing Machinery 2015, which is incorporated by reference herein.
Execution proceeds to step 508 wherein the userN audience post reaction profiles (data) Q(u, x) and Q(u, y) (also referred to as audience reaction profile) for social networks (x) and (y) are calculated. For example, for a given T, Q(u, x) is the audience post reaction profile for user u in network x and Q(u, x) has a vector of values, each of which is associated with each bucket b as follows:
Q(u,x)={q(u,x,b0),q(u,x,b1), . . . ,q(u,x,bi), . . . }
The value q(u, x, b) is the likelihood of an audience would respond to a post on social network (x) from user u posted at time bucket bi. q(u, x, bi), is calculated by aggregating individuals as known to those skilled in the art. The aggregation appears as follows:
One example is described in “When-To-Post on Social Networks,” Spasojevic et al., Association For Computing Machinery 2015. Rd(a, x)={rd(a, x, b0), rd(a, x, b1) . . . rd(a, x, bi) . . . }. Rd(a, x) is the delayed reaction profile for the audience.
Execution proceeds to step 510 wherein userN posting schedule S(x, u) and S(y, u) for social networks (x) and (y) are generated. Once Q(u, x) is determined, a probability mass function can be determined which represents a post data schedule for the user. These probabilities can be computed as follows:
The vector consisting of the probabilities determine the post schedule of the user. This vector is represented as S(x, u)={s1(u, x, b1), s2(u, x, b2), s3(u, x, b3) . . . si(u, x, bi) . . . }. Once S(u, x) is obtained, the bucket with the highest value of Si(u, x, bi) is best time to post.
Execution proceeds to step 512 wherein a transformation function is estimated, based on the post to reaction filter data, self reaction profile data and the audience post reaction profile data, to transform the data underlying the schedule for posting content on social network (x) to data underlying the schedule for posting content on social network (y). In other words, the transformation function actually establishes or identifies a relationship between a schedule for posting content on social network (x) and a schedule for posting content on social network (Y). This is represented as S(y, u)=F(S(x, u)) where S(x, u) is the schedule for posting on social network (x) and S(y, u) is the schedule for posting on social network (y). At this point, a goal at this step is to create the function F that is necessary to transform the posting schedule for social network (x), i.e., transform the data underlying that schedule, into the schedule S(y, x) for posting on social network (y) for all usersN. Step 512 may be accomplished in several ways.
Now that the transformation function F has been established, any user “u” may apply it to a schedule for posting content on social network (x) to obtain the schedule for posting content on social network (y) as shown in step 514. This step 514 in effect estimates the schedule for posting content on social network (y) using the transformation function on the schedule data for posting content on social network (x). However, in order to apply step of 514 for a particular user, the basic steps 500-510 must first be executed to determine a schedule S(u, x) for posting content on network (x) for that particular user. This is represented by the dashed lines in
In one particular embodiment shown in
S(u,y)=M*S(u,x)+B
where M is a matrix and B are vectors and both are learned from the samples as known to those skilled in the art. Execution proceeds to several steps (similar to steps 500-510) including step 514 as described above (wherein the transformation function is applied etc.).
In yet another embodiment as shown in
In yet another embodiment as shown in
Regardless of the embodiment used to estimate scheduling posts on social network (y), city, country and time zone-level schedules using platform 200 are aggregated. The time zones schedules may be used in the event there is insufficient data to generate a personalized schedule for the user.
As indicated above, any user “u” may apply the transformation function F (determined above) to a schedule for posting content on social network (x) to obtain the schedule for posting content on social network (y) as shown in step 514 in
With the transformation function F in hand, a user such as Nike may desire to post content (e.g., articles) on the social network (y). Similar to step 500 in
(2) Domain Specific Schedule Optimization.
The schedules discussed above result in schedule personalization based on affinities of a user's audience members. However, personalization based on a user's audience member's characteristics can be generalized further. User interests and expertise with respect to topics may be generated as known to those skilled in the art. Now, platform 200 may also generate optimal schedules for users based on a mixture of topics or other domains, which may be derived from content being posted, the cumulative audience interest and/or poster's expertise, to elicit maximal reactions. This approach may work well where a lot of content reacted upon may not come from a first degree network but though discovery feeds on social networks. It is the domain, i.e., the nature of the post, that predicts potential audience behavior.
Execution begins at step 600 wherein data relating to all users' activities are collected from social network (x). The activities relate to users' interactions, i.e., posts and responses or reactions to those posts on social network (x). (The interactions are defined as time of post, time of reaction, author, actor, content, network and other meta data associated with interaction.) As indicated above, access to and collection of user activities are retrieved on both public social networks such as Twitter without user authorization and private social networks such as Facebook with user authorization (OAuth tokens) to platforms such as Klout or others as known to those skilled in the art.
Execution then proceeds to step 602 wherein the domain(s) are attributed to each user in network (x). The domain may be a topic, time zone, geo-location based item, city, state, country or language (e.g., English or Spanish) or other domain as known to those skilled in the art.
Next execution proceeds to step 604 wherein a post to reaction filter PTR(D, x) for network (x) per domain is calculated. As described above, for a time internal d, the PTR(x) is a discrete probably distribution over the event that a reaction occurs within timed of creating a post on network (x). PTR (D, x) function is estimated to be the aggregating of the reaction times across all observed posts and reactions in network (x), domain (D).
Execution proceeds to step 606 wherein a “domain” reaction profile R(D, x) is computed for all users of social network (x) by aggregating the reactions of users in a given domain. The “domain” reaction profile R(D, x) is similar to R(u, x) described above except that it does not involve the audience of user and their reactions, but the reactions in context of the domain (e.g., reactions to content within domain, or reactions by people interested in domain). However, the similar calculation above for R(u, x) described above applies here.
Execution proceeds to step 608 wherein the domain post reaction Q(D, x) is calculated based on R(D, x) and PTR(D, x). The calculation performed is similar to Q(u,x) the above. In brief, a delayed reaction profile Rd(D, x) is calculated as Rd(D, x)=R(D, x)*PTR(D, x) where * is the discrete convolution operator as described above. The relationship and calculation of Q(D, x) as a function of Rd(D, x) is described above so it will not be done here.
Now, execution proceeds to step 610 wherein a schedule for posting on the social network (x) is generated base on the domain post reaction profile Q(D, x) as described above. Hence, a user posting schedule is created for a domain. Steps 600-610 are continuously repeating as a batch during the operation of the platform 200.
Now, the flow steps in
Execution proceeds to step 614 wherein each and every domain are detected. A domain for example may be <sports>, <nightlife> etc. The domain may be auto-detected using a natural language processing (NLP) algorithm known to those skilled in the art. Alternatively, a domain may be selected by the posting user. For such detection, each data content item is analyzed for its metadata as described above (e.g., by subject matter) and a particular domain or more are detected. There may be one domain, e.g., a topic or several domains, e.g., cities.
Execution proceeds to step 616 wherein the schedules generated per domain in step 612 are fetched. The domain schedules are then combined at step 618. If there are schedules for more than one domain, the combination can be a simple schedule addition followed by normalization as known to those skilled in the art. For example, there may be a schedule for politics, sports and art, each having a particular waveform representing a posting schedule. These waveforms are added and then normalized. Then, execution proceeds to step 620 wherein a domain schedule is derived for the item. That is, a posting schedule for the particular item is generated.
(3) Optimizing for Multiple Posts.
