System and method of providing segment routing as a service

Information

  • Patent Grant
  • 11283712
  • Patent Number
    11,283,712
  • Date Filed
    Monday, June 29, 2020
    4 years ago
  • Date Issued
    Tuesday, March 22, 2022
    2 years ago
Abstract
Disclosed is a system and method of providing a segment routing as a service application. The method includes receiving a configuration of an internet protocol environment. The configuration can be a layer 3 configuration of a single cloud environment or even across multiple cloud environments. The configuration defines routing, forwarding, and paths in the environment between different entities such as virtual machines. The method includes receiving a parameter associated with a workload of a tenant. The parameter can be a service level agreement (i.e., a best bandwidth available), a pathway requirement, a parameter associated with specific workload, and so forth. Based on the configuration and the parameter, the method includes generating tenant-defined layer 3 overlay segment routing rules that define how the workload of the tenant will route data in the internet protocol environment using segment routing.
Description
CROSS-REFERENCE TO RELATED APPLICATION

This application is a Continuation of, and claims priority to, U.S. Pat. No. 10,708,183, filed Jul. 21, 2016, the content of which is incorporated herein by reference in its entirety.


TECHNICAL FIELD

The present disclosure relates to segment routing and more specifically to a tenant-defined layer 3 segment routing overlay that defines routing paths for a workload of the tenant.


BACKGROUND

Typically, traffic routing in a cloud environment is defined by the cloud provider. The workload submitted to the cloud environment by tenants has to adhere to the underlying IP connectivity. However, with dynamic workloads in tenant environments, often the prescribed traffic routing for any particular workload may not be optimal. The traffic routing rules in place, for example, may not match very well the needs of the workload. The mismatch between routing rules defined by the service or cloud provider and the functionality of the actual workload reduces the efficiency of the cloud environment and can increase frustration on the part of the tenant and their cloud provider as well.





BRIEF DESCRIPTION OF THE DRAWINGS

The disclosure will be readily understood by the following detailed description in conjunction with the accompanying drawings in which:



FIG. 1 illustrates the basic computing components of a computing device according to an aspect of this disclosure.



FIG. 2 illustrates the general context in which the present disclosure applies.



FIG. 3 illustrates an example method.





DESCRIPTION OF EXAMPLE EMBODIMENTS
Overview

It is a widely recognized (and often frustrating) fact that there is a lack of tenant-specific routing capabilities in cloud environments. As noted above, when the cloud environment management system imposes routing and pathway requirements on tenants and their workload, inefficiencies can result. There is an ever-increasing need to address these issues and to be able to define routing on a per-tenant or a per-workload basis. Each tenant needs to be able to define their routing environment based on application requirements. The concepts disclosed herein address the issues in the art and solve these problems in a simple, but novel, manner. In addition, tenant applications should be able to modify routing in real time, on-demand, dynamically and in an automated fashion.


Disclosed is a system and method of providing a segment routing as a service application. Segment routing is used to abstract the routing from the IP addresses and use the concepts of segments to do route forwarding. The concepts disclosed herein involve using segments as the basis for making decisions about how to reach a destination in a network pathway. The segment routing as a service (SRaaS) disclosed herein is an application running on a cloud device that provides application programming interfaces (APIs) achieve a more flexible and beneficial approach to managing routing using segments. By using SRaaS, the system can modify the segment routing environment depending on what the tenant needs for a particular workload.


The method includes receiving a configuration of an internet protocol environment. The configuration can be a layer 3 (i.e., network layer of OSI model) configuration of a single cloud environment or the configuration can cover multiple cloud environments. The configuration defines routing, forwarding, and paths in the environment between different entities such as virtual machines. The method includes receiving a parameter associated with a workload of a tenant. The parameter can be a service level agreement (i.e., a best bandwidth available), a pathway requirement, a parameter associated with specific workload, and so forth. Based on the configuration and the parameter, the method includes generating tenant-defined layer 3 overlay segment routing rules that define how the workload of the tenant will route data in the internet protocol environment using segment routing. The generation of the tenant-defined layer 3 overlay segment routing rules can include modifying a current set of rules, which can be implemented by the cloud environment or be a previous set of tenant-based rules.


Feedback can also be provided in real time back to the service provider such that real-time, dynamic modifications and changes can be implemented in the routing rules. For example, a new workload can be introduced into a cloud environment by a tenant. The workload may have parameters that cause data from a database to be routed to a virtual machine for processing according to a first path and based on the tenant-defined layer 3 overlay segment routing rules. However, after the workload starts processing, the pathway may not provide as much bandwidth as is required by a service level agreement or perhaps a node has gone down along that path in the cloud environment. Feedback can be received which causes a modification of the tenant-defined layer 3 overlay segment routing rules which will cause the data for the workload to take a different path and thus fulfill SLA or other requirements. The solution herein enables a segment routing as a service application to perform not only such defined routing on a per-tenant basis, but also further enable real-time dynamic modifications to the defined routing according to feedback.


DESCRIPTION

The present disclosure addresses the issues in the art and provides a solution using segment routing. Segment routing is defined in many different IETF drafts/RFCs (see an overview here: http://www.segment-routing.net/home/ietf). The present disclosure focuses on the implementation of segment routing in a new way “as a Service” (aaS) within a cloud environment such that it allows on-demand and per-tenant routing definitions and modifications.


Implementing segment routing as a service (SRaaS) enables an on-demand, dynamic and automated configuration of underlying segment routing environments by tenants, their applications and the service provider. The south-bound APIs provided by SRaaS allows RESTful API calls to the segment routing enabled infrastructure or alternatively a segment routing controller.


