System and method of providing a platform for managing data content campaign on social networks

Information

  • Patent Grant
  • 11538064
  • Patent Number
    11,538,064
  • Date Filed
    Wednesday, November 18, 2020
    4 years ago
  • Date Issued
    Tuesday, December 27, 2022
    2 years ago
Abstract
A computer-implemented system including a data store: a content items database, a user account database, and one or more servers configured to execute a computer program to perform one or more of the following: receiving content items from content database that are associated with a topic selected by a user for posting on a social network, wherein at least one content item is associated with an URL; estimating a post to a reaction filter for a time interval for the social network for the user, calculating a reaction profile associated with reactions to posts on the social network by aggregating reaction time of a plurality of users on the social network for one or more content items posted on the social network; determining a schedule for posting the content items on the social network as a function of the post to reaction filter and reaction profile.
Description
FIELD

The present invention relates to a system and method of providing a platform for managing a campaign for publishing data content on social networks.


BACKGROUND

Social networks have emerged as major platform for communication over the years, with hundreds of millions of interactions created by users every day. Marketing experts have long recognized that an effective marketing strategy must include a presence on social networks. For many corporate users that desire to post data content (also referred to as content data or content herein), one of their goals when broadcasting content (e.g., messages) is to capture the attention of a large number of audience members on these social networks so that such audience members may react to the posted content. The likelihood that audience members react to posted content may differ depending on various factors such as location, daily and weekly behavior patterns, time zone and volume of other content competing for the attention of the audience members. To address this, Lithium Technologies, Inc. developed a technique or system to formulate a user's schedule for broadcasting content on a social network, in order to increase audience members' reactions. “When-To-Post on Social Networks,” Spasojevic et al., Association For Computing Machinery 2015, which is incorporated by reference herein. While the system described in Spasojevic et al. is effective for its intended purpose, it would be advantageous to provide improvements to this system.


SUMMARY

Embodiments of a system and method for managing a campaign for publishing data content on social networks are disclosed.


In accordance with an embodiment of this disclosure, a computer-implemented system is disclosed for providing a platform for managing a campaign for publishing content on social networks to increase audience member reaction to the content, the system comprising: a data store: a content items database, wherein data associated with content items on one or more topics that is intended to be posted on social networks are stored; a schedule database, wherein data associated with schedules for posting the content items are stored; user account database, wherein data associated with registered users are stored; one or more servers coupled to the data store, wherein the one or more servers are programmed to execute computer program steps, the computer program steps comprising: collecting data from a first social network and a second social network relating to the activities of a plurality of users on the first and second social networks; collecting data associated with the first and second social networks relating to the users' audience; estimating a post to reaction filter for the first social network and the second social network by aggregating post to reaction times for all posted content and reactions to the posted content on the first social network and the second social network; calculating self reaction profiles for the plurality of users by aggregating data relating to user reactions to posts on the first and second social networks; calculating a user audience post reaction profile for the first social network and the second social network as a function of the post to reaction filter; generating a first schedule for posting the content on the first social network and a second schedule for posting the content on the second social network as a function of the audience post reaction profiles; and estimating a transformation function, based on post to reaction filter data, self reaction profiles and audience post reaction profiles, to transform the first schedule for posting content on the first social network into the second schedule for posting content on the second network, the transformation function thereby establishing a relationship between the first schedule for posting content on the first social network and the second schedule for posting content on the second social network.


In yet another embodiment of the disclosure, a computer-implemented system is disclosed for providing a platform for managing a campaign for publishing data content on social networks to increase audience member reaction to the data content, the system comprising: a data store: a content items database, wherein data associated with content items on one or more topics that is intended to be posted on social networks are stored; a schedule database, wherein data associated with schedules for posting the content items are stored; user account database, wherein data associated with registered users are stored; one or more servers coupled to the data store, wherein the one or more servers are programmed to execute computer program steps, the computer program steps comprising: collecting data from a first social network and a second social network relating to the activities of a plurality of users on the first and second social networks; collecting data associated with the first and second social networks relating to the users' audience; estimating a post reaction filter for first social network and second social network by aggregating post to reaction times for all posted content and reactions to the posted content on the first social network and the second social networks; calculating a self reaction profiles for the plurality of users by aggregating data relating to user reactions to posts on the first and second social networks; calculating a user audience post reaction profile for the first social network and the second social network as a function of the post to reaction filter; generate a first schedule for posting the content on the first social network and a second schedule for posting the content on the social network as a function of the audience post reaction profiles, thereby establishing a relationship between the first schedule for posting content on the first social network and the second schedule for posting content on the second social network; and estimate a user's schedule for posting a user's content on the second social network as a function of the relationship between the first schedule for posting content on the first social network and the second schedule for posting content on the second social network.


In accordance with yet another embodiment of the disclosure, a computer-implemented system is disclosed for providing a platform for managing a campaign for publishing data content on social networks to increase audience member reaction to the published data content, the system comprising: a data store: a content items database, wherein data associated with content items on one or more topics that is intended to be posted on social networks are stored; a schedule database, wherein data associated with schedules for posting the content items are stored; user account database, wherein data associated with registered users are stored; one or more servers coupled to the data store, wherein the one or more servers are programmed to execute computer program steps, the computer program steps comprising: collecting data from a social network relating to the activities of a plurality of users on the social network; attributing one or more domains to each user in the social network; calculating a post to reaction filter for the social network relative to the one or more domains; calculating a domain reaction profile for the social network by aggregating reaction of users in connection with a domain; calculating a post reaction profile for the social network; and generate a domain posting schedule for the social network independent of a user's audience on the social network.


In accordance with another embodiment of this disclosure, a method is disclosed of providing a platform for managing a campaign for publishing data content on social networks to increase reactions to the published content, the method is implemented in one or more servers programmed to execute the method, the method comprising: retrieving data content item and other metadata intended to be posted on a social network; detect one or more domains from the data content item using natural language processing; generating a posting schedule for each of the one or more domains for the social network as a function of a post to reaction filter for the social network for each domain of the one or more domains and the domain reaction profile for the social network; fetching one or more schedules for the one or more domains respectively, combining the one or more schedules for the one or more domains; and deriving a schedule for posting the data content item, the schedule derived independent of user audience reaction.


In accordance with another embodiment of this disclosure, a method is disclosed of providing a platform for managing a campaign for publishing data content on social networks to increase reactions to the published content, the method is implemented in one or more servers programmed to execute the method, the method comprising: (1) receiving a request for an interval of time in which a user desires to post a content item on a social network; (2) receiving a schedule for posting a content item and a post to reaction filter for the interval of time; (3) calculating the schedule for posting a content item on the social network and the post to reaction filter based on an interval of time that is refined with greater granularity; (4) modeling a decay function as a function of the post to reaction filter, the decay function representative of a level of interest of an audience of the user; (5) determining an optimal time to post the content item on the social network as a function of the decay function; and (6) recomputing the schedule as a function of the decay function and received schedule for posting the content item on the social network.


In accordance with yet another embodiment of the disclosure, a computer-implemented system is disclosed for providing a platform for managing a campaign for publishing data content on social networks to increase audience member reaction to the data content, the system comprising: a data store: a content items database, wherein data associated with content items on one or more topics that is intended to be posted on social networks are stored; a schedule database, wherein data associated with schedules for posting the content items are stored; user account database, wherein data associated with registered users are stored; one or more servers coupled to the data store, wherein the one or more servers are programmed to execute computer program steps, the computer program steps comprising: receiving content items from content database that are associated with a topic selected by a user for posting on a social network, wherein the one or more content items are associated with one or more URLs; estimating a post to a reaction filter for a time interval for the social network for the user, the post to a reaction filter representative of the probability distribution that a reaction to a posted content will occur within the time interval; calculating a reaction profile associated with reactions to posts on the social network by aggregating reaction time of a plurality of users on the social network for one or more content items posted on the social network; determining a schedule for posting the content items on the social network as a function of the post to reaction filter and reaction profile; and posting the content items on the social network in accordance with the schedule.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 depicts a block diagram illustrating an example system of providing a platform for managing a campaign for publishing data content on social networks.



FIG. 2 depicts the central system in FIG. 1 wherein several example computer software modules and databases are shown for implementing the system of providing a platform for managing a campaign for publishing data content on social networks.



FIG. 3 depicts example method steps for implementing the software modules shown in FIG. 2.



FIG. 4 depicts an example diagram illustrating salient flow to support the operation of the platform for managing a campaign for publishing data content on social networks.



FIG. 5A depicts certain example method steps of the scheduling module for estimating a user's posting schedule on one social network as a function of the user's posting schedule from another social network.



FIGS. 5B-D depict various embodiments of certain method steps in FIG. 5A.



FIGS. 6A-6B depict flow diagrams illustrating example method steps for generating a domain-specific post schedule for a user's audience.



FIG. 7 depicts a flow diagram illustrating example method steps for optimizing the scheduling the posting of multiple content items.



FIG. 8 depicts a graph of decay function expressed via post to reaction time function over time used for optimizing the scheduling the posting of multiple content items.



FIG. 9A-9F depict several graphs illustrating a series of revised schedules as a function of the previous postings.



FIGS. 10-13 depict several screen shot representations of the platform for managing a campaign for publishing data content on social networks.





DETAILED DESCRIPTION

Embodiments of the present disclosure are described herein with reference to the drawing figures.



FIG. 1 depicts a block diagram illustrating an example system 100 of providing a platform (200 below) for managing a campaign for publishing data content on social networks. One goal of this campaign is to increase audience reaction to published or posted content. The content may comprise one or more items associated with a URL linking an item to the specific content (e.g., article) as known to those skilled in the art. In this embodiment, system 100 includes a central system 102 that communicates with content sources 104 such as social networks including Twitter, Facebook, Google Plus and others known to those skilled in the art via network 106. Network 106 is the Internet, but it may be other communication networks such as a local area network (LAN) or both the Internet and LAN as known to those skilled in the art. System 100 also includes one or more clients 108 that enable users to communicate with social networks 104 and central system 102 via network 106 by cable, ISDN, WIFI or wireless carrier networks as known to those skilled in the art. (Data and information are used interchangeably in this disclosure unless otherwise noted.)


Central system 102 incorporates platform 200 for managing a campaign for publishing data content on social networks (described below). Platform 200 incorporates several computer software modules and databases as described in FIG. 2 below. Central system 102 includes one or more servers that may be connected together through a network such as a local area network (LAN) as known to those skilled in the art. The one or more servers may include a web server as known to those skilled in the art. Each server includes several internal components (e.g., processor, memory, drives, etc.), databases, operating system, software modules and applications (e.g., browser) as known to those skilled in the art. An example server is described below.


Content sources 104 are a system of one or more servers that comprise any number of social networks (herein after also referred to as social networks 104). Social networks 104, as known to those skilled in the art, are typically web-based systems that allow users to create a profile, post content, connect to other users, react with posted content and create a list of users with whom to share such content (e.g., social media data). Users of social networks may refer to users that post content or users that react to the content, i.e., users' audience members. Reactions to posted content are also referred to herein as interactions or engagements such as likes, favorites, clicks, user shares, comments and other reactions. The content may be photos, videos, articles or any other information and/or links linking to such content. Examples of social networks 104 include LinkedIn, Twitter, Facebook, Google Plus as shown in FIG. 1 as well as Instagram, Pinterest and Tumblr (to name a few). These web-based systems may also include a web server. Each server includes several internal components (e.g., processor, memory, drives, etc.), databases, operating system, software modules and applications (e.g., browser) as known to those skilled in the art.