If a user wishes to post several content items (e.g., messages), the user must be aware that posting multiple items could have a diminishing return on the posts, i.e., reduction in the number of reactions due to audience fatigue, if not timely (spaced) posted. For example, if Nike desired to post five messages within a day part, individual messages that appear in close proximity in time could lead to a reduction in reactions. Alternatively, the number of message may not be capable of posting within the day part if spaced too far apart. Accordingly, platform 200 will find an optimized time to post multiple content items (e.g., message or articles etc.).
Execution proceeds to step 702 wherein an initial first schedule is selected. Step 702 may actually be incorporated into step 700 if desired. Simultaneously with respect to step 700, execution also proceeds to step 704 where a decay function is modeled. The decay function which represents function of fatigue of a content item with an audience member. Decay function could be derived in various ways or manually set to fit product needs, or user's expectation. In one implementation, decay values are calculated with the following decay function Fγ:
where (t=time) the post to reaction time PTR(t) is depicted in
γ is shown in
as described above (in one implementation). Execution then returns to step 706 wherein an optimal time to post the next content item is determined. So, with the new schedule S1 the time to post is selected at the highest point t2 in the graph in
The servers described in this disclosure as well as the clients typically includes at least one processor and system memory (e.g., volatile—RAM or nonvolatile—Flash or ROM). System memory may include computer readable media that is accessible to the processor. The memory may also include instructions for processor, an operating system and one or more application platforms such as Java and a part of software modules or one or more software applications (i.e., steps) and/or modules. The computer will include one or more communication connections such as network interfaces to enable the computer to communication with other computers over a network, storage such as a hard drives for storing data and other software described above, video cards and other conventional components known to those skilled in the art. This computer typically runs Unix or Linux or Microsoft Windows or Macintosh OSX or other as the operating system and includes the TCP/IP protocol stack (to communicate) for communication over the Internet as known to those skilled in the art. A display is optionally used. The server typically includes TCP/IP protocol stack (to communicate) for communication over the Internet as known to those skilled in the art. Program data is also stored within computer server. The content providers also include a web server along with other servers hosted by the content provider as known by those skilled in the art. The content providers also include a web server along with other servers hosted by the content provider as known by those skilled in the art.
It is to be understood that the disclosure teaches examples of the illustrative embodiments and that many variations of the invention can easily be devised by those skilled in the art after reading this disclosure and that the scope of the present invention is to be determined by the claim(s) below.
This nonprovisional application is a continuation application of co-pending U.S. patent application Ser. No. 15/581,795, filed Apr. 28, 2017, and entitled “SYSTEM AND METHOD OF PROVIDING A PLATFORM FOR MANAGING DATA CONTENT CAMPAIGN ON SOCIAL NETWORKS,” which is herein incorporated by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
6041311 | Chislenko et al. | Mar 2000 | A |
6146026 | Ushiku | Nov 2000 | A |
6385611 | Cardona | May 2002 | B1 |
6684239 | Flepp et al. | Jan 2004 | B1 |
6742032 | Castellani et al. | May 2004 | B1 |
6871232 | Curie et al. | Mar 2005 | B2 |
7031952 | Heumann et al. | Apr 2006 | B1 |
7032030 | Codignotto | Apr 2006 | B1 |
7222156 | Gupta et al. | May 2007 | B2 |
7409710 | Uchil et al. | Aug 2008 | B1 |
7590636 | Heumann et al. | Sep 2009 | B1 |
7606865 | Kumar et al. | Oct 2009 | B2 |
7644057 | Nelken et al. | Jan 2010 | B2 |
7702541 | Black et al. | Apr 2010 | B2 |
7725492 | Sittig et al. | May 2010 | B2 |
7751620 | Cosoi | Jul 2010 | B1 |
7756926 | Tseng et al. | Jul 2010 | B2 |
7792948 | Zhao et al. | Sep 2010 | B2 |
7818758 | Bonet et al. | Oct 2010 | B2 |
7831912 | King et al. | Nov 2010 | B2 |
7853565 | Liskov | Dec 2010 | B1 |
7979369 | Grenier et al. | Jul 2011 | B2 |
8006187 | Bailey et al. | Aug 2011 | B1 |
8027931 | Kalaboukis | Sep 2011 | B2 |
8082308 | Filev | Dec 2011 | B1 |
8131745 | Hoffman et al. | Mar 2012 | B1 |
8171128 | Zuckerberg et al. | May 2012 | B2 |
8200527 | Thompson et al. | Jun 2012 | B1 |
8225376 | Zuckerberg et al. | Jul 2012 | B2 |
8286154 | Kaakani et al. | Oct 2012 | B2 |
8321300 | Bockius et al. | Nov 2012 | B1 |
8386509 | Scofield | Feb 2013 | B1 |
8412657 | Grenier et al. | Apr 2013 | B2 |
8437369 | Shaikli | May 2013 | B2 |
8505069 | Solodovnikov et al. | Aug 2013 | B1 |
8606792 | Jackson et al. | Dec 2013 | B1 |
8615442 | Kapur et al. | Dec 2013 | B1 |
8744937 | Seubert et al. | Jun 2014 | B2 |
8752041 | Akiyoshi et al. | Jun 2014 | B2 |
8769417 | Robinson et al. | Jul 2014 | B1 |
8813125 | Reisman | Aug 2014 | B2 |
8825515 | Hanson | Sep 2014 | B1 |
8886580 | Grenier et al. | Nov 2014 | B2 |
8892524 | Lee et al. | Nov 2014 | B1 |
8943069 | Heumann et al. | Jan 2015 | B2 |
8972428 | Dicker et al. | Mar 2015 | B2 |
9021361 | Pettinati et al. | Apr 2015 | B1 |
9105044 | Wu | Aug 2015 | B2 |
9131382 | Johns | Sep 2015 | B1 |
9141997 | Gaedcke et al. | Sep 2015 | B2 |