The disclosure first turns to FIG. 1 which discloses some basic hardware components that can apply to system examples of the present disclosure. Following the discussion of the basic example hardware components, the disclosure will turn to the segment routing as a service concept.


With reference to FIG. 1, an exemplary system and/or computing device 100 includes a processing unit (CPU or processor) 110 and a system bus 105 that couples various system components including the system memory 115 such as read only memory (ROM) 120 and random access memory (RAM) 125 to the processor 110. The system 100 can include a cache 112 of high-speed memory connected directly with, in close proximity to, or integrated as part of the processor 110. The system 100 copies data from the memory 115, 120, and/or 125 and/or the storage device 130 to the cache 112 for quick access by the processor 110. In this way, the cache provides a performance boost that avoids processor 110 delays while waiting for data. These and other modules can control or be configured to control the processor 110 to perform various operations or actions. Other system memory 115 may be available for use as well. The memory 115 can include multiple different types of memory with different performance characteristics. It can be appreciated that the disclosure may operate on a computing device 100 with more than one processor 110 or on a group or cluster of computing devices networked together to provide greater processing capability. The processor 110 can include any general purpose processor and a hardware module or software module, such as module 1 132, module 2 134, and module 3 136 stored in storage device 130, configured to control the processor 110 as well as a special-purpose processor where software instructions are incorporated into the processor. The processor 110 may be a self-contained computing system, containing multiple cores or processors, a bus, memory controller, cache, etc. A multi-core processor may be symmetric or asymmetric. The processor 110 can include multiple processors, such as a system having multiple, physically separate processors in different sockets, or a system having multiple processor cores on a single physical chip. Similarly, the processor 110 can include multiple distributed processors located in multiple separate computing devices, but working together such as via a communications network. Multiple processors or processor cores can share resources such as memory 115 or the cache 112, or can operate using independent resources. The processor 110 can include one or more of a state machine, an application specific integrated circuit (ASIC), or a programmable gate array (PGA) including a field PGA.


The system bus 105 may be any of several types of bus structures including a memory bus or memory controller, a peripheral bus, and a local bus using any of a variety of bus architectures. A basic input/output system (BIOS) stored in ROM 120 or the like, may provide the basic routine that helps to transfer information between elements within the computing device 100, such as during start-up. The computing device 100 further includes storage devices 130 or computer-readable storage media such as a hard disk drive, a magnetic disk drive, an optical disk drive, tape drive, solid-state drive, RAM drive, removable storage devices, a redundant array of inexpensive disks (RAID), hybrid storage device, or the like. The storage device 130 is connected to the system bus 105 by a drive interface. The drives and the associated computer-readable storage devices provide nonvolatile storage of computer-readable instructions, data structures, program modules and other data for the computing device 100. In one aspect, a hardware module that performs a particular function includes the software component stored in a tangible computer-readable storage device in connection with the necessary hardware components, such as the processor 110, bus 105, an output device such as a display 135, and so forth, to carry out a particular function. In another aspect, the system can use a processor and computer-readable storage device to store instructions which, when executed by the processor, cause the processor to perform operations, a method or other specific actions. The basic components and appropriate variations can be modified depending on the type of device, such as whether the computing device 100 is a small, handheld computing device, a desktop computer, or a computer server. When the processor 110 executes instructions to perform “operations”, the processor 110 can perform the operations directly and/or facilitate, direct, or cooperate with another device or component to perform the operations.


Although the exemplary embodiment(s) described herein employs a storage device such as a hard disk 130, other types of computer-readable storage devices which can store data that are accessible by a computer, such as magnetic cassettes, flash memory cards, digital versatile disks (DVDs), cartridges, random access memories (RAMs) 125, read only memory (ROM) 120, a cable containing a bit stream and the like, may also be used in the exemplary operating environment. According to this disclosure, tangible computer-readable storage media, computer-readable storage devices, computer-readable storage media, and computer-readable memory devices, expressly exclude media such as transitory waves, energy, carrier signals, electromagnetic waves, and signals per se.


To enable user interaction with the computing device 100, an input device 145 represents any number of input mechanisms, such as a microphone for speech, a touch-sensitive screen for gesture or graphical input, keyboard, mouse, motion input, speech and so forth. An output device 135 can also be one or more of a number of output mechanisms known to those of skill in the art. In some instances, multimodal systems enable a user to provide multiple types of input to communicate with the computing device 100. The communications interface 140 generally governs and manages the user input and system output. There is no restriction on operating on any particular hardware arrangement and therefore the basic hardware depicted may easily be substituted for improved hardware or firmware arrangements as they are developed.


For clarity of explanation, the illustrative system embodiment is presented as including individual functional blocks including functional blocks labeled as a “processor” or processor 110. The functions these blocks represent may be provided through the use of either shared or dedicated hardware, including, but not limited to, hardware capable of executing software and hardware, such as a processor 110, that is purpose-built to operate as an equivalent to software executing on a general purpose processor. For example the functions of one or more processors presented in FIG. 1 can be provided by a single shared processor or multiple processors. (Use of the term “processor” should not be construed to refer exclusively to hardware capable of executing software.) Illustrative embodiments may include microprocessor and/or digital signal processor (DSP) hardware, read-only memory (ROM) 120 for storing software performing the operations described below, and random access memory (RAM) 125 for storing results. Very large scale integration (VLSI) hardware embodiments, as well as custom VLSI circuitry in combination with a general purpose DSP circuit, may also be provided.