Content sources 104 may also include a system of one or more servers that comprise news or other sources of information that provide RSS feeds to enable users to access such information as known to those skilled in the art as well as any number of events, articles, PDFs, videos, photos or other (together “articles”) that users may access via a URL (uniform resource identifier) posted on social networks 104 that link to such articles as known to those skilled in the art. The one or more servers may include a web server as known to those skilled in the art.


Clients 208 include laptops, personal computers and mobile devices. The personal computer includes several internal components (e.g., processor, memory, drives, etc.), operating system, databases, software modules and applications (e.g., browser) as known to those skilled in the art. The mobile devices as known to those skilled in the art could be smartphones, cellular telephones, tablets, PDAs, or other devices equipped with industry standard (e.g., HTML, HTTP etc.) browsers or any other application having wired (e.g., Ethernet) or wireless access (e.g., cellular, Bluetooth, IEEE 802.11b etc.) via networking (e.g., TCP/IP) to nearby and/or remote computers, peripherals, and appliances, etc. TCP/IP (transfer control protocol/Internet protocol) is the most common means of communication today between clients or between clients and central system 102 or other systems (i.e., one or more servers), each client having an internal TCP/IP/hardware protocol stack, where the “hardware” portion of the protocol stack could be Ethernet, Token Ring, Bluetooth, IEEE 802.11b, or whatever software protocol is needed to facilitate the transfer of IP packets over a local area network. Each client 108 may access the Internet directly or through a network of one or more servers that communicates with Internet as known to those skilled in the art.


As shown in FIG. 2, central system 102 incorporates platform 200 for managing a campaign for publishing data content on social networks (described below). In brief, platform 200 is a framework that enables a user to determine optimal time to post content (e.g., a message) within a specified time period in order to maximize the probability of receiving reactions from audience members. Platform 200 performs user personalized schedule generation including estimating audience reaction, domain specific schedule personalization (tuning) and user strategy for scheduling multiple posts. Platform 200 performs all of the collection of the data from the social networks, processing of such data and posting of such data on the social networks. This is described in more detail below.


Platform 200 for managing a campaign for publishing data content on social networks comprises computer software modules and databases including campaign user interface module, 202, identity managing module 204, content discovery module 206, scheduling module 208, security-authorization and approval module 210, data analytics engine module 212, user account database 214, content database 216 and schedule database 218.


Campaign user interface module (UI) 202 is a user (who desires to post content) interface as known to those skilled in the art, that enables a user to engage with platform 200 to select content for posting and time parts for such posting. For example, module 202 enables user to (1) use a calendar to set a date and time (day parts) for posting content, (2) select content discovered or user selected, (3) select social networks in which the user desires to post such content and (4) review data metrics of all data computed (e.g., reactions and the audience members) by the data analytics module.


Identity management module 204 is a module that associates users and their login credentials with social networks to enable platform 200 to post content on such networks. Identity management module 204 communicates with user account database 214 and content database 216.


Content discovery module 206 is a module for discovering content that is used as recommendations for posting. The content is associated with topics that may be of interest to the user's audience members. Content discovery may be achieved in several ways. Klout, Inc. (Owned by Lithium Technologies, Inc.) offers a platform for content discovery. Content discovery may be achieved by employing the technology described in U.S. patent application Ser. No. 14/702,696, filed May 2, 2015, entitled “System and Method of Providing a Content Discovery Platform For Optimizing Social Network Engagements,” which is incorporated by reference herein. With the platform described in that application, the platform collects social media data, RSS feeds and articles, creates URL summarization documents from the collected data, creates features for capturing different aspect of an article's relevance using machine learning and trains models on subsets of articles to determine the weights for each feature. Models may be trained with different objectives. For example, the models may be trained to optimize for different social network user interactions such as favorites, likes, clicks, user shares, audience reactions etc. The described platform given topics scores the URL summarization documents (URLs) using the trained models and the top articles are retrieved in order of score (rank) and presented to the user. Topics may for which content is uncovered may be manually selected by user, or system can leverage automatically assigned topic of users expertise, or aggregate audience topic interest. Examples of topic generation is disclosed in U.S. patent application Ser. No. 14/627,151, filed Feb. 20, 2015, entitled “Domain Generic Large Scale Topic Expertise and Interest Mining Across Multiple Online Social Networks” which is incorporated by reference herein. Module 206 communicates with content database 216. Content discovery module 206 is described in more detail below. Also, content discovery may be tuned to brand owned content where data is sourced only by the brand owned web property some of which may include blogs, communities (e.g., via Lithium Technologies, Inc. Community Platforms) etc.


Scheduling module 208 is a module that functions to schedule to determine an optimal time to post content (e.g., a message) within a specified time period in order to maximize the probability of receiving reactions from audience members. This module also performs user personalized schedule generation (also known as auto-scheduling) including estimating audience reaction, domain specific schedule personalization (tuning) and user strategy for scheduling multiple posts. This is described in more detail below.


Security—authorization and approval module 210 is a module that functions to provide security layers or levels at different stages of the process of posting content. Module 210 for example enables a user to identify authorized users to approve and post content.


Data analytics engine module 212 is a module that functions to provide data metrics with those audience members that react to a user's posted content. For example, the data analytics engine may analyze all reactions for forecasting results.


User account database 214 is a database, as known to those skilled in the art, that stores user account credentials for platform 200 as well as social networks in which users desire to post content for audience member reaction.


Content database 216 is a database, as known to those skilled in the art, for storing content generated by discovery module 206.


Schedule database 218 is a database, as known to those skilled in the art, for storing schedules generated by the scheduling module 208.


The databases described on one form of data storage but those skilled in the art know that any data storage or strategy other than a database be used for storing the data disclosed in this disclosure.



FIG. 3 depicts example high-level method steps for implementing the software modules shown in FIG. 2. In particular, execution begins at step 300 wherein a user selected topic is received to create content for a user to post to one or more social networks. Execution proceeds to step 302 wherein content discovered relating to the selected topic is generated. Simultaneously (or alternatively), existing arbitrary content is received from the user at step 304. Now, regardless of the origination of content, execution proceeds to steps 306 and 308 wherein data day parts from the user are received for content posting on the one or more social network(s) and wherein selected social network(s) in which the user desired to paste content are received.


Next, once the content, day parts and social network selections are received from the user, execution proceeds to step 310 wherein a schedule for posting the selected content on the social networks is determined (by scheduling module 212). That is, the schedule is formulated to determine the optimal time to post content (e.g., a message) within a specified time period in order to maximize the probability of receiving reactions from audience members. Optionally, schedule determination may include estimating audience reaction (on one social network as a function of reaction on another), domain specific schedule personalization (tuning) and user strategy for scheduling multiple posts. This is described in more detail below. Execution proceeds to step 312 wherein the selected content as authorized by the user is posted on the social network(s). Following, the number of reactions (engagements) and the number of audience members that post such reactions are monitored (collected) at step 314 and analyzed (by data analytics engine 212). Metrics for such data are generated and displayed for the user to review. This is described in more detail below.



FIG. 4 depicts an example diagram illustrating salient flow to support the operation of platform 200. Along the top of FIG. 4, a posting user is shown with a plurality of followers or connections (also referred to as audience or audience members) and individuals for whom the posting user is following. As known to those skilled in the art, the user posts content on social networks 104 and the user's audience (members) view and react to the posted content (audience member reactions). It then follows that a posting user is associated with his or her own user (data) graph (user graph) that comprises several sources of data including data relating to user followers (i.e. who is following the user in these social networks and (2) data relating to those past interactions with the user in a previous time frame on these social networks. Platform 200 employs collectors to collect the data from nodes relating to the interactions and user graphs including fetching, parsing and normalizing the data as known to those skilled in the art. Specifically, the data is collected and written to a cluster of nodes such as a Hadoop cluster that uses HDFS or other known to those skilled in the art as the file system, a data store such as HBase and an infrastructure such as Apache Hive or another known to those skilled in the art to process, query and manage the large datasets. Utilities such as Java functions to process user locations and time zones and operators and operators such as discrete convolution to process time-series vectors. The system allows proper mapping and ability to analyze billions content (i.e., messages) posted to social network platforms every day.


Platform 200 will process user (data) graph as user in-graph data and user out-graph data User out-graph data is data relating to those who follow a posting user and user in-graph is data relating to those following the posting user as known to those skilled in the art. With Facebook for example, the in-graph data and out-graph data are typically the same for followers known as “friends” but different for those following (use designated as a “like”) a specific Facebook branding pages like Nike's Facebook page.


Platform 200 will process the user graph data to generate a creation profile, a post to reaction profile and self reaction profile. For each posting user, a creation profile is created that represents the posts created by the user in each time bucket. As described below, a time bucket is short period of time (e.g., 15 minutes). The self reaction profile represents the user responses or reactions to the post that a user sees. The post to reaction (filter) profile (PTR(x)) represents a discrete probability distribution over the event that a reaction occurs within a time interval. Each of these three profiles are depicted below their respective blocks as graphs in FIG. 4.


The user-out graph, post to reaction profile and reaction profile are used to generate or estimate a user schedule for posting content. The user schedule is essentially broken down into two types of schedules: first degree schedule for posting content and a second degree schedule for posting content. In order to distinguish between the two schedules, an example is in order. As part of a social graph as known to those skilled in the art, user u0 for example has audience of other members a1 so Uout(u0)={a0, a1, . . . am}. So, when u0 creates a post on social network (x), the post may be seen by potentially all audience members ai of her audience. Now, a sample audience member a0 of u1 also belongs as an audience member of other users bi and may view posts that are created by each of those users. This relationship between the users as Uin (b0)={u0, u1, . . . um}. So, to derive the post schedule S(u1) for user u1, first degree schedule and a second degree schedule for posting content are two different approaches to calculating the expected number of reaction received from Uout (u0) for a post created in the time bucket t.


This first degree schedule takes into account the reactions of u0's audience Uout (u0), ignoring the second degree effects of the other posting users ui. The sum of delayed reactions per bucket t gives us the estimated audience reaction profile Q(u0) for the user as described in more detail below, where the elements of the vector are given by:








q
k



(

u
0

)


=




j
=
0

m




r

d
,
t




(

a
j

)








where rd is the delayed reaction profile Rd for an audience as described in detail below.


Thus in this case, the probability of receiving a reaction in any given time bucket tk(u0) can then be computed from the audience post reaction profile Q(u0) as described in detail below. These probabilities determine the first degree reaction posting schedule S1(u0) as known to those skilled in the art.


The second degree schedule is estimated to account for cognitive overload of posts as depending on other user from which audience members are following. In short, a user desires that his/her post is visible to the audience for as long as possible. The second degree schedule is an estimate or function to account for that effect. The actions of the users ui above represent the second degree effects for user u0, since they affect how u0's first degree connection a0 reacts to messages. To consider these second-degree effects, a second-degree reaction schedule S2(u0) is derived from knowledge of the time when the users ui create posts, a time when a specific audience member b0 reacts to the posts create by ui and the probability that b0 reacts to a post in a certain time bucket t. Second degree schedules are described in detail in “When-To-Post on Social Networks,” Spasojevic et al., Association For Computing Machinery 2015, which is incorporated by reference herein. Therefore it will not be discussed here. For now, these two posting schedules will be described as the user posting schedule for simplicity.


Now, with the user posting schedule along with the other calculated data, platform 200 will perform several functions including (1) estimating a user posting schedule on one social network based on the estimated schedule on another social network (2) domain specific personalization and (3) optimizing for multiple postings. The results of all of these functions are presented to the posting user through any system that incorporates platform 220 such as the Klout (from Lithium Technologies, Inc.) system. All of this is described in detail below.


(1) Estimating a User Posting Schedule on One Social Network Based on Estimated Schedule on Another Social Network.