9143478 | Ramaswamy | Sep 2015 | B2 |
9229702 | Kapulkin et al. | Jan 2016 | B1 |
9251360 | Meyer et al. | Feb 2016 | B2 |
9256826 | Srinivasan | Feb 2016 | B2 |
9282098 | Hitchcock et al. | Mar 2016 | B1 |
9286102 | Harel et al. | Mar 2016 | B1 |
9311683 | Saylor et al. | Apr 2016 | B1 |
9325696 | Balfanz et al. | Apr 2016 | B1 |
9338186 | Wollenstein et al. | May 2016 | B2 |
9369454 | Porzio et al. | Jun 2016 | B2 |
9378295 | Marra et al. | Jun 2016 | B1 |
9483802 | Gaedcke et al. | Nov 2016 | B2 |
9501746 | Prakash | Nov 2016 | B2 |
9509742 | Gordon | Nov 2016 | B2 |
9514459 | Doshi et al. | Dec 2016 | B1 |
9519723 | Lorenz et al. | Dec 2016 | B2 |
9596206 | Bueno et al. | Mar 2017 | B2 |
9619531 | Wu | Apr 2017 | B2 |
9654450 | Ford et al. | May 2017 | B2 |
9710567 | Lobdell | Jul 2017 | B1 |
9756098 | Kazerani et al. | Sep 2017 | B2 |
9787664 | Subbiah et al. | Oct 2017 | B1 |
9800639 | Gordon | Oct 2017 | B2 |
9953063 | Spasojevic et al. | Apr 2018 | B2 |
10084838 | Gordon et al. | Sep 2018 | B2 |
10142386 | Gordon | Nov 2018 | B2 |
10178173 | Kadowaki et al. | Jan 2019 | B2 |
10180971 | Bhave et al. | Jan 2019 | B2 |
10188905 | Dohlen | Jan 2019 | B2 |
10204344 | Gaedcke et al. | Feb 2019 | B2 |
10204383 | Gaedcke et al. | Feb 2019 | B2 |
10264042 | Gordon | Apr 2019 | B2 |
10264073 | Kadowaki et al. | Apr 2019 | B2 |
10284723 | Neuer, III et al. | May 2019 | B1 |
10346449 | Senftleber et al. | Jul 2019 | B2 |
10417180 | Patwardhan | Sep 2019 | B1 |
10430894 | Wu | Oct 2019 | B2 |
10489866 | Gaedcke et al. | Nov 2019 | B2 |
10491490 | Sridhar et al. | Nov 2019 | B2 |
10497069 | Gaedcke et al. | Dec 2019 | B2 |
10594773 | Falcao et al. | Mar 2020 | B2 |
10601937 | Holzband et al. | Mar 2020 | B2 |
10785222 | Senftleber et al. | Sep 2020 | B2 |
10855657 | Senftleber et al. | Dec 2020 | B2 |
10867131 | Scott et al. | Dec 2020 | B2 |
10902462 | Savage et al. | Jan 2021 | B2 |
10931540 | Davis et al. | Feb 2021 | B2 |
10956459 | Senftleber et al. | Mar 2021 | B2 |
10999278 | Senftleber et al. | May 2021 | B2 |
11050704 | Senftleber et al. | Jun 2021 | B2 |
11061900 | Falcao et al. | Jul 2021 | B2 |
20010025253 | Heintz et al. | Sep 2001 | A1 |
20010037469 | Gupta et al. | Nov 2001 | A1 |
20010042087 | Kephart et al. | Nov 2001 | A1 |
20010047290 | Petras et al. | Nov 2001 | A1 |
20020010746 | Jilk et al. | Jan 2002 | A1 |
20020049793 | Okumura et al. | Apr 2002 | A1 |
20020070953 | Barg et al. | Jun 2002 | A1 |
20020105545 | Carter et al. | Aug 2002 | A1 |
20020144156 | Copeland | Oct 2002 | A1 |
20030005103 | Narad et al. | Jan 2003 | A1 |
20030028525 | Santos et al. | Feb 2003 | A1 |
20030078959 | Yeung et al. | Apr 2003 | A1 |
20030128203 | Marshall et al. | Jul 2003 | A1 |
20030135565 | Estrada | Jul 2003 | A1 |
20030187871 | Amano et al. | Oct 2003 | A1 |
20030225850 | Teague | Dec 2003 | A1 |
20040049673 | Song et al. | Mar 2004 | A1 |
20040073666 | Foster et al. | Apr 2004 | A1 |
20040133697 | Mamaghani et al. | Jul 2004 | A1 |
20040174397 | Cereghini et al. | Sep 2004 | A1 |
20050060643 | Glass et al. | Mar 2005 | A1 |
20050074126 | Stanko | Apr 2005 | A1 |
20050132348 | Meulemans et al. | Jun 2005 | A1 |
20050206644 | Kincaid | Sep 2005 | A1 |
20050283614 | Hardt | Dec 2005 | A1 |
20060010215 | Clegg et al. | Jan 2006 | A1 |
20060036685 | Canning et al. | Feb 2006 | A1 |
20060129602 | Witriol et al. | Jun 2006 | A1 |
20060143307 | Codignotto | Jun 2006 | A1 |
20060155581 | Eisenberger et al. | Jul 2006 | A1 |
20060185021 | Dujari et al. | Aug 2006 | A1 |
20060206578 | Heidloff et al. | Sep 2006 | A1 |
20060294196 | Feirouz et al. | Dec 2006 | A1 |
20070083536 | Darnell et al. | Apr 2007 | A1 |
20070118889 | Fredell | May 2007 | A1 |
20070136354 | Chen | Jun 2007 | A1 |
20070171716 | Wright et al. | Jul 2007 | A1 |
20070226177 | Barsness et al. | Sep 2007 | A1 |
20070240119 | Ducheneaut et al. | Oct 2007 | A1 |
20070282800 | England et al. | Dec 2007 | A1 |
20070286528 | Podilchuk | Dec 2007 | A1 |
20070289006 | Ramachandran et al. | Dec 2007 | A1 |
20080005284 | Ungar et al. | Jan 2008 | A1 |
20080033776 | Marchese | Feb 2008 | A1 |
20080034058 | Korman et al. | Feb 2008 | A1 |
20080040673 | Zuckerberg et al. | Feb 2008 | A1 |
20080103906 | Singh | May 2008 | A1 |
20080109245 | Gupta | May 2008 | A1 |
20080109491 | Gupta | May 2008 | A1 |
20080120379 | Malik | May 2008 | A1 |
20080126476 | Nicholas et al. | May 2008 | A1 |
20080133488 | Bandaru et al. | Jun 2008 | A1 |
20080178125 | Elsbree et al. | Jul 2008 | A1 |
20080189406 | Shen | Aug 2008 | A1 |
20080201344 | Levergood et al. | Aug 2008 | A1 |
20080215591 | Howard et al. | Sep 2008 | A1 |
20080221870 | Attardi et al. | Sep 2008 | A1 |
20080225848 | Pilon et al. | Sep 2008 | A1 |
20080263603 | Murray et al. | Oct 2008 | A1 |
20080294680 | Powell et al. | Nov 2008 | A1 |
20080306830 | Lasa et al. | Dec 2008 | A1 |
20090013043 | Tan | Jan 2009 | A1 |
20090024554 | Murdock | Jan 2009 | A1 |
20090043852 | Weir et al. | Feb 2009 | A1 |
20090089657 | Davis | Apr 2009 | A1 |
20090106080 | Carrier et al. | Apr 2009 | A1 |
20090132311 | Klinger et al. | May 2009 | A1 |
20090138472 | MacLean | May 2009 | A1 |
20090144723 | Hartin et al. | Jun 2009 | A1 |
20090157667 | Brougher et al. | Jun 2009 | A1 |
20090157708 | Bandini et al. | Jun 2009 | A1 |
20090157899 | Gagliardi et al. | Jun 2009 | A1 |
20090158265 | Davis et al. | Jun 2009 | A1 |
20090177670 | Grenier et al. | Jul 2009 | A1 |
20090181649 | Bull et al. | Jul 2009 | A1 |
20090210282 | Elenbaas et al. | Aug 2009 | A1 |
20090249451 | Su et al. | Oct 2009 | A1 |
20090292608 | Polachek | Nov 2009 | A1 |
20090292722 | Oo | Nov 2009 | A1 |
20090300036 | Nagasaki | Dec 2009 | A1 |
20100071052 | Mao et al. | Mar 2010 | A1 |
20100082503 | Kantak et al. | Apr 2010 | A1 |
20100106730 | Aminian et al. | Apr 2010 | A1 |