The logical operations of the various embodiments are implemented as: (1) a sequence of computer implemented steps, operations, or procedures running on a programmable circuit within a general use computer, (2) a sequence of computer implemented steps, operations, or procedures running on a specific-use programmable circuit; and/or (3) interconnected machine modules or program engines within the programmable circuits. The system 100 shown in FIG. 1 can practice all or part of the recited methods, can be a part of the recited systems, and/or can operate according to instructions in the recited tangible computer-readable storage devices. Such logical operations can be implemented as modules configured to control the processor 110 to perform particular functions according to the programming of the module. For example, FIG. 1 illustrates three modules Mod1 132, Mod2 134 and Mod3 136 which are modules configured to control the processor 110. These modules may be stored on the storage device 130 and loaded into RAM 125 or memory 115 at runtime or may be stored in other computer-readable memory locations.


One or more parts of the example computing device 100, up to and including the entire computing device 100, can be virtualized. For example, a virtual processor can be a software object that executes according to a particular instruction set, even when a physical processor of the same type as the virtual processor is unavailable. A virtualization layer or a virtual “host” can enable virtualized components of one or more different computing devices or device types by translating virtualized operations to actual operations. Ultimately however, virtualized hardware of every type is implemented or executed by some underlying physical hardware. Thus, a virtualization compute layer can operate on top of a physical compute layer. The virtualization compute layer can include one or more of a virtual machine, an overlay network, a hypervisor, virtual switching, and any other virtualization application.


The processor 110 can include all types of processors disclosed herein, including a virtual processor. However, when referring to a virtual processor, the processor 110 includes the software components associated with executing the virtual processor in a virtualization layer and underlying hardware necessary to execute the virtualization layer. The system 100 can include a physical or virtual processor 110 that receive instructions stored in a computer-readable storage device, which cause the processor 110 to perform certain operations. When referring to a virtual processor 110, the system also includes the underlying physical hardware executing the virtual processor 110.


The disclosure now turns to FIGS. 2 and 3 which illustrate segment routing as a service. FIG. 2 discloses an internet protocol environment 200, a “segment routing as a service” (SRaaS) provider 214 and a representation 202 of the tenant-defined layer 3 overlay representing the internet protocol environment 200. The tenant-defined layer 3 overlay segment routing rules can be associated with a layer 3 overlay defining a second configuration 202 of the internet protocol environment 200 between the first virtual machine and the second virtual machine, or between any two nodes. The two nodes can be of different types (processor, storage, database, memory, etc.) and one can be in a cloud environment and the other may be in a separate environment.


The internet protocol environment can include various elements 206, 208, 210 which can be such entities as switches, nodes, services, and so forth, that connect a first node such as a first virtual machine 204 with a second node such as a second virtual machine 212. The internet protocol environment 200 communicates data (such as layer 3 environment data) to the SRaaS component 214. Segment routing provides the means (using the source routing paradigms) to steer traffic through a list of segments. A segment can be defined as any type of instruction including topological and/or service functions (SF). The use of the segment allows the enforcement of routes through any topological path within a network deployment. The concepts disclosed herein leverage the capabilities of segment routing and extend segment routing (both systems and method) such that cloud tenants are able to specify the topological paths dynamically and on-demand.


Normally, segment routing may be simply implemented in a compute environment by a service provider and tenants would have to have their workload managed according to the segment routing rules defined for them. However, FIG. 2 shows segment routing as a service concepts which provide the additional feature of the tenant being able to specify layer 3 connectivity for a workload. The layer 3 connectivity can include the connectivity between different workloads based on application needs. The connectivity can also be between a processing node and a storage node, or between any two disparate types of nodes or services. The segment routing as a service component 214 will receive both the data from the environment 200 and the tenant-defined data and process both sets of data to output a tenant-defined layer 3 overlay 202 for the environment 200. The overlay 202 shown by way of example in FIG. 2 illustrates the first virtual machine 216 communicating with the second virtual machine 226 with various nodes 218, 220, 222, 224 there between.


As noted above, the first virtual machine 216 and the second virtual machine 226 can also represent any to different types of nodes or entities within the environment. For example, the second virtual machine 226 may represent a database that provides data to be communicated to the first virtual machine 216 for processing or carrying out the workload running on the first virtual machine 216. The overlay environment can also provide feedback to the segment routing as a service component 214 to enable dynamic, real time modifications to routing pathway rules. Receiving feedback associated with an application of the tenant-defined layer 3 overlay segment routing rules can result in the generation of an updated version of the tenant-defined layer 3 overlay segment routing rules. The feedback can include data on bandwidth and/or throughput, jitter, latency, QoS, performance, resource consumption, uptime or responsiveness, errors, cost, packet loss, packet duplication, availability, SLA related metrics, connectivity, error rate, response time, pricing requirements, changes or rates of change on one or more of these factors within the environment and/or specifically related to the workload, etc.


In one example, assume that an application running on a virtual machine 216 needs a large amount of data from a database. In this case, a larger amount of bandwidth is needed to transport from a hardware storage endpoint. Assume in this example, that node 226 is a storage device holding a large amount of data. The database 216 could also be separate from the cloud and be part of an enterprise environment. A company might want to store its proprietary data but utilize the cloud environment for computing power. The tenant in this case may want to ensure through the data it provides to the SRaaS 214 that the routing between its database 226 and the application running in the cloud 216 is defined in a certain way. This information can be part of what is specified by the tenant to the SRaaS 214.


There are multiple aspects of the SRaaS that are contemplated, as well as various elements and benefits of the disclosure. First, SRaaS can be a way to overlay segment routing functionality 202 over any IP infrastructure 200. The concepts enable dynamic and real-time modification of the forwarding path based on application needs. custom character The concepts disclosed herein can also maintain segment routing path definitions on a per-virtual environment basis virtual DC—i.e., an OpenStack project).