As indicated above, find the best times personalized for the user to post content on social networks in order to increase audience member responses. Platform 200 formulates schedules for users to post content on these social networks based on user data relating to user behavior on those social networks to optimize audience reaction. However, data collection from private social networks (e.g., Facebook, Instagram etc.) may be difficult to achieve. Hence, the ability to estimate or calculate a schedule for posting content on a private social network on the basis of user data collected on a public social network (e.g., Twitter). FIG. 5A depicts example method steps performed by the scheduling module for estimating a particular user's posting schedule on a first social network (x) as a function of the user's posting schedule from another (second) social network (x). (Social networks (X) and (Y) in figures.) That is, the calculated function will enable a user to schedule posted content on the second social network based on data collected and subsequently analyzed from first social network (x) typically a public social network such as Twitter alone. Now, in order to calculate this function (as defined in step 512), platform 200 must first formulate posting schedules on the first and second social networks (y) and (x) for a sample set of users (typically large) and then the estimation can be achieved. In brief, this formulation takes into account user behavior in terms of post-to-reaction times and compares cross-network reaction behavior for users on the first and second networks.


Returning to FIG. 5A, execution begins at step 500 wherein data from social network (x) and social network (y) relating to the activities of a number of usersN are collected. (Note that access to and collection of a user activities are easily obtained or retrieved from public social networks such as Twitter without user authorization (i.e., user login credentials). Access and collection of a user's activities on private sites such as Facebook are authorized by the user to third-party platforms such as Klout or others as known to those skilled in the art.) UsersN may have one million or more users, but those skilled in the art know that any amount large enough to achieve desired results may be used for this method. These activities are user posts and reactions or responses to the user posts. Execution then proceeds to step 502 wherein usersN audience data associated with social network (x) and social network (y) is collected. The audience data associated with social network (x) and social network (y) includes (1) the user's followers (audience), i.e., who is following the user on these social networks and (2) past actions of the user, and 3) interactions among the user and the followers in a previous time frame on these social networks. The data is collected via an API or other interface as known to those skilled in the art.


Execution proceeds to step 504 wherein a post to reaction filters PTR (x) and PTR (y) for social network (x) and social network (y) are (estimated) determined by aggregating post to reaction times across (for any number of user) post responses from social network (x) and social network (y). The post to reaction filter PTR (x) of social network (x) for example is a vector with a value in each bucket as follows PTR(x)={ptr(x, b0), ptr(x, b1), . . . , ptr(x, bi), . . . } where the value ptr(x, bi) is the probability that a reaction occurs within at bucket bi after a post is posted in network x. ptr(x, b) is calculated by looking at time content (e.g., message) is posted and time of reaction. The difference (delta) is used to create a histogram or distribution function as known to those skilled in the art. One example is described in “When-To-Post on Social Networks,” Spasojevic et al., Association For Computing Machinery 2015, which is incorporated by reference herein.

    • A bucket (b) is a short period of time, i.e., 15 minutes, 1 hour.
    • T is a longer period of time (than a bucket), in which behavior patterns may repeat and therefore can be generalized. It may be a day, a week, month, year etc.
    • x represents social network, such as Twitter and Facebook.
    • T can then be divided into buckets and represented as (b0, b1, . . . , bi, . . . ). For example, if T is a day and each bucket is an hour, then b0 represent the first hour of a day and b23 represent the last hour of a day.
    • u is a user who posts in one or multiple networks.


PTR(y) is similarly determined as PTR(y)={ptr(y, b0), ptr(y, b1), . . . , ptr(y, bi), . . . } with similar definitions except y is the social network (y).


Execution proceeds to 506 wherein self reaction profiles R(u,x) and R(u,y) for the usersN on social networks (x) and (y) are calculated by aggregating user audience member response (reaction) data. For example, given T, R(u,x) represents the self reaction profile of user u in social network x and R(u, x) represents a vector of values in each bucket as follows:

R(u,x)={r(u,x,b0),r(u,x,b1), . . . ,r(u,x,bi), . . . }

    • G(u, x) represent audience members of user u in network x.
    • a∈G(u, x) an audience of user u in network x.


R(u, y) is calculated using the similar vector and definitions. There is usually a time an audience member reaction is mapped into buckets. Thus, a specific post may be visible in one time bucket but may only be reacted upon in a later time bucket in R(u, x). The post to reaction filter PTR(x) function represents the lag in terms of a time interval d. Therefore a delayed reaction profile for a user is computed by performing a discrete convolution operation of the original reaction profile R(u,x) with the post to reaction filter function PTR(x) is as follows:

Rd(u,x)=R(u,x)*PTR(x)

where * is a discrete convolution function as known to those skilled in the art. See for example, “When-To-Post on Social Networks,” Spasojevic et al., Association For Computing Machinery 2015, which is incorporated by reference herein.


Execution proceeds to step 508 wherein the userN audience post reaction profiles (data) Q(u, x) and Q(u, y) (also referred to as audience reaction profile) for social networks (x) and (y) are calculated. For example, for a given T, Q(u, x) is the audience post reaction profile for user u in network x and Q(u, x) has a vector of values, each of which is associated with each bucket b as follows:

Q(u,x)={q(u,x,b0),q(u,x,b1), . . . ,q(u,x,bi), . . . }


The value q(u, x, b) is the likelihood of an audience would respond to a post on social network (x) from user u posted at time bucket bi. q(u, x, bi), is calculated by aggregating individuals as known to those skilled in the art. The aggregation appears as follows:








q
i



(

u
,
x
,

b
i


)


=




a


G


(

u
,
x

)







r
d



(

a
,
x
,

b
i


)







One example is described in “When-To-Post on Social Networks,” Spasojevic et al., Association For Computing Machinery 2015. Rd(a, x)={rd(a, x, b0), rd(a, x, b1) . . . rd(a, x, bi) . . . }. Rd(a, x) is the delayed reaction profile for the audience.


Execution proceeds to step 510 wherein userN posting schedule S(x, u) and S(y, u) for social networks (x) and (y) are generated. Once Q(u, x) is determined, a probability mass function can be determined which represents a post data schedule for the user. These probabilities can be computed as follows:








s
i



(

u
,
x
,

b
i


)


=



q
i



(

u
,
x
,

b
i


)


/




j
=
1

N




q
j



(

u
,
x
,

b
j


)









The vector consisting of the probabilities determine the post schedule of the user. This vector is represented as S(x, u)={s1(u, x, b1), s2(u, x, b2), s3(u, x, b3) . . . si(u, x, bi) . . . }. Once S(u, x) is obtained, the bucket with the highest value of Si(u, x, bi) is best time to post.


Execution proceeds to step 512 wherein a transformation function is estimated, based on the post to reaction filter data, self reaction profile data and the audience post reaction profile data, to transform the data underlying the schedule for posting content on social network (x) to data underlying the schedule for posting content on social network (y). In other words, the transformation function actually establishes or identifies a relationship between a schedule for posting content on social network (x) and a schedule for posting content on social network (Y). This is represented as S(y, u)=F(S(x, u)) where S(x, u) is the schedule for posting on social network (x) and S(y, u) is the schedule for posting on social network (y). At this point, a goal at this step is to create the function F that is necessary to transform the posting schedule for social network (x), i.e., transform the data underlying that schedule, into the schedule S(y, x) for posting on social network (y) for all usersN. Step 512 may be accomplished in several ways. FIGS. 5B-D depict various ways or embodiments of executing this step as described below.


Now that the transformation function F has been established, any user “u” may apply it to a schedule for posting content on social network (x) to obtain the schedule for posting content on social network (y) as shown in step 514. This step 514 in effect estimates the schedule for posting content on social network (y) using the transformation function on the schedule data for posting content on social network (x). However, in order to apply step of 514 for a particular user, the basic steps 500-510 must first be executed to determine a schedule S(u, x) for posting content on network (x) for that particular user. This is represented by the dashed lines in FIG. 5A. Then, the schedule S(u, y) for posting content on social network (y) may be calculated for that particular user. This is described in greater detail below.


In one particular embodiment shown in FIG. 58. In step 512-1, the transformation function F is created by applying a machine learning engine to the audience post reaction profile data Q(u, x) and Q(u, y) for the samples on both social networks (x) and (y). An exemplary regression method is linear regression as follows:

S(u,y)=M*S(u,x)+B

where M is a matrix and B are vectors and both are learned from the samples as known to those skilled in the art. Execution proceeds to several steps (similar to steps 500-510) including step 514 as described above (wherein the transformation function is applied etc.).


In yet another embodiment as shown in FIG. 5C, execution proceeds to step 512-3 wherein (any user) audience post reaction data profiles Q(u, x) and Q(u, y) (already calculated and stored) are retrieved for usersN with data to calculate the schedules for social networks (x) and (y). Execution then proceeds to step 512-4 wherein a transformation function for transforming the audience post reaction data profile Q(u, x) for social network (x) into audience post to reaction data profile Q(u, y) for social network (y). To achieve this, the machine learning engine applies to the audience post reaction data profiles from the social networks (x) and (y) to estimate this function F by applying a regression method as described above. Once the function F is determined, it is applied to the audience post reaction data profile Q(u, x) to obtain audience post reaction data profile Q(u, y) at step 512-5 and from that the schedule S(u, y) may be calculated form Q(u, y). Execution proceeds to several steps (similar to steps 500-510) including step 514 as described above (wherein the transformation function is applied etc.).


In yet another embodiment as shown in FIG. 5D, execution begins at step 512-7 wherein user audience post to reaction data profiles Q(u, x) and Q(u, y) for social networks (x) and (y) are retrieved for all users on such networks. Execution then proceeds to step 512-8 wherein a transformation function F is created to transform the audience post reaction profiles Q(u, x) for social networks (x) and (y) into the audience post reaction profile Q(u, y). Function F is computed by applying a machine learning engine to the audience reaction profile data Q(u, x) and Q(u, y) for a large sample of users of social networks (x) and (y). Execution proceeds to step 512-9 wherein the self reaction profile R(u, x) for social network (x) is retrieved and then the function F is applied to R(u, x) to compute (estimate) the self reaction profile on R(u, y). Once the self reaction profile R(u, y) is computed, a user audience post reaction profile Q(u, y) is computed as well as the user schedule S(u, y) is computed based on Q(u, y), R(u, y) as described above (not shown in FIG. 50). Execution proceeds to several steps (similar to steps 500-510) including step 514 as described above (wherein the transformation function is applied etc.).


Regardless of the embodiment used to estimate scheduling posts on social network (y), city, country and time zone-level schedules using platform 200 are aggregated. The time zones schedules may be used in the event there is insufficient data to generate a personalized schedule for the user.


As indicated above, any user “u” may apply the transformation function F (determined above) to a schedule for posting content on social network (x) to obtain the schedule for posting content on social network (y) as shown in step 514 in FIGS. 5A-5D. This step 514 in effect estimates the schedule for posting content on social network (y) using the transformation function on the schedule data for posting content on social network (x). However, in order to apply step of 514 for a particular user, the basic steps 500-510 must first be executed to determine a schedule S(u, x) for posting content on social network (x) for that particular user. Then, a schedule S(u, y) for posting content on social network (y) may be calculated for that particular user. An example of this appears below.


With the transformation function F in hand, a user such as Nike may desire to post content (e.g., articles) on the social network (y). Similar to step 500 in FIG. 5A, data is collected from social network (x) relating to the activities of Nike. Activities include Nike's (the user) posts and reactions or responses to the posts. Next, similar to step 502, data is collected that is associated with social network (x) relating to the number of Nike's audience. Next, similar to step 504, a post to reaction filter for social network (x) is determined. Then, similar to step 506, a self reaction profile is calculated for Nike (user) by aggregating Nike's audience response data. Now, similar to step 508, Nike's audience post reaction profile for social network (x) is calculated. Then, similar to step 510, Nike's schedule for posting content on social network (x) is generated. Now, in order for Nike to obtain a schedule for posting content on social network (y), the transformation function F (computed in FIG. 5A) is applied to the data underlying Nike's schedule for posting the content on social network (x) to transform that data into the schedule data for posting the content on social network (y). This is step 514 above.