20100119053 | Goeldi | May 2010 | A1 |
20100121707 | Goeldi | May 2010 | A1 |
20100121843 | Goeldi | May 2010 | A1 |
20100153516 | Weinberg et al. | Jun 2010 | A1 |
20100169148 | Oberhofer et al. | Jul 2010 | A1 |
20100174813 | Hildreth et al. | Jul 2010 | A1 |
20100205663 | Ward et al. | Aug 2010 | A1 |
20100223341 | Manolescu et al. | Sep 2010 | A1 |
20100246797 | Chavez et al. | Sep 2010 | A1 |
20100250683 | Hoyne et al. | Sep 2010 | A1 |
20100274732 | Grinchenko et al. | Oct 2010 | A1 |
20100281258 | Andress et al. | Nov 2010 | A1 |
20100287512 | Gan et al. | Nov 2010 | A1 |
20100293560 | Bland et al. | Nov 2010 | A1 |
20100306122 | Shaffer | Dec 2010 | A1 |
20100306528 | Andress et al. | Dec 2010 | A1 |
20100312769 | Bailey et al. | Dec 2010 | A1 |
20110004922 | Bono et al. | Jan 2011 | A1 |
20110055217 | Kamel et al. | Mar 2011 | A1 |
20110055264 | Sundelin et al. | Mar 2011 | A1 |
20110077988 | Cates et al. | Mar 2011 | A1 |
20110113041 | Hawthorne et al. | May 2011 | A1 |
20110119593 | Jacobson et al. | May 2011 | A1 |
20110125826 | Erhart et al. | May 2011 | A1 |
20110144801 | Selker et al. | Jun 2011 | A1 |
20110153603 | Adiba et al. | Jun 2011 | A1 |
20110197146 | Goto et al. | Aug 2011 | A1 |
20110212430 | Smithmier et al. | Sep 2011 | A1 |
20110219087 | Jorasch et al. | Sep 2011 | A1 |
20110246513 | Covannon et al. | Oct 2011 | A1 |
20110283366 | Kwon et al. | Nov 2011 | A1 |
20110289574 | Hull et al. | Nov 2011 | A1 |
20110302653 | Frantz et al. | Dec 2011 | A1 |
20120036080 | Singer et al. | Feb 2012 | A1 |
20120054135 | Salaka et al. | Mar 2012 | A1 |
20120076367 | Tseng | Mar 2012 | A1 |
20120077158 | Jastrzembski et al. | Mar 2012 | A1 |
20120089706 | Collins et al. | Apr 2012 | A1 |
20120095861 | Feng et al. | Apr 2012 | A1 |
20120102021 | Hill et al. | Apr 2012 | A1 |
20120117059 | Bailey et al. | May 2012 | A1 |
20120131653 | Pasquero et al. | May 2012 | A1 |
20120150759 | Tarjan | Jun 2012 | A1 |
20120158632 | Grenier et al. | Jun 2012 | A1 |
20120195422 | Famous | Aug 2012 | A1 |
20120198197 | Gladwin et al. | Aug 2012 | A1 |
20120208568 | Cooley | Aug 2012 | A1 |
20120210119 | Baxter et al. | Aug 2012 | A1 |
20120232953 | Custer | Sep 2012 | A1 |
20120254321 | Lindsay et al. | Oct 2012 | A1 |
20120265806 | Blanchflower et al. | Oct 2012 | A1 |
20120271729 | Vincelette et al. | Oct 2012 | A1 |
20120284155 | Holten et al. | Nov 2012 | A1 |
20120290605 | Ickman et al. | Nov 2012 | A1 |
20120303659 | Erhart et al. | Nov 2012 | A1 |
20120317198 | Patton et al. | Dec 2012 | A1 |
20130006403 | Moore et al. | Jan 2013 | A1 |
20130007121 | Fontenot et al. | Jan 2013 | A1 |
20130018957 | Parnaby et al. | Jan 2013 | A1 |
20130024522 | Pierre et al. | Jan 2013 | A1 |
20130050747 | Cok et al. | Feb 2013 | A1 |
20130066876 | Raskino et al. | Mar 2013 | A1 |
20130110946 | Bradshaw | May 2013 | A1 |
20130116044 | Schwartz | May 2013 | A1 |
20130126042 | Dewald et al. | May 2013 | A1 |
20130138428 | Chandramouli et al. | May 2013 | A1 |
20130138742 | Dziubinski | May 2013 | A1 |
20130159472 | Newton et al. | Jun 2013 | A1 |
20130198260 | Dow et al. | Aug 2013 | A1 |
20130212349 | Maruyama | Aug 2013 | A1 |
20130218801 | Rago | Aug 2013 | A1 |
20130218865 | Angulo et al. | Aug 2013 | A1 |
20130235069 | Ubillos et al. | Sep 2013 | A1 |
20130282417 | Gaedcke et al. | Oct 2013 | A1 |
20130282594 | Gaedcke et al. | Oct 2013 | A1 |
20130282603 | Gaedcke et al. | Oct 2013 | A1 |
20130282722 | Grenier et al. | Oct 2013 | A1 |
20130291058 | Wollenstein et al. | Oct 2013 | A1 |
20130298038 | Spivack et al. | Nov 2013 | A1 |
20130304726 | Sandulescu et al. | Nov 2013 | A1 |
20130304758 | Gruber et al. | Nov 2013 | A1 |
20130318156 | Friedman et al. | Nov 2013 | A1 |
20130332262 | Hunt et al. | Dec 2013 | A1 |
20130332263 | Vora et al. | Dec 2013 | A1 |
20130346575 | Frenkel | Dec 2013 | A1 |
20130346872 | Scott et al. | Dec 2013 | A1 |
20140006524 | Singh et al. | Jan 2014 | A1 |
20140032306 | Sukornyk et al. | Jan 2014 | A1 |
20140040275 | Dang et al. | Feb 2014 | A1 |
20140040377 | Friedman et al. | Feb 2014 | A1 |
20140040993 | Lorenzo et al. | Feb 2014 | A1 |
20140047429 | Gaither et al. | Feb 2014 | A1 |
20140067520 | Campanile | Mar 2014 | A1 |
20140074844 | Subramanian et al. | Mar 2014 | A1 |
20140075004 | Dusen et al. | Mar 2014 | A1 |
20140082072 | Kass et al. | Mar 2014 | A1 |
20140108675 | Wu | Apr 2014 | A1 |
20140164352 | Denninghoff | Jun 2014 | A1 |
20140173444 | Wu | Jun 2014 | A1 |
20140173501 | Wu | Jun 2014 | A1 |
20140173509 | Wu | Jun 2014 | A1 |
20140181087 | Wu | Jun 2014 | A1 |
20140181194 | Sullivan | Jun 2014 | A1 |
20140181728 | Wu | Jun 2014 | A1 |
20140184841 | Woo et al. | Jul 2014 | A1 |
20140189808 | Mahaffey et al. | Jul 2014 | A1 |
20140200989 | Kassko et al. | Jul 2014 | A1 |
20140222834 | Parikh et al. | Aug 2014 | A1 |
20140223527 | Bortz et al. | Aug 2014 | A1 |
20140244621 | Lindsay | Aug 2014 | A1 |
20140278785 | Gaedcke et al. | Sep 2014 | A1 |
20140280113 | Hohwald | Sep 2014 | A1 |
20140280398 | Smith et al. | Sep 2014 | A1 |
20140289034 | Wu | Sep 2014 | A1 |
20140298199 | Johnson, Jr. et al. | Oct 2014 | A1 |
20140304249 | Ayzenshtat et al. | Oct 2014 | A1 |
20140324902 | Morris et al. | Oct 2014 | A1 |
20140337953 | Banatwala et al. | Nov 2014 | A1 |
20140358911 | McCarthy et al. | Dec 2014 | A1 |
20150006708 | Banke et al. | Jan 2015 | A1 |
20150032492 | Ting et al. | Jan 2015 | A1 |
20150032751 | Ting et al. | Jan 2015 | A1 |
20150039705 | Kursun | Feb 2015 | A1 |
20150067160 | Sridhar et al. | Mar 2015 | A1 |
20150100537 | Grieves et al. | Apr 2015 | A1 |
20150112918 | Zheng et al. | Apr 2015 | A1 |
20150120713 | Kim et al. | Apr 2015 | A1 |
20150127453 | Tew et al. | May 2015 | A1 |
20150134457 | Cheung et al. | May 2015 | A1 |