Implementing SRaaS 214 allows tenants to define forward paths per service or application, while being able to modify these based on application needs and real time telemetry information. Tenants can leverage the APIs defined further below as a way to modify the segment routing overlay incorporating characteristics such as bandwidth, jitter, latency, pricing requirements, and/or any other metrics or factors as previously noted. These characteristics can be defined by tenant applications in advance or in real time during run-time. In other words, the feedback that is represented in FIG. 2 can include real-time or near real-time information about bandwidth usage, jitter characteristics, changes in latency, pricing requirements (now the workload is operating during a peak usage time period and the price has gone up), error rate, packet loss, cost, connectivity, response time, performance, resource utilization, packet duplication, and so forth. In addition to tenants modifying the segment routing forwarding, applications can automatically adjust the forwarding based on dynamic and on-demand requirements (telemetry based information such as utilization of network links, application peak times, etc.). The data provided through feedback can also include rates of change, such as how much bandwidth is being restricted per minute or per every five minutes, which can enable the SRaaS 214 to select a time in which to dynamically modify the overlay and adjust the segment routing of the environment 202.


An underlying IP environment 200 can be pre-configured using some Interior Gateway Protocol (IGP) protocol, such as OSPF, RIP, IS-IS, IGRP, etc. For example, Open Shortest Path First (OSPF) can be used, which is a routing protocol for Internet Protocol (IP) networks. It uses a link state routing algorithm and falls into the group of interior routing protocols, operating within a single autonomous system (AS). Segment routing 214 is then used as an overlay through the SRaaS application to define a “virtual routing topology” 202 on top of the underlying IP infrastructure 200. Note that the SRaaS application can be a module within a Software-Defined Network (SDN) environment (i.e., OpenDaylight controller, VTS, etc.).


L3 infrastructure information can be fed into the SRaaS application 214 for defining the abstracted overlay segment routing logic. Here, the L3 infrastructure information is predominantly based on the IGP details (Routing Information Base (RIB) details, link costs, other IGP metrics (depending on underlying IGP), router capabilities, shortest path to other points in infrastructure (such as network functions, i.e. firewalls), etc.) defined in the infrastructure. SRaaS 214 can make this information available for providers, tenants and applications to aid in defining the segment routing overlay forwarding based on policies and thresholds. For example, the rules may provide guidance to avoid link X in the infrastructure if cost is higher than Y. The details provided herein can use the capabilities offered by the underlying IGP protocol, such as the Enhanced Interior Gateway Routing Protocol (EIGRP) or OSPF, and may use additional means to gather further environmental details that can influence the segment routing overlay (such as resource utilization, link utilization, etc.). The EIGRP is an advanced distance-vector routing protocol that is used on a computer network for automating routing decisions and configuration. The inventors envision different types of API interfaces for SRaaS depending on the overall deployment method. These are defined in the following examples:


In a first example, the SRaaS 214 can be used as the centralized SDN controller for a full segment routing environment. In this case, the controller (SRaaS) 214 maintains the underlying segment routing topology and provides the necessary mechanisms to talk to the devices 216, 218, 220, 222, 224, 226 encompassed therein. In this scenario, the SRaaS application 214 has to have direct access to the devices to push out the segment routing rules based on tenant and/or provider 200 input. The direct access could be in the form of netconf, RESTful APIs or any other configuration protocol supported on the underlying infrastructure devices. The above approach defines the south-bound API interfaces for the SRaaS 214. North-bound, the service has to be able to receive commands from the tenants, any other application running within a tenant environment and the provider itself. The north-bound API is the same for both proposed deployments and is therefore outlined in a third example below.


In a second example, the inventors envision the deployment of the SRaaS 214 on top of an already existing segment routing environment. Here, the SRaaS 214 provides a layer between the tenant, provider application of a cloud provider and a segment outing controller. Southbound, the SRaaS application 214 provides RESTful APIs to talk to the segment routing controller (for example OPENDAYLIGHT or ONUS, etc.). The inventors believe this can be advantageous as segment routing deployments can be deployed independently of cloud environments and therefore might not rely on SRaaS 214 as the centralized controller but rather have an independent controller for broader purposes. As mentioned in the first example above, the north-bound APIs can be the same in both scenarios. In the third example below, north-bound API support is envisioned.


In the third example, the inventors envision the SRaaS 214 providing a north-bound API for tenants, their applications and providers to leverage the functionality of SRaaS 214. The API is rich enough to allow a tenant and its application to either manually (the tenant administrator for example) or automatically (the tenant application) to send and receive API requests from the SRaaS 214 to define the underlying segment routing environment based on their specific needs. For example, the application may need a large amount of data retrieved from a database and thus need at an initialization stage a large amount of bandwidth, after which the bandwidth requirement diminishes. Here, the API may support tenant and tenant application separation to distinguish RESTful API calls. A tenant could, for example, define boundaries in the segment routing environment such that its application can automatically define routes based on its own requirements. The application should be able to access a set of API calls allowing the definition of forwarding rules to build the segment routing based table from its origin to destination. The provider can use the north-bound APIs to administratively define environmental settings (tenant privileges, SR configuration parameters, SR link characteristics, etc.).


Based on the above examples, the SRaaS 214 can maintain a local database for the configurations done by the tenant, its application and/or the providers. This is valuable to maintain a sync-able state between the SRaaS 214 and the underlying segment routing environment in case of a failure.


In another aspect, the inventors propose the usage of pricing details within the SRaaS application 214. The pricing could be used by the provider and the tenant to base their segment routing forwarding definition on price related information. Here, a provider could, for example, define certain price details for certain links or forwarding rules. The tenant, defining the segment routing based overlay, can use the information to dynamically and on-demand modify forwarding decisions based on pricing provided. For example, if a higher bandwidth is needed for an application, the tenant can see the pricing for the increased bandwidth and in an on-demand manner, modify the forwarding decisions and pay that price for the enhanced service. This will enrich both the SRaaS application 214 itself but also provides flexibility to both the cloud provider and the tenants and allow for dynamically and very customizable adjustments to the segment routing overlay. Such decisions may also be governed by service level agreements for the tenant and service level agreements or policies governing the cloud environment.