(2) Domain Specific Schedule Optimization.


The schedules discussed above result in schedule personalization based on affinities of a user's audience members. However, personalization based on a user's audience member's characteristics can be generalized further. User interests and expertise with respect to topics may be generated as known to those skilled in the art. Now, platform 200 may also generate optimal schedules for users based on a mixture of topics or other domains, which may be derived from content being posted, the cumulative audience interest and/or poster's expertise, to elicit maximal reactions. This approach may work well where a lot of content reacted upon may not come from a first degree network but though discovery feeds on social networks. It is the domain, i.e., the nature of the post, that predicts potential audience behavior. FIGS. 6A-6B depict flow diagrams illustrating example method steps for generating a domain-specific post schedule for a user's audience (that is implementing the scheduling module 208 of platform 200).


Execution begins at step 600 wherein data relating to all users' activities are collected from social network (x). The activities relate to users' interactions, i.e., posts and responses or reactions to those posts on social network (x). (The interactions are defined as time of post, time of reaction, author, actor, content, network and other meta data associated with interaction.) As indicated above, access to and collection of user activities are retrieved on both public social networks such as Twitter without user authorization and private social networks such as Facebook with user authorization (OAuth tokens) to platforms such as Klout or others as known to those skilled in the art.


Execution then proceeds to step 602 wherein the domain(s) are attributed to each user in network (x). The domain may be a topic, time zone, geo-location based item, city, state, country or language (e.g., English or Spanish) or other domain as known to those skilled in the art.


Next execution proceeds to step 604 wherein a post to reaction filter PTR(D, x) for network (x) per domain is calculated. As described above, for a time internal d, the PTR(x) is a discrete probably distribution over the event that a reaction occurs within timed of creating a post on network (x). PTR (D, x) function is estimated to be the aggregating of the reaction times across all observed posts and reactions in network (x), domain (D).


Execution proceeds to step 606 wherein a “domain” reaction profile R(D, x) is computed for all users of social network (x) by aggregating the reactions of users in a given domain. The “domain” reaction profile R(D, x) is similar to R(u, x) described above except that it does not involve the audience of user and their reactions, but the reactions in context of the domain (e.g., reactions to content within domain, or reactions by people interested in domain). However, the similar calculation above for R(u, x) described above applies here.


Execution proceeds to step 608 wherein the domain post reaction Q(D, x) is calculated based on R(D, x) and PTR(D, x). The calculation performed is similar to Q(u,x) the above. In brief, a delayed reaction profile Rd(D, x) is calculated as Rd(D, x)=R(D, x)*PTR(D, x) where * is the discrete convolution operator as described above. The relationship and calculation of Q(D, x) as a function of Rd(D, x) is described above so it will not be done here.


Now, execution proceeds to step 610 wherein a schedule for posting on the social network (x) is generated base on the domain post reaction profile Q(D, x) as described above. Hence, a user posting schedule is created for a domain. Steps 600-610 are continuously repeating as a batch during the operation of the platform 200.


Now, the flow steps in FIG. 6B are performed concurrently with the flow steps in FIG. 6A. Execution begins with step 612 wherein a content data item and other metadata are retrieved. A content data item may be an article, message or any other data item known to those skilled in the art.


Execution proceeds to step 614 wherein each and every domain are detected. A domain for example may be <sports>, <nightlife> etc. The domain may be auto-detected using a natural language processing (NLP) algorithm known to those skilled in the art. Alternatively, a domain may be selected by the posting user. For such detection, each data content item is analyzed for its metadata as described above (e.g., by subject matter) and a particular domain or more are detected. There may be one domain, e.g., a topic or several domains, e.g., cities.


Execution proceeds to step 616 wherein the schedules generated per domain in step 612 are fetched. The domain schedules are then combined at step 618. If there are schedules for more than one domain, the combination can be a simple schedule addition followed by normalization as known to those skilled in the art. For example, there may be a schedule for politics, sports and art, each having a particular waveform representing a posting schedule. These waveforms are added and then normalized. Then, execution proceeds to step 620 wherein a domain schedule is derived for the item. That is, a posting schedule for the particular item is generated.


(3) Optimizing for Multiple Posts.


If a user wishes to post several content items (e.g., messages), the user must be aware that posting multiple items could have a diminishing return on the posts, i.e., reduction in the number of reactions due to audience fatigue, if not timely (spaced) posted. For example, if Nike desired to post five messages within a day part, individual messages that appear in close proximity in time could lead to a reduction in reactions. Alternatively, the number of message may not be capable of posting within the day part if spaced too far apart. Accordingly, platform 200 will find an optimized time to post multiple content items (e.g., message or articles etc.).



FIG. 7 depicts a flow diagram illustrating example method steps for optimizing the scheduling of posting content items (that is implementing the scheduling module 208 of platform 200). Specifically, execution begins at step 700 wherein a schedule S for posting a content item and post to reaction time profiles PTR(t) are computed based on redefined buckets. In this instance, the buckets are redefined with greater granularity than before busing interpolation techniques on a bucket time graph as known to those skilled in the art. Initially, the buckets may be fifteen minute buckets. However, the redefined buckets may now be one minute buckets.


Execution proceeds to step 702 wherein an initial first schedule is selected. Step 702 may actually be incorporated into step 700 if desired. Simultaneously with respect to step 700, execution also proceeds to step 704 where a decay function is modeled. The decay function which represents function of fatigue of a content item with an audience member. Decay function could be derived in various ways or manually set to fit product needs, or user's expectation. In one implementation, decay values are calculated with the following decay function Fγ:







F





γ

=

{





t

0

,

γ
·

PTR


(
t
)










t
<
0

,

γ
·

PTR


(

-
t

)













where (t=time) the post to reaction time PTR(t) is depicted in FIG. 8. FIG. 8 depicts a graph of decay function expressed via post to reaction time function over time for used for optimizing the scheduling the posting of multiple content items. PTR is depicted as at different times after and before (negative values). The negative values of t can translation to posting in the past relative to time as known to those skilled in the art.


γ is shown in FIG. 8 at the apex PTR(t). They is essentially used as a weighting function to establish weighted post to reaction values. Execution proceeds to step 706 wherein the optimal times to post data content items are determined. Initially, the time to post for schedule S0 is t1 as shown in FIG. 9A. (FIGS. 9A-9F depict several graphs illustrating a series of revised schedules as a function of the previous postings.) The schedules are a prediction of reactions to posts.) From this, execution proceeds to step 708 wherein the schedule S1 is recomputed as a function of the decay function and prior schedule S0. This is represented as follows:








S
j



(
t
)


=




S

j
-
1




(
t
)


-



F
γ



(

t
-

t
j


)







where





j


=

index





of





number





of





previous





posts









F





γ

=

{





t

0

,




γ
·

PTR


(
t
)









t
<
0

,




γ
·

PTR


(

-
t

)












as described above (in one implementation). Execution then returns to step 706 wherein an optimal time to post the next content item is determined. So, with the new schedule S1 the time to post is selected at the highest point t2 in the graph in FIG. 9B. This calculation loop continues and times to post are selected t3, t4, t5, t6 etc. for recomputed schedules S2, S3, S4, S5 etc. as shown in the graphs in FIGS. 9C-9F.



FIGS. 10-13 depict several screen shot representations of the platform for managing a campaign for publishing data content on social networks. In particular, FIG. 10 illustrates a part of the platform in which a user (posting user) is presented with options for content to post to the user's audience. A number of publishing campaign topics are presented as a list. A user may select one of several campaigns for posting content. In this example, “Blue Skies Initiative” is selected along with “discover” for discovering and viewing topics of content streams for example including sports and climate change that a user may select. FIG. 11 illustrates an example of screen in which the user has selected the days and day parts (time intervals) for posting content. In addition, FIG. 11 specifically illustrates a user selecting the specific social networks in which he/she wishes to post such content. In this instance, the user has selected several content items for posting midday for auto-scheduling using the platform algorithm and selected content to be posted at a specific time.



FIG. 12 is similar to FIG. 11 except that it illustrates a menu for selecting a day part for posting. FIG. 13 depicts a page of metrics subsequent to posting. The metrics produced provide information of interest to the user including number of engagements (reactions/actions) etc. to a particular posted content item.


The servers described in this disclosure as well as the clients typically includes at least one processor and system memory (e.g., volatile—RAM or nonvolatile—Flash or ROM). System memory may include computer readable media that is accessible to the processor. The memory may also include instructions for processor, an operating system and one or more application platforms such as Java and a part of software modules or one or more software applications (i.e., steps) and/or modules. The computer will include one or more communication connections such as network interfaces to enable the computer to communication with other computers over a network, storage such as a hard drives for storing data and other software described above, video cards and other conventional components known to those skilled in the art. This computer typically runs Unix or Linux or Microsoft Windows or Macintosh OSX or other as the operating system and includes the TCP/IP protocol stack (to communicate) for communication over the Internet as known to those skilled in the art. A display is optionally used. The server typically includes TCP/IP protocol stack (to communicate) for communication over the Internet as known to those skilled in the art. Program data is also stored within computer server. The content providers also include a web server along with other servers hosted by the content provider as known by those skilled in the art. The content providers also include a web server along with other servers hosted by the content provider as known by those skilled in the art.


It is to be understood that the disclosure teaches examples of the illustrative embodiments and that many variations of the invention can easily be devised by those skilled in the art after reading this disclosure and that the scope of the present invention is to be determined by the claim(s) below.