20150134579 | Zaman et al. | May 2015 | A1 |
20150142748 | Gottemukkula et al. | May 2015 | A1 |
20150161211 | Patel et al. | Jun 2015 | A1 |
20150163189 | Proctor | Jun 2015 | A1 |
20150169703 | Chang | Jun 2015 | A1 |
20150170294 | Goyal et al. | Jun 2015 | A1 |
20150188907 | Khalid et al. | Jul 2015 | A1 |
20150193504 | Naidu et al. | Jul 2015 | A1 |
20150244706 | Grajek et al. | Aug 2015 | A1 |
20150281227 | Ivey et al. | Oct 2015 | A1 |
20150286643 | Kumar et al. | Oct 2015 | A1 |
20150288522 | McCoy et al. | Oct 2015 | A1 |
20150295869 | Li et al. | Oct 2015 | A1 |
20150310018 | Fan et al. | Oct 2015 | A1 |
20150310020 | Brav et al. | Oct 2015 | A1 |
20150310571 | Brav et al. | Oct 2015 | A1 |
20150312200 | Brav et al. | Oct 2015 | A1 |
20150334102 | Haugsnes | Nov 2015 | A1 |
20150347616 | Levi et al. | Dec 2015 | A1 |
20150381552 | Vijay et al. | Dec 2015 | A1 |
20160019628 | Udumudi et al. | Jan 2016 | A1 |
20160021097 | Shrotri | Jan 2016 | A1 |
20160034551 | Huang et al. | Feb 2016 | A1 |
20160042053 | Webber | Feb 2016 | A1 |
20160055250 | Rush | Feb 2016 | A1 |
20160055541 | Calistri-Yeh | Feb 2016 | A1 |
20160057576 | Kessler et al. | Feb 2016 | A1 |
20160073166 | Hu et al. | Mar 2016 | A1 |
20160080445 | Kazerani et al. | Mar 2016 | A1 |
20160110688 | Knox et al. | Apr 2016 | A1 |
20160125157 | Wu | May 2016 | A1 |
20160132904 | Mondal et al. | May 2016 | A1 |
20160132973 | Wu | May 2016 | A1 |
20160134580 | Castera et al. | May 2016 | A1 |
20160147760 | Anandhavelu et al. | May 2016 | A1 |
20160151704 | Wu | Jun 2016 | A1 |
20160164863 | Hitchcock et al. | Jun 2016 | A1 |
20160203221 | Rao et al. | Jul 2016 | A1 |
20160203523 | Spasojevic et al. | Jul 2016 | A1 |
20160210555 | Murphy et al. | Jul 2016 | A1 |
20160212100 | Banerjee | Jul 2016 | A1 |
20160255034 | Yuan | Sep 2016 | A1 |
20160269344 | Anders et al. | Sep 2016 | A1 |
20160320926 | Ganin et al. | Nov 2016 | A1 |
20160321261 | Spasojevic et al. | Nov 2016 | A1 |
20160321562 | Zeng | Nov 2016 | A1 |
20160321694 | Vorozhtsov | Nov 2016 | A1 |
20160335572 | Bennett et al. | Nov 2016 | A1 |
20160352667 | Pickett et al. | Dec 2016 | A1 |
20170046112 | Keller et al. | Feb 2017 | A1 |
20170048237 | Pfitzmann et al. | Feb 2017 | A1 |
20170061248 | Ryan, Jr. et al. | Mar 2017 | A1 |
20170132276 | Saurabh et al. | May 2017 | A1 |
20170154356 | Trevisiol et al. | Jun 2017 | A1 |
20170154366 | Turgeman | Jun 2017 | A1 |
20170177562 | Scott et al. | Jun 2017 | A1 |
20170180294 | Milligan et al. | Jun 2017 | A1 |
20170193546 | Bennett et al. | Jul 2017 | A1 |
20170255536 | Weissinger et al. | Sep 2017 | A1 |
20170264619 | Narayanaswamy et al. | Sep 2017 | A1 |
20170300490 | Kachemir et al. | Oct 2017 | A1 |
20170344748 | Ghani et al. | Nov 2017 | A1 |
20170366636 | Wang et al. | Dec 2017 | A1 |
20180027075 | Schoeffler et al. | Jan 2018 | A1 |
20180041336 | Keshava et al. | Feb 2018 | A1 |
20180053114 | Adjaoute | Feb 2018 | A1 |
20180081983 | Carru et al. | Mar 2018 | A1 |
20180091468 | Yong et al. | Mar 2018 | A1 |
20180097802 | Lander et al. | Apr 2018 | A1 |
20180115473 | Sridhar et al. | Apr 2018 | A1 |
20180144389 | Fredrich et al. | May 2018 | A1 |
20180152471 | Jakobsson | May 2018 | A1 |
20180211285 | Todasco et al. | Jul 2018 | A1 |
20180219830 | O'Brien et al. | Aug 2018 | A1 |
20180278503 | Carey et al. | Sep 2018 | A1 |
20180293607 | Huddleston et al. | Oct 2018 | A1 |
20180295137 | Zager et al. | Oct 2018 | A1 |
20180329565 | Yeung et al. | Nov 2018 | A1 |
20180332079 | Ashley et al. | Nov 2018 | A1 |
20180337907 | Bhansali et al. | Nov 2018 | A1 |
20180337910 | Gustavson et al. | Nov 2018 | A1 |
20180367484 | Rodriguez et al. | Dec 2018 | A1 |
20190057204 | Marcovecchio et al. | Feb 2019 | A1 |
20190114356 | Senftleber et al. | Apr 2019 | A1 |
20190116137 | Senftleber et al. | Apr 2019 | A1 |
20190116148 | Senftleber et al. | Apr 2019 | A1 |
20190158610 | Holzband et al. | May 2019 | A1 |
20190159166 | Aggarwal et al. | May 2019 | A1 |
20190228093 | Falcao et al. | Jul 2019 | A1 |
20190230151 | Falcao et al. | Jul 2019 | A1 |
20190245751 | Wong | Aug 2019 | A1 |
20190306248 | Swarangi et al. | Oct 2019 | A1 |
20190347984 | Hintermeister | Nov 2019 | A1 |
20190354709 | Brinskelle | Nov 2019 | A1 |
20200007530 | Abdul et al. | Jan 2020 | A1 |
20200051120 | Senftleber et al. | Feb 2020 | A1 |
20200053094 | Kaube et al. | Feb 2020 | A1 |
20200099676 | Desarda et al. | Mar 2020 | A1 |
20200104478 | Chauhan | Apr 2020 | A1 |
20200120068 | Senftleber et al. | Apr 2020 | A1 |
20200120095 | Senftleber et al. | Apr 2020 | A1 |
20200120096 | Senftleber et al. | Apr 2020 | A1 |
20200120167 | Senftleber et al. | Apr 2020 | A1 |
20200151829 | Wu | May 2020 | A1 |
20200184575 | Gaedcke et al. | Jun 2020 | A1 |
20200258091 | Gaedcke et al. | Aug 2020 | A1 |
20200287957 | Falcao et al. | Sep 2020 | A1 |
20200329110 | Holzband et al. | Oct 2020 | A1 |
20200358755 | Abdul et al. | Nov 2020 | A1 |
20200366564 | Davis et al. | Nov 2020 | A1 |
20210119967 | Senftleber et al. | Apr 2021 | A1 |
20210176136 | Davis et al. | Jun 2021 | A1 |
20210226952 | Senftleber et al. | Jul 2021 | A1 |
Number | Date | Country |
---|---|---|
102054033 | May 2011 | CN |
103177095 | Dec 2015 | CN |
2009047674 | Apr 2009 | WO |
2013158839 | Oct 2013 | WO |
2014089460 | Jun 2014 | WO |
2014153463 | Jan 2015 | WO |
2015013436 | Jan 2015 | WO |
2019075284 | Apr 2019 | WO |
2019144159 | Jul 2019 | WO |
2020232311 | Nov 2020 | WO |
Entry |
---|
Antoniades et al., “we.b: The web of short URLs,” Apr. 2011, Proceedings of the 20th International Conference on World Wide Web, Mar. 28, 2011-Apr. 1, 2011, Hyderabad, India, pp. 715-724 (Year: 2011). |
Dinh, Khanh Q., Non-Final Office Action dated Mar. 17, 2021 for U.S. Appl. No. 16/820,697. |