FIG. 3 illustrates a method example. In this example, the SRaaS 214 is the entity that is performing the steps outlined in FIG. 3. However, other examples could include the IP environment 200 also performing the steps or complimentary steps. The method includes receiving a configuration of an internet protocol environment (302), such as IP environment 200. The configuration can include the layer 3 environment in a cloud provider or can include data across multiple cloud providers. The information provided can be dynamically adjusted based on current needs and available resources. The configuration defines the routing, forwarding, and/or paths used for two different nodes or entities 204, 212 to communicate. As a first entity 204 and a second entity 212 communicate, network issues such as latency, jitter, bandwidth or throughput issues, packet loss, connectivity issues, etc., can affect the quality and efficiency of the communication. The configuration can be any data that defines or characterizes the forwarding between node 204 and node 212. Based on that input to the SRaaS 214, the system defines the forwarding paths. The tenant who desires to have workload processed in the environment 200 can provide data and provide an optimal of preferred path that the application will need to send data from node 216 to node 226 (which correspond respectively to node 204 and 212).


Next, the method includes receiving a parameter associated with a workload of a tenant (304). In this example, the tenant can provide data or requirements such as its workload should have the best path to meet a certain requirement. The tenant could rely on the standard routing algorithms which can provide a potentially best route or pathway. The tenant can provide service level agreement (SLA) requirements which can automatically require a “best service” or other criteria. Thus, the tenant specifies specific parameters/SLA requirements/general requirements, etc., that the SRaaS 214 uses to define routing rules according to segment routing principles.


The method includes, based on the configuration and the parameter, generating tenant-defined layer 3 overlay segment routing rules that define how the workload of the tenant will route data in the internet protocol environment using segment routing (306). The SRaaS 214 defines what paths meet the requirement in segment routing. This approach allo for a software-defined network to manage segment routing so it can modify the forwarding of data based on various criteria. The resulting tenant-defined layer 3 overlay can choose the pathway between node 216 and node 226. The result is the ability to implement per tenant or a per application/workload routing definition. The cloud service provider can also provide the routing definition, or in the alternative, the cloud service provider and the tenant can jointly define the routing definition by each providing, for example, requirement parameters and optional parameters and the SRaaS 214 can negotiate the various requirements and output the partially provider defined and partially tenant defined layer 3 overlay 202.


In one example of the concepts disclosed herein, assume an optimal path is identified between node 216 and 226. However, the path at some point fails to provide the best throughput because peak usage of the compute environment is currently happening. The load is high, and the tenant or application should adjust the routing environment while taking into account something else or other environment characteristics. The system provides for feedback to the SRaaS 214 to enable such timing-based dynamic changes to the layer 3 overlay. In such cases, the SRaaS 214 can dynamically adjust the tenant-defined layer 3 overlay and thus change the routing rules and/or forwarding paths. In another example, there can be a degradation of the compute environment in some areas, this can also cause the system to re-route or revise the protocol and avoid the problem regions.


The present disclosure provides a novel feature of establishing and modifying, in real-time and optionally based on certain thresholds such as certain levels of utilization and using the SRaaS 214, the layer 3 overlay used for segment routing. Generating the tenant-define layer 3 overlay segment rules may replace existing segment routing rules. This approach gives tenants more control of how their workload is processed. In one aspect, this approach does not require nor care about the particular IP configuration 200, as the segment routing can control the routing requirements. Thus, if the cloud environment available to the tenant is a connected cloud A and cloud B, or some other type of environment that the system provides to the tenant, it will not matter in that the tenant can specify and communicate its requirements and thresholds to the SRaaS 214. The system may require an extra cost for the ability of the tenant to provide their parameters and access the dynamic, real-time modification feature of the SRaaS 214.


The configuration of environment 200 can be generated using an interior gateway protocol and represents a layer 3 environment. The interior gateway protocol can provide RIB details, link costs, metrics, router capability, shortest path to infrastructure points, etc. The parameter provided to SRaaS 214 by the tenant can include one or more of a tenant-defined layer 3 connectivity, a service level agreement, a specific resource capability, a per-application parameter, a timing parameter, a cost parameter, etc.


The present examples are to be considered as illustrative and not restrictive, and the examples is not to be limited to the details given herein, but may be modified within the scope of the appended claims.


Claim language reciting “at least one of” a set indicates that one member of the set or multiple members of the set satisfy the claim. For example, claim language reciting “at least one of A and B” means A, B, or A and B.