Claims
  • 1. A method comprising: receiving a request for an interval of time during which to post a content item on a social network in a plurality of social networks, the interval of time being divided into a first subset of units of time;executing instructions at the one or more servers to redefine the interval of time to include a second subset of units of time;calculating the schedule for posting a content item on the social network and the post-to-reaction filter based on the second subset of units of time;modeling a decay function as a function of the post-to-reaction filter, the decay function representative of a level of interest of an audience of the user;determining an optimal time to post the content item on the social network as a function of the decay function;recomputing the schedule as a function of the decay function and received schedule for posting the content item on the social network; andauto-scheduling the posting of the content item to automatically post the content item based on the decay function, wherein auto-scheduling includes one or more of estimating data values representing audience reaction and data values representing domain specific schedule personalization.
  • 2. The method of claim 1, wherein the units of time each is a bucket.
  • 3. The method of claim 1, wherein the executing instructions to redefine the interval of time to include the second subset of units of time comprises: redefining the interval of time with greater granularity.
  • 4. The method of claim 1, wherein modeling the decay function comprises: executing instructions to predict a weighted value of the post-to-reaction filter.
  • 5. The method of claim 1, further comprising: executing instructions to use the post-to-reaction filter to calculate a delayed reaction profile.
  • 6. The method of claim 1, further comprising: estimating a transformation function based on post-to-reaction filter data generated at the post-to-reaction filter to transform the schedule for posting the content item to the social network into another schedule for posting the content item to another social network.
  • 7. The method of claim 1, wherein receiving the request for the interval of time during which the content item is posted comprises: receiving the request to post multiple content items.
  • 8. The method of claim 1, further comprising: determining another optimal time to post a second content item on the social network as a function of the decay function; andrecomputing the schedule as a function of the decay function and received schedule for posting the second content item on the social network.
  • 9. The method of claim 8, further comprising: repeating determining yet another optimal time to post a third content item on the social network as a function of the decay function; andrecomputing the schedule as a function of the decay function and received schedule for posting the content item and the second content item on the social network.
  • 10. The method of claim 1, further comprising: providing a platform for managing a campaign for publishing multiple content items on the social network to increase reactions to published content.
  • 11. The method of claim 1, wherein identifying the post-to-reaction filter comprises: implementing the post-to-reaction filter as a function of a domain.
  • 12. The method of claim 11, further comprising: executing instructions to compute a domain reaction profile.
  • 13. The method of claim 11, wherein the domain includes one or more of a topic, a time zone, a geo-location based item, a city, a state, a country, and a language.
  • 14. The method of claim 1, further comprising: estimating the post to a reaction filter for the time interval for the social network for the user, the post to a reaction filter including data representative of a probability distribution that a reaction to a posted content is predicted to occur within the time interval.
  • 15. The method of claim 1, further comprising: analyzing data representing content associated with the social network to generate a graph;applying a machine learning model trained to determine a weight for a feature of the data representing content; andtransmitting a signal to a content items database to retrieve a file.
  • 16. An apparatus comprising: a processor; anda memory that includes instructions which, when executed by the processor, cause the processor to: receive a request for an interval of time during which to post a content item on a social network in a plurality of social networks, the interval of time being divided into a first subset of units of time;identify a schedule for posting a content item and a post-to-reaction filter for the interval of time;execute instructions to redefine the interval of time to include a second subset of units of time;calculate the schedule for posting a content item on the social network and the post-to-reaction filter based on the second subset of units of time;model a decay function as a function of the post-to-reaction filter, the decay function representative of a level of interest of an audience of the user;determine an optimal time to post the content item on the social network as a function of the decay function;recompute the schedule as a function of the decay function and received schedule for posting the content item on the social network; andauto-schedule the posting of the content item to automatically post the content item based on the decay function, wherein the processor configured to auto-schedule is further configured to perform one or more of estimating data values representing audience reaction and data values representing domain specific schedule personalization.
  • 17. The apparatus of claim 16, wherein the units of time each is a bucket.
  • 18. The apparatus of claim 16, wherein the processor is further configured to: redefine the interval of time with greater granularity.
  • 19. The apparatus of claim 16, wherein the processor is further configured to: predict a weighted value of the post-to-reaction filter.
  • 20. The apparatus of claim 16, wherein the processor is further configured to: use the post-to-reaction filter to calculate a delayed reaction profile.
CROSS-REFERENCE TO RELATED APPLICATIONS

This nonprovisional application is a continuation application of co-pending U.S. patent application Ser. No. 15/581,795, filed Apr. 28, 2017, and entitled “SYSTEM AND METHOD OF PROVIDING A PLATFORM FOR MANAGING DATA CONTENT CAMPAIGN ON SOCIAL NETWORKS,” which is herein incorporated by reference for all purposes.