Dinh, Khanh Q., Notice of Allowance and Fee(s) Due dated Apr. 16, 2021 for U.S. Appl. No. 16/820,697. |
Fiorillo, James N., Non-Final Office Action dated Jun. 7, 2021 for U.S. Appl. No. 16/827,625. |
Frunzi, Victoria E., Final Office Action dated May 17, 2021 for U.S. Appl. No. 16/590,218. |
Frunzi, Victoria E., Non-Final Office Action dated Dec. 21, 2020 for U.S. Appl. No. 16/590,218. |
Goldberg, Ivan R., Final Office Action dated Jun. 29, 2021 for U.S. Appl. No. 16/695,098. |
Goldberg, Ivan R., Final Office Action dated Jun. 29, 2021 for U.S. Appl. No. 16/701,143. |
Goldberg, Ivan R., Non-Final Office Action dated Mar. 10, 2021 for U.S. Appl. No. 16/695,098. |
Goldberg, Ivan R., Non-Final Office Action dated Mar. 3, 2021 for U.S. Appl. No. 16/701,143. |
M. Rowe and H. Alani, “What Makes Communities Tick? Community Health Analysis Using Role Compositions,” 2012 International Conference on Privacy, Security, Risk and Trust and 2012 International Conference on Social Computing, Amsterdam, Netherlands, 2012, pp. 267-276, doing:10.1109/SocialCom-PASSAT2012.18. |
Mesa, Joel, Notice of Allowance and Fee(s) Due dated Feb. 24, 2021 for U.S. Appl. No. 15/782,635. |
Nano, Sargon N., Notice of Allowance and Fee(s) Due dated May 19, 2021 for U.S. Appl. No. 17/026,152. |
Neuman, Clifford B., Proxy-Based Authorization and Accounting for Distributed Systems, IEEE 1993 (Year: 1993). |
Rashid, Ishrat, Final Office Action dated Jun. 15, 2021 for U.S. Appl. No. 15/782,653. |
Rashid, Ishrat, Non-Final Office Action dated Apr. 2, 2021 for U.S. Appl. No. 15/782,653. |
Shaw, Robert A., Final Office Action dated Mar. 16, 2021 for U.S. Appl. No. 16/158,169. |
U.S. Appl. No. 11/333,826, filed Jan. 17, 2006 and entitled, “Knowledge Filter”. |
U.S. Appl. No. 11/692,169, filed Mar. 27, 2007 and entitled, “Knowledge Filter”. |
U.S. Appl. No. 60/158,496, filed Oct. 8, 1999 and entitled, “Knowledge Filter”. |
U.S. Appl. No. 60/816,100, filed Jun. 22, 2006 and entitled, “Knowledge Filter”. |
U.S. Appl. No. 60/816,900, filed Jun. 26, 2006 and entitled, “Knowledge Filter”. |
“Craigslist Online Community.” Craigslist.org. Jul. 6, 2010. |
Ahmed, Saba, Final Office Action dated Jun. 29, 2016 for U.S. Appl. No. 14/098,492. |
Ahmed, Saba, Non-Final Office Action dated Nov. 19, 2015 for U.S. Appl. No. 14/098,492. |
Anicas, Mitchell; An Introduction to OAuth 2, DigitalOcean, Published Jul. 21, 2014, Retrieved Jan. 29, 2021; <>. |
Arentz et al., Classifying offensive sites based on image content [online], Computer Vision and Image Understanding 94, 295-310, 2004, Retrieved from the Internet: . |
Bista, Sanat Kumar et al., “Using Gamification in an Online Community,” CSIRO ITC Centre, Conference Paper, 2012. |
Blaufeld, Justin R., Final Office Action dated Mar. 24, 2016 for U.S. Appl. No. 14/098,501. |
Blaufeld, Justin R., Non-Final Office Action dated Sep. 24, 2015 for U.S. Appl. No. 14/098,501. |
Bostock, Mike, Sankey Diagram, available at http://bost.ocks.org/mike/sankey, published May 21, 2012, 1 pg. |
Brown Jr., Nathan H., Final Office Action dated Mar. 29, 2011 for U.S. Appl. No. 11/971,856. |
Brown Jr., Nathan H., Non-Final Office Action dated Jun. 6, 2012 for U.S. Appl. No. 13/167,482. |
Brown Jr., Nathan H., Non-Final Office Action dated Mar. 24, 2014 for U.S. Appl. No. 13/780,487. |
Brown Jr., Nathan H., Non-Final Office Action dated Nov. 26, 2010 for U.S. Appl. No. 11/971,856. |
Bui, Hanh Thi Minh, Non-Final Office Action dated Mar. 13, 2015 for U.S. Appl. No. 14/012,978. |
Cannell, Larry, “Windows 7 Federated Search and SharePoint 2010” online article dated Jun. 2010 <http://blogs.gartner.com/larry-cannell/2010/09/09/windows-7-federated-search-and-sharepoint-2010/[May 13, 2016 12:36:15 PM]. |
Chung, Mong-Shune, Non-Final Office Action dated Jan. 29, 2016 for U.S. Appl. No. 14/098,505. |
Constine, Josh, “Facebook tests notification unsubscribe button for feed posts,” Aug. 9, 2010. http://www.adweek.com/socialtime/unsubscribe-button-posts/244868. |
Dagnew, Saba, Final Office Action dated Feb. 12, 2020 for U.S. Appl. No. 15/581,795. |
Dagnew, Saba, Non-Final Office Action for U.S. Appl. No. 15/581,795 dated Sep. 16, 2019. |
Dinh, Khanh Q., Notice of Allowance and Fee(s) Due dated Oct. 29, 2019 for U.S. Appl. No. 15/877,379. |
Dwyer, Cameron, “Five out-of-the-box ways to get Email into SharePoint” Jan. 2012, <https://camerondwyer.wordpress.com/2012/09/04/five-out-of-the-box-ways-to-get-email-into-sharepoint/[May 13, 2016 10:48:43 AM]. |
Emojipedia, (https://web.archive.org/web/20150915110235/https://emojipedia.org/fisted-hand-sign/), Date: Sep. 15, 2015 (https://web.archive.org/web/20150823012626/https://emojipedia.org/clapping-hands-sign/), Date: Aug. 23, 2015; (https://web.archive.org/web/20150829090848/https://emojipedia.org/smiling-face-with-sunglasses/), Date: Aug. 29, 2015. |
Falcao et al., U.S. Appl. No. 15/877,379, filed Jan. 22, 2018 and entitled, “Temporal Optimization of Data Operations Using Distributed Search and Server Management.” |
Falcao et al., U.S. Appl. No. 15/877,381, filed Jan. 22, 2018 and entitled, “Temporal Optimization of Data Operations Using Distributed Search and Server Management.” |
Fett et al., The Web SSO Standard OpenID Connect: In-Depth Formal Security Analysis and Security Guidelines, 2017 IEEE 30th Computer Security Foundations Symposium (Year: 2017). |
Filipczyk, Marcin R., Final Office Action dated Oct. 5, 2015 for U.S. Appl. No. 13/950,268. |
Filipczyk, Marcin R., Non-Final Office Action dated Mar. 10, 2016 for U.S. Appl. No. 13/950,268. |
Filipczyk, Marcin R., Non-Final Office action dated May 22, 2015 for U.S. Appl. No. 13/950,268. |
Fiorillo, James N., Non-Final Office Action for U.S. Appl. No. 15/821,543 dated Aug. 16, 2019. |
Fiorillo, James N., Notice of Allowance and Fee(s) Due dated Nov. 14, 2019 for U.S. Appl. No. 15/821,543. |