Claims
  • 1. A method comprising: receiving a configuration of an internet protocol environment;receiving a parameter associated with a workload of a tenant;generating, based on the configuration and the parameter, overlay segment routing rules that define how the workload of the tenant will route data in the internet protocol environment using segment routing; andin response to receiving feedback associated with the overlay segment routing rules, updating the overlay segment routing rules based on the feedback.
  • 2. The method of claim 1, wherein the configuration is generated using an interior gateway protocol and represents a layer 3 environment.
  • 3. The method of claim 2, wherein the interior gateway protocol includes at least one of Routing Information Base details, link costs, metrics, router capability, or shortest path to infrastructure points.
  • 4. The method of claim 1, wherein the parameter includes at least one of a tenant-defined layer 3 connectivity, a service level agreement, a specific resource capability, a per-application parameter, a timing parameter, or a cost parameter.
  • 5. The method of claim 1, wherein the configuration includes the internet protocol environment connecting a first virtual machine and a second virtual machine.
  • 6. The method of claim 5, wherein the overlay segment routing rules are associated with a layer 3 overlay defining a second configuration of the internet protocol environment between the first virtual machine and the second virtual machine.
  • 7. The method of claim 1, wherein the feedback is associated with an application of the overlay segment routing rules.
  • 8. The method of claim 7, wherein the feedback includes data on one of bandwidth, jitter, latency, or pricing requirements.
  • 9. The method of claim 1, wherein the generating of the overlay segment routing rules is performed on a per-virtual environment basis.
  • 10. The method of claim 1, wherein the generating of the overlay segment routing rules replaces existing segment routing rules.
  • 11. A system comprising: one or more processors; anda computer-readable medium, storing instructions which, when executed by the one or more processors, cause the one or more processors to: receive a configuration of an internet protocol environment;receive a parameter associated with a workload of a tenant;generate, based on the configuration and the parameter, overlay segment routing rules that define how the workload of the tenant will route data in the internet protocol environment using segment routing; andin response to receiving feedback associated with the overlay segment routing rules, update the overlay segment routing rules based on the feedback.
  • 12. The system of claim 11, wherein the configuration is generated using an interior gateway protocol and represents a layer 3 environment.
  • 13. The system of claim 11, wherein the parameter includes one or more of a tenant-defined layer 3 connectivity, a service level agreement, a specific resource capability, a per-application parameter, a timing parameter, and a cost parameter.
  • 14. The system of claim 12, wherein the interior gateway protocol includes at least one of Routing Information Base details, link costs, metrics, router capability, or shortest path to infrastructure points.
  • 15. The system of claim 11, wherein the configuration comprise the internet protocol environment connecting a first virtual machine and a second virtual machine.
  • 16. The system of claim 15, wherein the overlay segment routing rules is associated with a layer 3 overlay defining a second configuration of the internet protocol environment between the first virtual machine and the second virtual machine.
  • 17. The system of claim 11, wherein the feedback is associated with an application of the overlay segment routing rules.
  • 18. The system of claim 17, wherein the feedback includes data on one of bandwidth, jitter, latency, or pricing requirements.
  • 19. The system of claim 11, wherein the generating of the overlay segment routing rules is performed on a per-virtual environment basis.
  • 20. A non-transitory computer-readable medium storing instructions which, when executed by one or more processors, cause the one or more processors to: receive a configuration of an internet protocol environment;receive a parameter associated with a workload of a tenant;generate, based on the configuration and the parameter, overlay segment routing rules that define how the workload of the tenant will route data in the internet protocol environment using segment routing; andin response to receiving feedback associated with the overlay segment routing rules, update the overlay segment routing rules based on the feedback.