US Referenced Citations (426)
Number Name Date Kind
6041311 Chislenko et al. Mar 2000 A
6146026 Ushiku Nov 2000 A
6385611 Cardona May 2002 B1
6684239 Flepp et al. Jan 2004 B1
6742032 Castellani et al. May 2004 B1
6871232 Curie et al. Mar 2005 B2
7031952 Heumann et al. Apr 2006 B1
7032030 Codignotto Apr 2006 B1
7222156 Gupta et al. May 2007 B2
7409710 Uchil et al. Aug 2008 B1
7590636 Heumann et al. Sep 2009 B1
7606865 Kumar et al. Oct 2009 B2
7644057 Nelken et al. Jan 2010 B2
7702541 Black et al. Apr 2010 B2
7725492 Sittig et al. May 2010 B2
7751620 Cosoi Jul 2010 B1
7756926 Tseng et al. Jul 2010 B2
7792948 Zhao et al. Sep 2010 B2
7818758 Bonet et al. Oct 2010 B2
7831912 King et al. Nov 2010 B2
7853565 Liskov Dec 2010 B1
7979369 Grenier et al. Jul 2011 B2
8006187 Bailey et al. Aug 2011 B1
8027931 Kalaboukis Sep 2011 B2
8082308 Filev Dec 2011 B1
8131745 Hoffman et al. Mar 2012 B1
8171128 Zuckerberg et al. May 2012 B2
8200527 Thompson et al. Jun 2012 B1
8225376 Zuckerberg et al. Jul 2012 B2
8286154 Kaakani et al. Oct 2012 B2
8321300 Bockius et al. Nov 2012 B1
8386509 Scofield Feb 2013 B1
8412657 Grenier et al. Apr 2013 B2
8437369 Shaikli May 2013 B2
8505069 Solodovnikov et al. Aug 2013 B1
8606792 Jackson et al. Dec 2013 B1
8615442 Kapur et al. Dec 2013 B1
8744937 Seubert et al. Jun 2014 B2
8752041 Akiyoshi et al. Jun 2014 B2
8769417 Robinson et al. Jul 2014 B1
8813125 Reisman Aug 2014 B2
8825515 Hanson Sep 2014 B1
8886580 Grenier et al. Nov 2014 B2
8892524 Lee et al. Nov 2014 B1
8943069 Heumann et al. Jan 2015 B2
8972428 Dicker et al. Mar 2015 B2
9021361 Pettinati et al. Apr 2015 B1
9105044 Wu Aug 2015 B2
9131382 Johns Sep 2015 B1
9141997 Gaedcke et al. Sep 2015 B2
9143478 Ramaswamy Sep 2015 B2
9229702 Kapulkin et al. Jan 2016 B1
9251360 Meyer et al. Feb 2016 B2
9256826 Srinivasan Feb 2016 B2
9282098 Hitchcock et al. Mar 2016 B1
9286102 Harel et al. Mar 2016 B1
9311683 Saylor et al. Apr 2016 B1
9325696 Balfanz et al. Apr 2016 B1
9338186 Wollenstein et al. May 2016 B2
9369454 Porzio et al. Jun 2016 B2
9378295 Marra et al. Jun 2016 B1
9483802 Gaedcke et al. Nov 2016 B2
9501746 Prakash Nov 2016 B2
9509742 Gordon Nov 2016 B2
9514459 Doshi et al. Dec 2016 B1
9519723 Lorenz et al. Dec 2016 B2
9596206 Bueno et al. Mar 2017 B2
9619531 Wu Apr 2017 B2
9654450 Ford et al. May 2017 B2
9710567 Lobdell Jul 2017 B1
9756098 Kazerani et al. Sep 2017 B2
9787664 Subbiah et al. Oct 2017 B1
9800639 Gordon Oct 2017 B2
9953063 Spasojevic et al. Apr 2018 B2
10084838 Gordon et al. Sep 2018 B2
10142386 Gordon Nov 2018 B2
10178173 Kadowaki et al. Jan 2019 B2
10180971 Bhave et al. Jan 2019 B2
10188905 Dohlen Jan 2019 B2
10204344 Gaedcke et al. Feb 2019 B2
10204383 Gaedcke et al. Feb 2019 B2
10264042 Gordon Apr 2019 B2
10264073 Kadowaki et al. Apr 2019 B2
10284723 Neuer, III et al. May 2019 B1
10346449 Senftleber et al. Jul 2019 B2
10417180 Patwardhan Sep 2019 B1
10430894 Wu Oct 2019 B2
10489866 Gaedcke et al. Nov 2019 B2
10491490 Sridhar et al. Nov 2019 B2
10497069 Gaedcke et al. Dec 2019 B2
10594773 Falcao et al. Mar 2020 B2
10601937 Holzband et al. Mar 2020 B2
10785222 Senftleber et al. Sep 2020 B2
10855657 Senftleber et al. Dec 2020 B2
10867131 Scott et al. Dec 2020 B2
10902462 Savage et al. Jan 2021 B2
10931540 Davis et al. Feb 2021 B2
10956459 Senftleber et al. Mar 2021 B2
10999278 Senftleber et al. May 2021 B2
11050704 Senftleber et al. Jun 2021 B2
11061900 Falcao et al. Jul 2021 B2
20010025253 Heintz et al. Sep 2001 A1
20010037469 Gupta et al. Nov 2001 A1
20010042087 Kephart et al. Nov 2001 A1
20010047290 Petras et al. Nov 2001 A1
20020010746 Jilk et al. Jan 2002 A1
20020049793 Okumura et al. Apr 2002 A1
20020070953 Barg et al. Jun 2002 A1
20020105545 Carter et al. Aug 2002 A1
20020144156 Copeland Oct 2002 A1
20030005103 Narad et al. Jan 2003 A1
20030028525 Santos et al. Feb 2003 A1
20030078959 Yeung et al. Apr 2003 A1
20030128203 Marshall et al. Jul 2003 A1
20030135565 Estrada Jul 2003 A1
20030187871 Amano et al. Oct 2003 A1
20030225850 Teague Dec 2003 A1
20040049673 Song et al. Mar 2004 A1
20040073666 Foster et al. Apr 2004 A1
20040133697 Mamaghani et al. Jul 2004 A1
20040174397 Cereghini et al. Sep 2004 A1
20050060643 Glass et al. Mar 2005 A1
20050074126 Stanko Apr 2005 A1
20050132348 Meulemans et al. Jun 2005 A1
20050206644 Kincaid Sep 2005 A1
20050283614 Hardt Dec 2005 A1
20060010215 Clegg et al. Jan 2006 A1
20060036685 Canning et al. Feb 2006 A1
20060129602 Witriol et al. Jun 2006 A1
20060143307 Codignotto Jun 2006 A1
20060155581 Eisenberger et al. Jul 2006 A1
20060185021 Dujari et al. Aug 2006 A1
20060206578 Heidloff et al. Sep 2006 A1
20060294196 Feirouz et al. Dec 2006 A1
20070083536 Darnell et al. Apr 2007 A1
20070118889 Fredell May 2007 A1
20070136354 Chen Jun 2007 A1
20070171716 Wright et al. Jul 2007 A1
20070226177 Barsness et al. Sep 2007 A1
20070240119 Ducheneaut et al. Oct 2007 A1
20070282800 England et al. Dec 2007 A1
20070286528 Podilchuk Dec 2007 A1
20070289006 Ramachandran et al. Dec 2007 A1
20080005284 Ungar et al. Jan 2008 A1
20080033776 Marchese Feb 2008 A1
20080034058 Korman et al. Feb 2008 A1
20080040673 Zuckerberg et al. Feb 2008 A1
20080103906 Singh May 2008 A1
20080109245 Gupta May 2008 A1
20080109491 Gupta May 2008 A1
20080120379 Malik May 2008 A1
20080126476 Nicholas et al. May 2008 A1
20080133488 Bandaru et al. Jun 2008 A1
20080178125 Elsbree et al. Jul 2008 A1
20080189406 Shen Aug 2008 A1
20080201344 Levergood et al. Aug 2008 A1
20080215591 Howard et al. Sep 2008 A1
20080221870 Attardi et al. Sep 2008 A1
20080225848 Pilon et al. Sep 2008 A1
20080263603 Murray et al. Oct 2008 A1
20080294680 Powell et al. Nov 2008 A1
20080306830 Lasa et al. Dec 2008 A1
20090013043 Tan Jan 2009 A1
20090024554 Murdock Jan 2009 A1
20090043852 Weir et al. Feb 2009 A1
20090089657 Davis Apr 2009 A1
20090106080 Carrier et al. Apr 2009 A1
20090132311 Klinger et al. May 2009 A1
20090138472 MacLean May 2009 A1
20090144723 Hartin et al. Jun 2009 A1
20090157667 Brougher et al. Jun 2009 A1
20090157708 Bandini et al. Jun 2009 A1
20090157899 Gagliardi et al. Jun 2009 A1
20090158265 Davis et al. Jun 2009 A1
20090177670 Grenier et al. Jul 2009 A1
20090181649 Bull et al. Jul 2009 A1
20090210282 Elenbaas et al. Aug 2009 A1
20090249451 Su et al. Oct 2009 A1
20090292608 Polachek Nov 2009 A1
20090292722 Oo Nov 2009 A1
20090300036 Nagasaki Dec 2009 A1
20100071052 Mao et al. Mar 2010 A1
20100082503 Kantak et al. Apr 2010 A1
20100106730 Aminian et al. Apr 2010 A1
20100119053 Goeldi May 2010 A1
20100121707 Goeldi May 2010 A1
20100121843 Goeldi May 2010 A1
20100153516 Weinberg et al. Jun 2010 A1
20100169148 Oberhofer et al. Jul 2010 A1
20100174813 Hildreth et al. Jul 2010 A1
20100205663 Ward et al. Aug 2010 A1
20100223341 Manolescu et al. Sep 2010 A1
20100246797 Chavez et al. Sep 2010 A1
20100250683 Hoyne et al. Sep 2010 A1
20100274732 Grinchenko et al. Oct 2010 A1
20100281258 Andress et al. Nov 2010 A1
20100287512 Gan et al. Nov 2010 A1
20100293560 Bland et al. Nov 2010 A1
20100306122 Shaffer Dec 2010 A1
20100306528 Andress et al. Dec 2010 A1
20100312769 Bailey et al. Dec 2010 A1
20110004922 Bono et al. Jan 2011 A1
20110055217 Kamel et al. Mar 2011 A1
20110055264 Sundelin et al. Mar 2011 A1
20110077988 Cates et al. Mar 2011 A1
20110113041 Hawthorne et al. May 2011 A1
20110119593 Jacobson et al. May 2011 A1
20110125826 Erhart et al. May 2011 A1
20110144801 Selker et al. Jun 2011 A1
20110153603 Adiba et al. Jun 2011 A1
20110197146 Goto et al. Aug 2011 A1
20110212430 Smithmier et al. Sep 2011 A1
20110219087 Jorasch et al. Sep 2011 A1
20110246513 Covannon et al. Oct 2011 A1
20110283366 Kwon et al. Nov 2011 A1
20110289574 Hull et al. Nov 2011 A1
20110302653 Frantz et al. Dec 2011 A1
20120036080 Singer et al. Feb 2012 A1
20120054135 Salaka et al. Mar 2012 A1
20120076367 Tseng Mar 2012 A1
20120077158 Jastrzembski et al. Mar 2012 A1
20120089706 Collins et al. Apr 2012 A1
20120095861 Feng et al. Apr 2012 A1
20120102021 Hill et al. Apr 2012 A1
20120117059 Bailey et al. May 2012 A1
20120131653 Pasquero et al. May 2012 A1
20120150759 Tarjan Jun 2012 A1
20120158632 Grenier et al. Jun 2012 A1
20120195422 Famous Aug 2012 A1
20120198197 Gladwin et al. Aug 2012 A1
20120208568 Cooley Aug 2012 A1
20120210119 Baxter et al. Aug 2012 A1
20120232953 Custer Sep 2012 A1
20120254321 Lindsay et al. Oct 2012 A1
20120265806 Blanchflower et al. Oct 2012 A1
20120271729 Vincelette et al. Oct 2012 A1
20120284155 Holten et al. Nov 2012 A1
20120290605 Ickman et al. Nov 2012 A1
20120303659 Erhart et al. Nov 2012 A1
20120317198 Patton et al. Dec 2012 A1
20130006403 Moore et al. Jan 2013 A1
20130007121 Fontenot et al. Jan 2013 A1
20130018957 Parnaby et al. Jan 2013 A1
20130024522 Pierre et al. Jan 2013 A1
20130050747 Cok et al. Feb 2013 A1
20130066876 Raskino et al. Mar 2013 A1
20130110946 Bradshaw May 2013 A1
20130116044 Schwartz May 2013 A1
20130126042 Dewald et al. May 2013 A1
20130138428 Chandramouli et al. May 2013 A1
20130138742 Dziubinski May 2013 A1
20130159472 Newton et al. Jun 2013 A1
20130198260 Dow et al. Aug 2013 A1
20130212349 Maruyama Aug 2013 A1
20130218801 Rago Aug 2013 A1
20130218865 Angulo et al. Aug 2013 A1
20130235069 Ubillos et al. Sep 2013 A1
20130282417 Gaedcke et al. Oct 2013 A1
20130282594 Gaedcke et al. Oct 2013 A1
20130282603 Gaedcke et al. Oct 2013 A1
20130282722 Grenier et al. Oct 2013 A1
20130291058 Wollenstein et al. Oct 2013 A1
20130298038 Spivack et al. Nov 2013 A1
20130304726 Sandulescu et al. Nov 2013 A1
20130304758 Gruber et al. Nov 2013 A1
20130318156 Friedman et al. Nov 2013 A1
20130332262 Hunt et al. Dec 2013 A1
20130332263 Vora et al. Dec 2013 A1
20130346575 Frenkel Dec 2013 A1
20130346872 Scott et al. Dec 2013 A1
20140006524 Singh et al. Jan 2014 A1
20140032306 Sukornyk et al. Jan 2014 A1
20140040275 Dang et al. Feb 2014 A1
20140040377 Friedman et al. Feb 2014 A1
20140040993 Lorenzo et al. Feb 2014 A1
20140047429 Gaither et al. Feb 2014 A1
20140067520 Campanile Mar 2014 A1
20140074844 Subramanian et al. Mar 2014 A1
20140075004 Dusen et al. Mar 2014 A1
20140082072 Kass et al. Mar 2014 A1
20140108675 Wu Apr 2014 A1
20140164352 Denninghoff Jun 2014 A1
20140173444 Wu Jun 2014 A1
20140173501 Wu Jun 2014 A1
20140173509 Wu Jun 2014 A1
20140181087 Wu Jun 2014 A1
20140181194 Sullivan Jun 2014 A1
20140181728 Wu Jun 2014 A1
20140184841 Woo et al. Jul 2014 A1
20140189808 Mahaffey et al. Jul 2014 A1
20140200989 Kassko et al. Jul 2014 A1
20140222834 Parikh et al. Aug 2014 A1
20140223527 Bortz et al. Aug 2014 A1
20140244621 Lindsay Aug 2014 A1
20140278785 Gaedcke et al. Sep 2014 A1
20140280113 Hohwald Sep 2014 A1
20140280398 Smith et al. Sep 2014 A1
20140289034 Wu Sep 2014 A1
20140298199 Johnson, Jr. et al. Oct 2014 A1
20140304249 Ayzenshtat et al. Oct 2014 A1
20140324902 Morris et al. Oct 2014 A1
20140337953 Banatwala et al. Nov 2014 A1
20140358911 McCarthy et al. Dec 2014 A1
20150006708 Banke et al. Jan 2015 A1
20150032492 Ting et al. Jan 2015 A1
20150032751 Ting et al. Jan 2015 A1
20150039705 Kursun Feb 2015 A1
20150067160 Sridhar et al. Mar 2015 A1
20150100537 Grieves et al. Apr 2015 A1