Friedman et al., U.S. Appl. No. 61/650,849, filed May 23, 2012 and entitled, “Dynamic Information Streams in a Social Network Platform.” |
Frunzi, Victoria E., Non-Final Office Action dated Oct. 16, 2018 for U.S. Appl. No. 15/018,787. |
Gaedckle et al., U.S. Appl. No. 61/636,132, filed Apr. 20, 2012 and entitled, “System and Method for Providing a Social Customer Care System.” |
Georgandellis, Andrew C., Final Office Action dated Mar. 30, 2016 for U.S. Appl. No. 13/900,878. |
Georgandellis, Andrew C., Final Office Action dated Oct. 26, 2017 for U.S. Appl. No. 13/900,878. |
Georgandellis, Andrew C., Final Office Action dated Sep. 21, 2016 for U.S. Appl. No. 14/035,166. |
Georgandellis, Andrew C., Non-Final Office Action dated Jan. 26, 2017 for U.S. Appl. No. 13/900,878. |
Georgandellis, Andrew C., Non-Final Office Action dated Jul. 11, 2016 for U.S. Appl. No. 14/035,166. |
Georgandellis, Andrew C., Non-Final Office Action dated May 23, 2017 for U.S. Appl. No. 14/035,166. |
Georgandellis, Andrew C., Non-Final Office Action dated Nov. 3, 2015 for U.S. Appl. No. 13/900,878. |
Giphy, (https://web.archive.org/web/20140813065113/http://giphy.com/search/happy), Date: Aug. 13, 2014; https://web.archive.org/web20141231135329/https://giphy.com/upload, Date: Dec. 31, 2014; https://web.archive.org/web/20150919214012/http://giphy.com/create/upload, Date: Sep. 19 2015. |
Goldberg, Ivan R., Final Office Action dated Jan. 12, 2015 for U.S. Appl. No. 13/835,502. |
Goldberg, Ivan R., Final Office Action dated Jan. 13, 2015 for U.S. Appl. No. 13/835,250. |
Hashemi, Mazdak, “The Infrastructure Behind Twitter: Scale”, Jan. 19, 2017, Twitter, Inc. Blog Post, https://blog.twitter.com/engineering/en_us/topics/infrastructure/2017/the-infrastructure-behind-twitter-scale.html. |
Hatcher, Deirdre D., Non-Final Office Action dated Jan. 14, 2016 for U.S. Appl. No. 13/950,258. |
Holzband et al., U.S. Appl. No. 15/821,543, filed Nov. 22, 2017 and entitled, “Responsive Action Prediction Based On Electronic Messages Among a System of Networked Computing Devices.” |
Jang, Gijeong, Written Opinion of the International Searching Authority and International Search Report dated Jul. 28, 2015 for International Patent Application No. PCT/US2014/047866. |
Jou et al., “Predicting Viewer Perceived Emotions in Animated GIFs”, Nov. 3-7, 2014 (4 pages). |
Kim, Harry C., Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration dated Sep. 16, 2020 for International Patent Application No. PCT/US2020/032999. |
Kolosowski-Gager, Katherine, Final Office Action dated Feb. 11, 2019 for U.S. Appl. No. 14/627,151. |
Kolosowski-Gager, Katherine, Non-Final Office Action dated Jun. 29, 2018 for U.S. Appl. No. 14/627,151. |
Lithium Technologies. “Community Health Index for Online Communities.” 2009, https://www.lithium.com/pdfs/whitepapers/Lithium-Community-Health-Index_v1AY2ULb.pdf. Retrieved from the Internet Wayback Machine, dated Feb. 19, 2011. |
Lithium Website, http://www.lithium.com, Dec. 11, 2010, retrieved from Internet Archive, pp. 1-9. |
Liu et al., OAuth Based Authentication and Authorization in Open Telco API; International Conference on Computer Science and Electronics Engineering, 2012 (Year: 2012). |
M2 PressWire, “Alterian: Social media monitoring and analytics comes of age with Alterian's acquisition of market leader Techrigy,” Jul. 15, 2009, Anonymous, Norman Media Ltd, London. |
Matthews, Tara, et al. “Community Insights: Helping Community Leaders Enhance the Value of Enterprise Online Communities.” Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Apr. 27-May 2, 2013, Paris, France. ACM (2013). pp. 513-522. |
Meng, Jau Shya, Non-Final Office Action dated Jan. 3, 2020 for U.S. Appl. No. 15/877,381. |
Meng, Jau Shya, Non-Final Office Action dated Jun. 16, 2020 for U.S. Appl. No. 15/877,381. |
Mesa, Joel, Final Office Action dated Mar. 30, 2020 for U.S. Appl. No. 15/782,635. |
Mesa, Joel, Non-Final Office Action for U.S. Appl. No. 15/782,635 dated Oct. 4, 2019. |
Mesa, Joel, Non-Final Office Action dated Oct. 6, 2020 for U.S. Appl. No. 15/782,635. |
Mosley, Kyle T., Non-Final Office Action dated Dec. 28, 2017 for U.S. Appl. No. 14/852,965. |
Mosley, Kyle T., Non-Final Office Action dated Oct. 4, 2017 for U.S. Appl. No. 14/627,151. |
Netzloff, Eric R., Non-Final Office Action dated Nov. 25, 2014 for U.S. Appl. No. 13/848,706. |
Netzloff, Eric R., Non-Final Office Action dated Nov. 6, 2018 for U.S. Appl. No. 14/824,021. |
Niruntasukrat et al., Authorization Mechanism for MQTT-based Internet of Things, IEEE ICC 2016 Workshops W07-Workshop on Convergent Internet of Things (Year: 2016). |
Ofori-Awuah, Maame, Final Office Action dated Oct. 2, 2020 for U.S. Appl. No. 14/929,209. |
Ofori-Awuah, Maame, Final Office Action dated Sep. 6, 2019 for U.S. Appl. No. 14/929,209. |
Ofori-Awuah, Maame, Non-Final Office Action dated Apr. 5, 2019 for U.S. Appl. No. 14/929,209. |
Oh, Eung Gie, Written Opinion of the International Searching Authority and International Search Report dated Nov. 18, 2014 for International Patent Application No. PCT/US2014/031345. |
Olshannikov, Alex, Final Office Action dated Apr. 15, 2016 for U.S. Appl. No. 14/098,480. |
Olshannikov, Alex, Final Office Action dated Feb. 17, 2016 for U.S. Appl. No. 14/098,509. |
Olshannikov, Alex, Non-Final Office Action dated Nov. 5, 2015 for U.S. Appl. No. 14/098,480. |
Olshannikov, Alex, Non-Final Office Action dated Oct. 22, 2015 for U.S. Appl. No. 14/098,509. |
Perungavoor, Venkatanaray, Notice of Allowance and Fee(s) Due for U.S. Appl. No. 16/158,167, dated May 15, 2020. |
Raju, “5 Ways to Tweet More Than 140 Characters,” Dec. 28, 2008, Technically Personal, http://www.techpp.com/2008/12/28/5-ways-to-tweet-more-than-140-characters/, retrieved from Internet Archive version from Mar. 3, 2011. |