US Referenced Citations (661)
Number Name Date Kind
5086385 Launey et al. Feb 1992 A
5319754 Meinecke et al. Jun 1994 A
5400246 Wilson et al. Mar 1995 A
5436909 Dev et al. Jul 1995 A
5555416 Owens et al. Sep 1996 A
5726644 Jednacz et al. Mar 1998 A
5742829 Davis et al. Apr 1998 A
5822731 Schultz Oct 1998 A
5831848 Rielly et al. Nov 1998 A
5903545 Sabourin et al. May 1999 A
6012096 Link et al. Jan 2000 A
6141595 Gloudeman et al. Oct 2000 A
6144962 Weinberg et al. Nov 2000 A
6239699 Ronnen May 2001 B1
6247058 Miller et al. Jun 2001 B1
6249241 Jordan et al. Jun 2001 B1
6330562 Boden et al. Dec 2001 B1
6353775 Nichols Mar 2002 B1
6525658 Streetman et al. Feb 2003 B2
6546420 Lemler et al. Apr 2003 B1
6597663 Rekhter Jul 2003 B1
6611896 Mason, Jr. et al. Aug 2003 B1
6654750 Adams et al. Nov 2003 B1
6728779 Griffin et al. Apr 2004 B1
6801878 Hintz et al. Oct 2004 B1
6816461 Scrandis et al. Nov 2004 B1
6847993 Novaes et al. Jan 2005 B1
6848106 Hipp Jan 2005 B1
6925490 Novaes et al. Aug 2005 B1
6958998 Shorey Oct 2005 B2
6983323 Cantrell et al. Jan 2006 B2
6996817 Birum et al. Feb 2006 B2
6999452 Drummond-Murray et al. Feb 2006 B1
7002464 Bruemmer et al. Feb 2006 B2
7024468 Meyer et al. Apr 2006 B1
7096368 Kouznetsov et al. Aug 2006 B2
7111055 Falkner Sep 2006 B2
7120934 Ishikawa Oct 2006 B2
7133923 MeLampy et al. Nov 2006 B2
7162643 Sankaran et al. Jan 2007 B1
7181769 Keanini et al. Feb 2007 B1
7185103 Jain Feb 2007 B1
7203740 Putzolu et al. Apr 2007 B1
7302487 Ylonen et al. Nov 2007 B2
7337206 Wen et al. Feb 2008 B1
7349761 Cruse Mar 2008 B1
7353511 Ziese Apr 2008 B1
7356679 Le et al. Apr 2008 B1
7360072 Soltis et al. Apr 2008 B1
7370092 Aderton et al. May 2008 B2
7395195 Suenbuel et al. Jul 2008 B2
7444404 Wetherall et al. Oct 2008 B2
7466681 Ashwood-Smith et al. Dec 2008 B2
7467205 Dempster et al. Dec 2008 B1
7496040 Seo Feb 2009 B2
7496575 Buccella et al. Feb 2009 B2
7530105 Gilbert et al. May 2009 B2
7539770 Meier May 2009 B2
7568107 Rathi et al. Jul 2009 B1
7610330 Quinn et al. Oct 2009 B1
7633942 Bearden et al. Dec 2009 B2
7644438 Dash et al. Jan 2010 B1
7676570 Levy et al. Mar 2010 B2
7681131 Quarterman et al. Mar 2010 B1
7693947 Judge et al. Apr 2010 B2
7743242 Oberhaus et al. Jun 2010 B2
7752307 Takara Jul 2010 B2
7774498 Kraemer et al. Aug 2010 B1
7783457 Cunningham Aug 2010 B2
7787480 Mehta et al. Aug 2010 B1
7788477 Huang et al. Aug 2010 B1
7808897 Mehta et al. Oct 2010 B1
7813822 Hoffberg Oct 2010 B1
7844696 Labovitz et al. Nov 2010 B2
7844744 Abercrombie et al. Nov 2010 B2
7864707 Dimitropoulos et al. Jan 2011 B2
7873025 Patel et al. Jan 2011 B2
7873074 Boland Jan 2011 B1
7874001 Beck et al. Jan 2011 B2
7885197 Metzler Feb 2011 B2
7895649 Brook et al. Feb 2011 B1
7904420 Ianni Mar 2011 B2
7930752 Hertzog et al. Apr 2011 B2
7934248 Yehuda et al. Apr 2011 B1
7957934 Greifeneder Jun 2011 B2
7961637 McBeath Jun 2011 B2
7970946 Djabarov et al. Jun 2011 B1
7975035 Popescu et al. Jul 2011 B2
8001610 Chickering et al. Aug 2011 B1
8005935 Pradhan et al. Aug 2011 B2
8040232 Oh et al. Oct 2011 B2
8040822 Proulx et al. Oct 2011 B2
8056134 Ogilvie Nov 2011 B1
8115617 Thubert et al. Feb 2012 B2
8135657 Kapoor et al. Mar 2012 B2
8156430 Newman Apr 2012 B2
8160063 Maltz et al. Apr 2012 B2
8179809 Eppstein et al. May 2012 B1
8181248 Oh et al. May 2012 B2
8185824 Mitchell et al. May 2012 B1
8239365 Salman Aug 2012 B2
8239915 Satish et al. Aug 2012 B1
8250657 Nachenberg et al. Aug 2012 B1
8255972 Azagury et al. Aug 2012 B2
8266697 Coffman Sep 2012 B2
8272875 Jurmain Sep 2012 B1
8281397 Vaidyanathan et al. Oct 2012 B2
8291495 Burns et al. Oct 2012 B1
8296847 Mendonca et al. Oct 2012 B2
8311973 Zadeh Nov 2012 B1
8365286 Poston Jan 2013 B2
8370407 Devarajan et al. Feb 2013 B1
8381289 Pereira et al. Feb 2013 B1
8391270 Van Der Stok et al. Mar 2013 B2
8407164 Malik et al. Mar 2013 B2
8407798 Lotem et al. Mar 2013 B1
8413235 Chen et al. Apr 2013 B1
8442073 Skubacz et al. May 2013 B2
8451731 Lee et al. May 2013 B1
8462212 Kundu et al. Jun 2013 B1
8489765 Vasseur et al. Jul 2013 B2
8499348 Rubin Jul 2013 B1
8516590 Ranadive et al. Aug 2013 B1
8527977 Cheng et al. Sep 2013 B1
8549635 Muttik et al. Oct 2013 B2
8570861 Brandwine et al. Oct 2013 B1
8572600 Chung et al. Oct 2013 B2
8572734 McConnell et al. Oct 2013 B2
8572735 Ghosh et al. Oct 2013 B2
8572739 Cruz et al. Oct 2013 B1
8588081 Salam et al. Nov 2013 B2
8600726 Varshney et al. Dec 2013 B1
8613084 Dalcher Dec 2013 B2
8615803 Dacier et al. Dec 2013 B2
8630316 Haba Jan 2014 B2
8631464 Belakhdar et al. Jan 2014 B2
8640086 Bonev et al. Jan 2014 B2
8656493 Capalik Feb 2014 B2
8661544 Yen et al. Feb 2014 B2
8677487 Balupari et al. Mar 2014 B2