20150112918 Zheng et al. Apr 2015 A1
20150120713 Kim et al. Apr 2015 A1
20150127453 Tew et al. May 2015 A1
20150134457 Cheung et al. May 2015 A1
20150134579 Zaman et al. May 2015 A1
20150142748 Gottemukkula et al. May 2015 A1
20150161211 Patel et al. Jun 2015 A1
20150163189 Proctor Jun 2015 A1
20150169703 Chang Jun 2015 A1
20150170294 Goyal et al. Jun 2015 A1
20150188907 Khalid et al. Jul 2015 A1
20150193504 Naidu et al. Jul 2015 A1
20150244706 Grajek et al. Aug 2015 A1
20150281227 Ivey et al. Oct 2015 A1
20150286643 Kumar et al. Oct 2015 A1
20150288522 McCoy et al. Oct 2015 A1
20150295869 Li et al. Oct 2015 A1
20150310018 Fan et al. Oct 2015 A1
20150310020 Brav et al. Oct 2015 A1
20150310571 Brav et al. Oct 2015 A1
20150312200 Brav et al. Oct 2015 A1
20150334102 Haugsnes Nov 2015 A1
20150347616 Levi et al. Dec 2015 A1
20150381552 Vijay et al. Dec 2015 A1
20160019628 Udumudi et al. Jan 2016 A1
20160021097 Shrotri Jan 2016 A1
20160034551 Huang et al. Feb 2016 A1
20160042053 Webber Feb 2016 A1
20160055250 Rush Feb 2016 A1
20160055541 Calistri-Yeh Feb 2016 A1
20160057576 Kessler et al. Feb 2016 A1
20160073166 Hu et al. Mar 2016 A1
20160080445 Kazerani et al. Mar 2016 A1
20160110688 Knox et al. Apr 2016 A1
20160125157 Wu May 2016 A1
20160132904 Mondal et al. May 2016 A1
20160132973 Wu May 2016 A1
20160134580 Castera et al. May 2016 A1
20160147760 Anandhavelu et al. May 2016 A1
20160151704 Wu Jun 2016 A1
20160164863 Hitchcock et al. Jun 2016 A1
20160203221 Rao et al. Jul 2016 A1
20160203523 Spasojevic et al. Jul 2016 A1
20160210555 Murphy et al. Jul 2016 A1
20160212100 Banerjee Jul 2016 A1
20160255034 Yuan Sep 2016 A1
20160269344 Anders et al. Sep 2016 A1
20160320926 Ganin et al. Nov 2016 A1
20160321261 Spasojevic et al. Nov 2016 A1
20160321562 Zeng Nov 2016 A1
20160321694 Vorozhtsov Nov 2016 A1
20160335572 Bennett et al. Nov 2016 A1
20160352667 Pickett et al. Dec 2016 A1
20170046112 Keller et al. Feb 2017 A1
20170048237 Pfitzmann et al. Feb 2017 A1
20170061248 Ryan, Jr. et al. Mar 2017 A1
20170132276 Saurabh et al. May 2017 A1
20170154356 Trevisiol et al. Jun 2017 A1
20170154366 Turgeman Jun 2017 A1
20170177562 Scott et al. Jun 2017 A1
20170180294 Milligan et al. Jun 2017 A1
20170193546 Bennett et al. Jul 2017 A1
20170255536 Weissinger et al. Sep 2017 A1
20170264619 Narayanaswamy et al. Sep 2017 A1
20170300490 Kachemir et al. Oct 2017 A1
20170344748 Ghani et al. Nov 2017 A1
20170366636 Wang et al. Dec 2017 A1
20180027075 Schoeffler et al. Jan 2018 A1
20180041336 Keshava et al. Feb 2018 A1
20180053114 Adjaoute Feb 2018 A1
20180081983 Carru et al. Mar 2018 A1
20180091468 Yong et al. Mar 2018 A1
20180097802 Lander et al. Apr 2018 A1
20180115473 Sridhar et al. Apr 2018 A1
20180144389 Fredrich et al. May 2018 A1
20180152471 Jakobsson May 2018 A1
20180211285 Todasco et al. Jul 2018 A1
20180219830 O'Brien et al. Aug 2018 A1
20180278503 Carey et al. Sep 2018 A1
20180293607 Huddleston et al. Oct 2018 A1
20180295137 Zager et al. Oct 2018 A1
20180329565 Yeung et al. Nov 2018 A1
20180332079 Ashley et al. Nov 2018 A1
20180337907 Bhansali et al. Nov 2018 A1
20180337910 Gustavson et al. Nov 2018 A1
20180367484 Rodriguez et al. Dec 2018 A1
20190057204 Marcovecchio et al. Feb 2019 A1
20190114356 Senftleber et al. Apr 2019 A1
20190116137 Senftleber et al. Apr 2019 A1
20190116148 Senftleber et al. Apr 2019 A1
20190158610 Holzband et al. May 2019 A1
20190159166 Aggarwal et al. May 2019 A1
20190228093 Falcao et al. Jul 2019 A1
20190230151 Falcao et al. Jul 2019 A1
20190245751 Wong Aug 2019 A1
20190306248 Swarangi et al. Oct 2019 A1
20190347984 Hintermeister Nov 2019 A1
20190354709 Brinskelle Nov 2019 A1
20200007530 Abdul et al. Jan 2020 A1
20200051120 Senftleber et al. Feb 2020 A1
20200053094 Kaube et al. Feb 2020 A1
20200099676 Desarda et al. Mar 2020 A1
20200104478 Chauhan Apr 2020 A1
20200120068 Senftleber et al. Apr 2020 A1
20200120095 Senftleber et al. Apr 2020 A1
20200120096 Senftleber et al. Apr 2020 A1
20200120167 Senftleber et al. Apr 2020 A1
20200151829 Wu May 2020 A1
20200184575 Gaedcke et al. Jun 2020 A1
20200258091 Gaedcke et al. Aug 2020 A1
20200287957 Falcao et al. Sep 2020 A1
20200329110 Holzband et al. Oct 2020 A1
20200358755 Abdul et al. Nov 2020 A1
20200366564 Davis et al. Nov 2020 A1
20210119967 Senftleber et al. Apr 2021 A1
20210176136 Davis et al. Jun 2021 A1
20210226952 Senftleber et al. Jul 2021 A1
Foreign Referenced Citations (10)
Number Date Country
102054033 May 2011 CN
103177095 Dec 2015 CN
2009047674 Apr 2009 WO
2013158839 Oct 2013 WO
2014089460 Jun 2014 WO
2014153463 Jan 2015 WO
2015013436 Jan 2015 WO
2019075284 Apr 2019 WO
2019144159 Jul 2019 WO
2020232311 Nov 2020 WO
Non-Patent Literature Citations (139)
Entry
Antoniades et al., “we.b: The web of short URLs,” Apr. 2011, Proceedings of the 20th International Conference on World Wide Web, Mar. 28, 2011-Apr. 1, 2011, Hyderabad, India, pp. 715-724 (Year: 2011).
Dinh, Khanh Q., Non-Final Office Action dated Mar. 17, 2021 for U.S. Appl. No. 16/820,697.
Dinh, Khanh Q., Notice of Allowance and Fee(s) Due dated Apr. 16, 2021 for U.S. Appl. No. 16/820,697.
Fiorillo, James N., Non-Final Office Action dated Jun. 7, 2021 for U.S. Appl. No. 16/827,625.
Frunzi, Victoria E., Final Office Action dated May 17, 2021 for U.S. Appl. No. 16/590,218.
Frunzi, Victoria E., Non-Final Office Action dated Dec. 21, 2020 for U.S. Appl. No. 16/590,218.
Goldberg, Ivan R., Final Office Action dated Jun. 29, 2021 for U.S. Appl. No. 16/695,098.
Goldberg, Ivan R., Final Office Action dated Jun. 29, 2021 for U.S. Appl. No. 16/701,143.
Goldberg, Ivan R., Non-Final Office Action dated Mar. 10, 2021 for U.S. Appl. No. 16/695,098.
Goldberg, Ivan R., Non-Final Office Action dated Mar. 3, 2021 for U.S. Appl. No. 16/701,143.
M. Rowe and H. Alani, “What Makes Communities Tick? Community Health Analysis Using Role Compositions,” 2012 International Conference on Privacy, Security, Risk and Trust and 2012 International Conference on Social Computing, Amsterdam, Netherlands, 2012, pp. 267-276, doing:10.1109/SocialCom-PASSAT2012.18.
Mesa, Joel, Notice of Allowance and Fee(s) Due dated Feb. 24, 2021 for U.S. Appl. No. 15/782,635.
Nano, Sargon N., Notice of Allowance and Fee(s) Due dated May 19, 2021 for U.S. Appl. No. 17/026,152.
Neuman, Clifford B., Proxy-Based Authorization and Accounting for Distributed Systems, IEEE 1993 (Year: 1993).
Rashid, Ishrat, Final Office Action dated Jun. 15, 2021 for U.S. Appl. No. 15/782,653.
Rashid, Ishrat, Non-Final Office Action dated Apr. 2, 2021 for U.S. Appl. No. 15/782,653.
Shaw, Robert A., Final Office Action dated Mar. 16, 2021 for U.S. Appl. No. 16/158,169.
U.S. Appl. No. 11/333,826, filed Jan. 17, 2006 and entitled, “Knowledge Filter”.
U.S. Appl. No. 11/692,169, filed Mar. 27, 2007 and entitled, “Knowledge Filter”.
U.S. Appl. No. 60/158,496, filed Oct. 8, 1999 and entitled, “Knowledge Filter”.
U.S. Appl. No. 60/816,100, filed Jun. 22, 2006 and entitled, “Knowledge Filter”.
U.S. Appl. No. 60/816,900, filed Jun. 26, 2006 and entitled, “Knowledge Filter”.
“Craigslist Online Community.” Craigslist.org. Jul. 6, 2010.
Ahmed, Saba, Final Office Action dated Jun. 29, 2016 for U.S. Appl. No. 14/098,492.
Ahmed, Saba, Non-Final Office Action dated Nov. 19, 2015 for U.S. Appl. No. 14/098,492.
Anicas, Mitchell; An Introduction to OAuth 2, DigitalOcean, Published Jul. 21, 2014, Retrieved Jan. 29, 2021; <>.
Arentz et al., Classifying offensive sites based on image content [online], Computer Vision and Image Understanding 94, 295-310, 2004, Retrieved from the Internet: .
Bista, Sanat Kumar et al., “Using Gamification in an Online Community,” CSIRO ITC Centre, Conference Paper, 2012.
Blaufeld, Justin R., Final Office Action dated Mar. 24, 2016 for U.S. Appl. No. 14/098,501.
Blaufeld, Justin R., Non-Final Office Action dated Sep. 24, 2015 for U.S. Appl. No. 14/098,501.
Bostock, Mike, Sankey Diagram, available at http://bost.ocks.org/mike/sankey, published May 21, 2012, 1 pg.
Brown Jr., Nathan H., Final Office Action dated Mar. 29, 2011 for U.S. Appl. No. 11/971,856.
Brown Jr., Nathan H., Non-Final Office Action dated Jun. 6, 2012 for U.S. Appl. No. 13/167,482.
Brown Jr., Nathan H., Non-Final Office Action dated Mar. 24, 2014 for U.S. Appl. No. 13/780,487.
Brown Jr., Nathan H., Non-Final Office Action dated Nov. 26, 2010 for U.S. Appl. No. 11/971,856.
Bui, Hanh Thi Minh, Non-Final Office Action dated Mar. 13, 2015 for U.S. Appl. No. 14/012,978.
Cannell, Larry, “Windows 7 Federated Search and SharePoint 2010” online article dated Jun. 2010 <http://blogs.gartner.com/larry-cannell/2010/09/09/windows-7-federated-search-and-sharepoint-2010/[May 13, 2016 12:36:15 PM].
Chung, Mong-Shune, Non-Final Office Action dated Jan. 29, 2016 for U.S. Appl. No. 14/098,505.
Constine, Josh, “Facebook tests notification unsubscribe button for feed posts,” Aug. 9, 2010. http://www.adweek.com/socialtime/unsubscribe-button-posts/244868.
Dagnew, Saba, Final Office Action dated Feb. 12, 2020 for U.S. Appl. No. 15/581,795.
Dagnew, Saba, Non-Final Office Action for U.S. Appl. No. 15/581,795 dated Sep. 16, 2019.
Dinh, Khanh Q., Notice of Allowance and Fee(s) Due dated Oct. 29, 2019 for U.S. Appl. No. 15/877,379.
Dwyer, Cameron, “Five out-of-the-box ways to get Email into SharePoint” Jan. 2012, <https://camerondwyer.wordpress.com/2012/09/04/five-out-of-the-box-ways-to-get-email-into-sharepoint/[May 13, 2016 10:48:43 AM].
Emojipedia, (https://web.archive.org/web/20150915110235/https://emojipedia.org/fisted-hand-sign/), Date: Sep. 15, 2015 (https://web.archive.org/web/20150823012626/https://emojipedia.org/clapping-hands-sign/), Date: Aug. 23, 2015; (https://web.archive.org/web/20150829090848/https://emojipedia.org/smiling-face-with-sunglasses/), Date: Aug. 29, 2015.
Falcao et al., U.S. Appl. No. 15/877,379, filed Jan. 22, 2018 and entitled, “Temporal Optimization of Data Operations Using Distributed Search and Server Management.”
Falcao et al., U.S. Appl. No. 15/877,381, filed Jan. 22, 2018 and entitled, “Temporal Optimization of Data Operations Using Distributed Search and Server Management.”
Fett et al., The Web SSO Standard OpenID Connect: In-Depth Formal Security Analysis and Security Guidelines, 2017 IEEE 30th Computer Security Foundations Symposium (Year: 2017).
Filipczyk, Marcin R., Final Office Action dated Oct. 5, 2015 for U.S. Appl. No. 13/950,268.
Filipczyk, Marcin R., Non-Final Office Action dated Mar. 10, 2016 for U.S. Appl. No. 13/950,268.
Filipczyk, Marcin R., Non-Final Office action dated May 22, 2015 for U.S. Appl. No. 13/950,268.
Fiorillo, James N., Non-Final Office Action for U.S. Appl. No. 15/821,543 dated Aug. 16, 2019.
Fiorillo, James N., Notice of Allowance and Fee(s) Due dated Nov. 14, 2019 for U.S. Appl. No. 15/821,543.
Friedman et al., U.S. Appl. No. 61/650,849, filed May 23, 2012 and entitled, “Dynamic Information Streams in a Social Network Platform.”
Frunzi, Victoria E., Non-Final Office Action dated Oct. 16, 2018 for U.S. Appl. No. 15/018,787.
Gaedckle et al., U.S. Appl. No. 61/636,132, filed Apr. 20, 2012 and entitled, “System and Method for Providing a Social Customer Care System.”