Rao et al., U.S. Appl. No. 62/049,642, filed Sep. 12, 2014 and entitled, “System and Apparatus for an Application Agnostic User Search Engine.” |
Rashid, Ishrat, Final Office Action for U.S. Appl. No. 15/782,653 dated Sep. 19, 2019. |
Rashid, Ishrat, Non-Final Office Action dated Jun. 11, 2019 for U.S. Appl. No. 15/782,653. |
Rashid, Ishrat, Non-Final Office Action dated Jun. 12, 2020 for U.S. Appl. No. 15/782,653. |
Senftleber et al., International (PCT) Patent Application No. PCT/US2018/055545, filed Oct. 12, 2018 and entitled, “Predicting Performance of Content and Electronic Messages Among a System of Networked Computing Devices.” |
Senftleber et al., U.S. Appl. No. 15/782,635, filed Oct. 12, 2017 and entitled, “Computerized Tools To Enhance Speed and Propagation of Content in Electronic Messages Among a System of Networked Computing Devices.” |
Senftleber et al., U.S. Appl. No. 15/782,642, filed Oct. 12, 2017 and entitled, “Predicting Performance of Content and Electronic Messages Among a System of Networked Computing Devices.” |
Senftleber et al., U.S. Appl. No. 15/782,653, filed Oct. 12, 2017 and entitled, “Optimizing Effectiveness of Content in Electronic Messages Among a System of Networked Computing Device.” |
Senftleber et al., U.S. Appl. No. 16/158,167, filed Oct. 11, 2018 and entitled, “Credential and Authentication Management in Scalable Data Networks.” |
Senftleber et al., U.S. Appl. No. 16/158,169, filed Oct. 11, 2018 and entitled, “Native Activity Tracking Using Credential and Authentication Management in Scalable Data Networks.” |
Senftleber et al., U.S. Appl. No. 16/158,172, filed Oct. 11, 2018 and entitled, “Proxied Multi-Factor Authentication Using Credential and Authentication Management in Scalable Data Networks.” |
Suh, Andrew, Non-Final Office Action dated Jul. 8, 2020 for U.S. Appl. No. 16/158,172. |
Tabor, Amare F., Final Office Action dated Apr. 8, 2015 for U.S. Appl. No. 13/871,076. |
Tabor, Amare F., Non-Final Office Action dated Aug. 15, 2014 for U.S. Appl. No. 13/871,076. |
Takesue, Masaru, An HTTP Extension for Secure Transfer of Confidential Data, 2009 IEEE International Conference on Networking, Architecture, and Storage, Hunan, 2009, pp. 101-108, doi: 10.1109/NAS.2009.21. |
Takesue, Masaru, An HTTP Extension for Secure Transfer of Confidential Data. IEEE, 2009 (Year: 2009). |
Thomas, Shane, Written Opinion of the International Searching Authority and International Search Report dated Aug. 16, 2013 for International Patent Application No. PCT/US2013/037107. |
Trapanese, William C., Non-Final Office Action dated May 27, 2020 for U.S. Appl. No. 16/413,577. |
Vo, Huyen X., Non-Final Office Action dated Mar. 15, 2019 for U.S. Appl. No. 15/782,642. |
Vo, Huyen X., Non-Final Office Action dated Oct. 15, 2020 for U.S. Appl. No. 16/458,183. |
Walsh, John B., Non-Final Office Action dated Mar. 24, 2017 for U.S. Appl. No. 14/702,696. |
Wang, Xiaoqing, and Shannon Lantzy. “A Systematic Examination of Member Turnover and Online Community Health.” Thirty Second International Conference on Information Systems, Shanghai (2011), pp. 1-11. |
Wollenstein et al., U.S. Appl. No. 61/639,509, filed Apr. 27, 2012 and entitled, “Systems and Methods for Implementing Custom Privacy Settings.” |
Wu, Michael, U.S. Appl. No. 61/734,927, filed Dec. 7, 2012 and entitled, “Systems and Methods for Presenting Analytic Data.” |
Wu, Michael, U.S. Appl. No. 62/072,929, filed Oct. 30, 2014 and entitled, “Systems and Methods To Monitor Health of Online Social Communities.” |
Young, Lee W., Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, dated Apr. 1, 2019 for International Application No. PCT/US2018/05545. |
Young, Lee W., Written Opinion of the International Searching Authority and International Search Report dated May 28, 2014 for International Patent Application No. PCT/US2013/073625. |
Young, Lee W.; Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration dated Jun. 24, 2019 for International Application No. PCT/US2019/014637. |
Goldberg, Ivan R., Final Office Action dated Jan. 15, 2015 for U.S. Appl. No. 13/865,429. |
Goldberg, Ivan R., Non-Final Office Action dated Apr. 13, 2016 for U.S. Appl. No. 13/865,429. |
Goldberg, Ivan R., Non-Final Office Action dated Jun. 18, 2014 for U.S. Appl. No. 13/835,250. |
Goldberg, Ivan R., Non-Final Office Action dated Jun. 18, 2014 for U.S. Appl. No. 13/835,502. |
Goldberg, Ivan R., Non-Final Office Action dated Jun. 20, 2014 for U.S. Appl. No. 13/865,411. |
Goldberg, Ivan R., Non-Final Office Action dated Jun. 23, 2014 for U.S. Appl. No. 13/865,429. |
Hardt, Dick, The OAuth 2.0 Authorization Framework draft-ieft-oauth-v2-31; Internet Engineering Task Force (IEFT) (Year: 2012). |
Senftleber et al., U.S. Appl. No. 16/194,126, filed Nov. 16, 2018 and entitled, “Multiplexed Data Exchange Portal Interface in Scalable Data Networks.” |
Shaw, Robert A., Non-Final Office Action dated Jan. 22, 2021 for U.S. Appl. No. 16/158,169. |
Singh, Amardeep, IP Australia, Examination Report No. 1 for Australia Patent Application No. 2019209542 dated Dec. 17, 2020. |
Spasojevic et al., U.S. Appl. No. 61/943,047, filed Feb. 21, 2014 and entitled, “Domain Generic Large Scale Topic Expertise & Interest Mining Across Multiple Online Social Networks.” |
Spasojevic, Nemanja et al., “When-To-Post on Social Networks”, International Conference on Knowledge Discovery and Data Mining (KDD), Aug. 10-13, 2015, pp. 2127-2136, Retrieved Online: http://dl.acm.org/citation.cfm?d=2788584. |
Suh, Andrew, Final Office Action dated Dec. 3, 2020 for U.S. Appl. No. 16/158,172. |
Number | Date | Country | |
---|---|---|---|
20210174391 A1 | Jun 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15581795 | Apr 2017 | US |
Child | 16952038 | US |