Georgandellis, Andrew C., Final Office Action dated Mar. 30, 2016 for U.S. Appl. No. 13/900,878.
Georgandellis, Andrew C., Final Office Action dated Oct. 26, 2017 for U.S. Appl. No. 13/900,878.
Georgandellis, Andrew C., Final Office Action dated Sep. 21, 2016 for U.S. Appl. No. 14/035,166.
Georgandellis, Andrew C., Non-Final Office Action dated Jan. 26, 2017 for U.S. Appl. No. 13/900,878.
Georgandellis, Andrew C., Non-Final Office Action dated Jul. 11, 2016 for U.S. Appl. No. 14/035,166.
Georgandellis, Andrew C., Non-Final Office Action dated May 23, 2017 for U.S. Appl. No. 14/035,166.
Georgandellis, Andrew C., Non-Final Office Action dated Nov. 3, 2015 for U.S. Appl. No. 13/900,878.
Giphy, (https://web.archive.org/web/20140813065113/http://giphy.com/search/happy), Date: Aug. 13, 2014; https://web.archive.org/web20141231135329/https://giphy.com/upload, Date: Dec. 31, 2014; https://web.archive.org/web/20150919214012/http://giphy.com/create/upload, Date: Sep. 19 2015.
Goldberg, Ivan R., Final Office Action dated Jan. 12, 2015 for U.S. Appl. No. 13/835,502.
Goldberg, Ivan R., Final Office Action dated Jan. 13, 2015 for U.S. Appl. No. 13/835,250.
Hashemi, Mazdak, “The Infrastructure Behind Twitter: Scale”, Jan. 19, 2017, Twitter, Inc. Blog Post, https://blog.twitter.com/engineering/en_us/topics/infrastructure/2017/the-infrastructure-behind-twitter-scale.html.
Hatcher, Deirdre D., Non-Final Office Action dated Jan. 14, 2016 for U.S. Appl. No. 13/950,258.
Holzband et al., U.S. Appl. No. 15/821,543, filed Nov. 22, 2017 and entitled, “Responsive Action Prediction Based On Electronic Messages Among a System of Networked Computing Devices.”
Jang, Gijeong, Written Opinion of the International Searching Authority and International Search Report dated Jul. 28, 2015 for International Patent Application No. PCT/US2014/047866.
Jou et al., “Predicting Viewer Perceived Emotions in Animated GIFs”, Nov. 3-7, 2014 (4 pages).
Kim, Harry C., Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration dated Sep. 16, 2020 for International Patent Application No. PCT/US2020/032999.
Kolosowski-Gager, Katherine, Final Office Action dated Feb. 11, 2019 for U.S. Appl. No. 14/627,151.
Kolosowski-Gager, Katherine, Non-Final Office Action dated Jun. 29, 2018 for U.S. Appl. No. 14/627,151.
Lithium Technologies. “Community Health Index for Online Communities.” 2009, https://www.lithium.com/pdfs/whitepapers/Lithium-Community-Health-Index_v1AY2ULb.pdf. Retrieved from the Internet Wayback Machine, dated Feb. 19, 2011.
Lithium Website, http://www.lithium.com, Dec. 11, 2010, retrieved from Internet Archive, pp. 1-9.
Liu et al., OAuth Based Authentication and Authorization in Open Telco API; International Conference on Computer Science and Electronics Engineering, 2012 (Year: 2012).
M2 PressWire, “Alterian: Social media monitoring and analytics comes of age with Alterian's acquisition of market leader Techrigy,” Jul. 15, 2009, Anonymous, Norman Media Ltd, London.
Matthews, Tara, et al. “Community Insights: Helping Community Leaders Enhance the Value of Enterprise Online Communities.” Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Apr. 27-May 2, 2013, Paris, France. ACM (2013). pp. 513-522.
Meng, Jau Shya, Non-Final Office Action dated Jan. 3, 2020 for U.S. Appl. No. 15/877,381.
Meng, Jau Shya, Non-Final Office Action dated Jun. 16, 2020 for U.S. Appl. No. 15/877,381.
Mesa, Joel, Final Office Action dated Mar. 30, 2020 for U.S. Appl. No. 15/782,635.
Mesa, Joel, Non-Final Office Action for U.S. Appl. No. 15/782,635 dated Oct. 4, 2019.
Mesa, Joel, Non-Final Office Action dated Oct. 6, 2020 for U.S. Appl. No. 15/782,635.
Mosley, Kyle T., Non-Final Office Action dated Dec. 28, 2017 for U.S. Appl. No. 14/852,965.
Mosley, Kyle T., Non-Final Office Action dated Oct. 4, 2017 for U.S. Appl. No. 14/627,151.
Netzloff, Eric R., Non-Final Office Action dated Nov. 25, 2014 for U.S. Appl. No. 13/848,706.
Netzloff, Eric R., Non-Final Office Action dated Nov. 6, 2018 for U.S. Appl. No. 14/824,021.
Niruntasukrat et al., Authorization Mechanism for MQTT-based Internet of Things, IEEE ICC 2016 Workshops W07-Workshop on Convergent Internet of Things (Year: 2016).
Ofori-Awuah, Maame, Final Office Action dated Oct. 2, 2020 for U.S. Appl. No. 14/929,209.
Ofori-Awuah, Maame, Final Office Action dated Sep. 6, 2019 for U.S. Appl. No. 14/929,209.
Ofori-Awuah, Maame, Non-Final Office Action dated Apr. 5, 2019 for U.S. Appl. No. 14/929,209.
Oh, Eung Gie, Written Opinion of the International Searching Authority and International Search Report dated Nov. 18, 2014 for International Patent Application No. PCT/US2014/031345.
Olshannikov, Alex, Final Office Action dated Apr. 15, 2016 for U.S. Appl. No. 14/098,480.
Olshannikov, Alex, Final Office Action dated Feb. 17, 2016 for U.S. Appl. No. 14/098,509.
Olshannikov, Alex, Non-Final Office Action dated Nov. 5, 2015 for U.S. Appl. No. 14/098,480.
Olshannikov, Alex, Non-Final Office Action dated Oct. 22, 2015 for U.S. Appl. No. 14/098,509.
Perungavoor, Venkatanaray, Notice of Allowance and Fee(s) Due for U.S. Appl. No. 16/158,167, dated May 15, 2020.
Raju, “5 Ways to Tweet More Than 140 Characters,” Dec. 28, 2008, Technically Personal, http://www.techpp.com/2008/12/28/5-ways-to-tweet-more-than-140-characters/, retrieved from Internet Archive version from Mar. 3, 2011.
Rao et al., U.S. Appl. No. 62/049,642, filed Sep. 12, 2014 and entitled, “System and Apparatus for an Application Agnostic User Search Engine.”
Rashid, Ishrat, Final Office Action for U.S. Appl. No. 15/782,653 dated Sep. 19, 2019.
Rashid, Ishrat, Non-Final Office Action dated Jun. 11, 2019 for U.S. Appl. No. 15/782,653.
Rashid, Ishrat, Non-Final Office Action dated Jun. 12, 2020 for U.S. Appl. No. 15/782,653.
Senftleber et al., International (PCT) Patent Application No. PCT/US2018/055545, filed Oct. 12, 2018 and entitled, “Predicting Performance of Content and Electronic Messages Among a System of Networked Computing Devices.”
Senftleber et al., U.S. Appl. No. 15/782,635, filed Oct. 12, 2017 and entitled, “Computerized Tools To Enhance Speed and Propagation of Content in Electronic Messages Among a System of Networked Computing Devices.”
Senftleber et al., U.S. Appl. No. 15/782,642, filed Oct. 12, 2017 and entitled, “Predicting Performance of Content and Electronic Messages Among a System of Networked Computing Devices.”
Senftleber et al., U.S. Appl. No. 15/782,653, filed Oct. 12, 2017 and entitled, “Optimizing Effectiveness of Content in Electronic Messages Among a System of Networked Computing Device.”
Senftleber et al., U.S. Appl. No. 16/158,167, filed Oct. 11, 2018 and entitled, “Credential and Authentication Management in Scalable Data Networks.”
Senftleber et al., U.S. Appl. No. 16/158,169, filed Oct. 11, 2018 and entitled, “Native Activity Tracking Using Credential and Authentication Management in Scalable Data Networks.”
Senftleber et al., U.S. Appl. No. 16/158,172, filed Oct. 11, 2018 and entitled, “Proxied Multi-Factor Authentication Using Credential and Authentication Management in Scalable Data Networks.”
Suh, Andrew, Non-Final Office Action dated Jul. 8, 2020 for U.S. Appl. No. 16/158,172.
Tabor, Amare F., Final Office Action dated Apr. 8, 2015 for U.S. Appl. No. 13/871,076.
Tabor, Amare F., Non-Final Office Action dated Aug. 15, 2014 for U.S. Appl. No. 13/871,076.
Takesue, Masaru, An HTTP Extension for Secure Transfer of Confidential Data, 2009 IEEE International Conference on Networking, Architecture, and Storage, Hunan, 2009, pp. 101-108, doi: 10.1109/NAS.2009.21.
Takesue, Masaru, An HTTP Extension for Secure Transfer of Confidential Data. IEEE, 2009 (Year: 2009).
Thomas, Shane, Written Opinion of the International Searching Authority and International Search Report dated Aug. 16, 2013 for International Patent Application No. PCT/US2013/037107.
Trapanese, William C., Non-Final Office Action dated May 27, 2020 for U.S. Appl. No. 16/413,577.
Vo, Huyen X., Non-Final Office Action dated Mar. 15, 2019 for U.S. Appl. No. 15/782,642.
Vo, Huyen X., Non-Final Office Action dated Oct. 15, 2020 for U.S. Appl. No. 16/458,183.
Walsh, John B., Non-Final Office Action dated Mar. 24, 2017 for U.S. Appl. No. 14/702,696.
Wang, Xiaoqing, and Shannon Lantzy. “A Systematic Examination of Member Turnover and Online Community Health.” Thirty Second International Conference on Information Systems, Shanghai (2011), pp. 1-11.
Wollenstein et al., U.S. Appl. No. 61/639,509, filed Apr. 27, 2012 and entitled, “Systems and Methods for Implementing Custom Privacy Settings.”
Wu, Michael, U.S. Appl. No. 61/734,927, filed Dec. 7, 2012 and entitled, “Systems and Methods for Presenting Analytic Data.”
Wu, Michael, U.S. Appl. No. 62/072,929, filed Oct. 30, 2014 and entitled, “Systems and Methods To Monitor Health of Online Social Communities.”
Young, Lee W., Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, dated Apr. 1, 2019 for International Application No. PCT/US2018/05545.
Young, Lee W., Written Opinion of the International Searching Authority and International Search Report dated May 28, 2014 for International Patent Application No. PCT/US2013/073625.
Young, Lee W.; Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration dated Jun. 24, 2019 for International Application No. PCT/US2019/014637.
Goldberg, Ivan R., Final Office Action dated Jan. 15, 2015 for U.S. Appl. No. 13/865,429.
Goldberg, Ivan R., Non-Final Office Action dated Apr. 13, 2016 for U.S. Appl. No. 13/865,429.
Goldberg, Ivan R., Non-Final Office Action dated Jun. 18, 2014 for U.S. Appl. No. 13/835,250.
Goldberg, Ivan R., Non-Final Office Action dated Jun. 18, 2014 for U.S. Appl. No. 13/835,502.
Goldberg, Ivan R., Non-Final Office Action dated Jun. 20, 2014 for U.S. Appl. No. 13/865,411.
Goldberg, Ivan R., Non-Final Office Action dated Jun. 23, 2014 for U.S. Appl. No. 13/865,429.
Hardt, Dick, The OAuth 2.0 Authorization Framework draft-ieft-oauth-v2-31; Internet Engineering Task Force (IEFT) (Year: 2012).
Senftleber et al., U.S. Appl. No. 16/194,126, filed Nov. 16, 2018 and entitled, “Multiplexed Data Exchange Portal Interface in Scalable Data Networks.”
Shaw, Robert A., Non-Final Office Action dated Jan. 22, 2021 for U.S. Appl. No. 16/158,169.
Singh, Amardeep, IP Australia, Examination Report No. 1 for Australia Patent Application No. 2019209542 dated Dec. 17, 2020.
Spasojevic et al., U.S. Appl. No. 61/943,047, filed Feb. 21, 2014 and entitled, “Domain Generic Large Scale Topic Expertise & Interest Mining Across Multiple Online Social Networks.”
Spasojevic, Nemanja et al., “When-To-Post on Social Networks”, International Conference on Knowledge Discovery and Data Mining (KDD), Aug. 10-13, 2015, pp. 2127-2136, Retrieved Online: http://dl.acm.org/citation.cfm?d=2788584.
Suh, Andrew, Final Office Action dated Dec. 3, 2020 for U.S. Appl. No. 16/158,172.
Related Publications (1)
Number Date Country
20210174391 A1 Jun 2021 US
Continuations (1)
Number Date Country
Parent 15581795 Apr 2017 US
Child 16952038 US