8683389 Bar-Yam et al. Mar 2014 B1
8706914 Duchesneau Apr 2014 B2
8713676 Pandrangi et al. Apr 2014 B2
8719452 Ding et al. May 2014 B1
8719835 Kanso et al. May 2014 B2
8750287 Bui et al. Jun 2014 B2
8752042 Ratica Jun 2014 B2
8752179 Zaitsev Jun 2014 B2
8755396 Sindhu et al. Jun 2014 B2
8762951 Kosche et al. Jun 2014 B1
8769084 Westerfeld et al. Jul 2014 B2
8775577 Alford et al. Jul 2014 B1
8776180 Kumar et al. Jul 2014 B2
8812448 Anderson et al. Aug 2014 B1
8812725 Kulkarni Aug 2014 B2
8813236 Saha et al. Aug 2014 B1
8825848 Dotan et al. Sep 2014 B1
8832013 Adams et al. Sep 2014 B1
8832461 Saroiu et al. Sep 2014 B2
8849926 Marzencki et al. Sep 2014 B2
8881258 Paul et al. Nov 2014 B2
8887238 Howard et al. Nov 2014 B2
8904520 Nachenberg et al. Dec 2014 B1
8908685 Patel et al. Dec 2014 B2
8914497 Xiao et al. Dec 2014 B1
8931043 Cooper et al. Jan 2015 B2
8954610 Berke et al. Feb 2015 B2
8955124 Kim et al. Feb 2015 B2
8966021 Allen Feb 2015 B1
8966625 Zuk et al. Feb 2015 B1
8973147 Pearcy et al. Mar 2015 B2
8984331 Quinn Mar 2015 B2
8990386 He et al. Mar 2015 B2
8996695 Anderson et al. Mar 2015 B2
8997227 Mhatre et al. Mar 2015 B1
9014047 Alcala et al. Apr 2015 B2
9015716 Fletcher et al. Apr 2015 B2
9049115 Rajendran Jun 2015 B2
9071575 Lemaster et al. Jun 2015 B2
9088598 Zhang et al. Jul 2015 B1
9110905 Polley et al. Aug 2015 B2
9117075 Yeh Aug 2015 B1
9130836 Kapadia et al. Sep 2015 B2
9152789 Natarajan et al. Oct 2015 B2
9160764 Stiansen et al. Oct 2015 B2
9170917 Kumar et al. Oct 2015 B2
9178906 Chen et al. Nov 2015 B1
9185127 Neou et al. Nov 2015 B2
9191400 Ptasinski et al. Nov 2015 B1
9191402 Yan Nov 2015 B2
9197654 Ben-Shalom et al. Nov 2015 B2
9215164 Scharf et al. Dec 2015 B2
9225793 Dutta et al. Dec 2015 B2
9237111 Banavalikar et al. Jan 2016 B2
9246702 Sharma et al. Jan 2016 B1
9246773 Degioanni Jan 2016 B2
9253042 Lumezanu et al. Feb 2016 B2
9253206 Fleischman Feb 2016 B1
9258217 Duffield et al. Feb 2016 B2
9281940 Matsuda et al. Mar 2016 B2
9286047 Avramov et al. Mar 2016 B1
9294486 Chiang et al. Mar 2016 B1
9317574 Brisebois et al. Apr 2016 B1
9319384 Yan et al. Apr 2016 B2
9369435 Short et al. Jun 2016 B2
9369479 Lin Jun 2016 B2
9378068 Anantharam et al. Jun 2016 B2
9396327 Shimomura et al. Jun 2016 B2
9405903 Xie et al. Aug 2016 B1
9417985 Baars et al. Aug 2016 B2
9418222 Rivera et al. Aug 2016 B1
9426068 Dunbar et al. Aug 2016 B2
9454324 Madhavapeddi Sep 2016 B1
9462013 Boss et al. Oct 2016 B1
9465696 McNeil et al. Oct 2016 B2
9501744 Brisebois et al. Nov 2016 B1
9531589 Clemm et al. Dec 2016 B2
9563517 Natanzon et al. Feb 2017 B1
9621413 Lee Apr 2017 B1
9634915 Bley Apr 2017 B2
9645892 Patwardhan May 2017 B1
9684453 Holt et al. Jun 2017 B2
9697033 Koponen et al. Jul 2017 B2
9733973 Prasad et al. Aug 2017 B2
9749145 Banavalikar et al. Aug 2017 B2
9800608 Korsunsky et al. Oct 2017 B2
9904584 Konig et al. Feb 2018 B2
9916538 Zadeh et al. Mar 2018 B2
9935851 Gandham et al. Apr 2018 B2
10009240 Rao et al. Jun 2018 B2
20010028646 Arts et al. Oct 2001 A1
20020053033 Cooper et al. May 2002 A1
20020097687 Meiri et al. Jul 2002 A1
20020103793 Koller et al. Aug 2002 A1
20020107857 Teraslinna Aug 2002 A1
20020141343 Bays Oct 2002 A1
20020184393 Leddy et al. Dec 2002 A1
20030023601 Fortier, Jr. et al. Jan 2003 A1
20030065986 Fraenkel et al. Apr 2003 A1
20030097439 Strayer et al. May 2003 A1
20030126242 Chang Jul 2003 A1
20030145232 Poletto et al. Jul 2003 A1
20030151513 Herrmann et al. Aug 2003 A1
20030154399 Zuk et al. Aug 2003 A1
20030177208 Harvey, IV Sep 2003 A1
20040019676 Iwatsuki et al. Jan 2004 A1
20040030776 Cantrell et al. Feb 2004 A1
20040213221 Civanlar et al. Oct 2004 A1
20040220984 Dudfield et al. Nov 2004 A1
20040243533 Dempster et al. Dec 2004 A1
20040255050 Takehiro et al. Dec 2004 A1
20040268149 Aaron Dec 2004 A1
20050028154 Smith et al. Feb 2005 A1
20050039104 Shah et al. Feb 2005 A1
20050063377 Bryant et al. Mar 2005 A1
20050083933 Fine et al. Apr 2005 A1
20050108331 Osterman May 2005 A1
20050122325 Twait Jun 2005 A1
20050138157 Jung et al. Jun 2005 A1
20050166066 Ahuja et al. Jul 2005 A1
20050177829 Vishwanath Aug 2005 A1
20050182681 Bruskotter et al. Aug 2005 A1
20050185621 Sivakumar et al. Aug 2005 A1
20050198247 Perry et al. Sep 2005 A1
20050198371 Smith et al. Sep 2005 A1
20050198629 Vishwanath Sep 2005 A1
20050207376 Ashwood-Smith et al. Sep 2005 A1
20050257244 Joly et al. Nov 2005 A1
20050289244 Sahu et al. Dec 2005 A1
20060048218 Lingafelt et al. Mar 2006 A1
20060077909 Saleh et al. Apr 2006 A1
20060080733 Khosmood et al. Apr 2006 A1
20060089985 Poletto Apr 2006 A1
20060095968 Portolani et al. May 2006 A1
20060143432 Rothman et al. Jun 2006 A1
20060156408 Himberger et al. Jul 2006 A1
20060159032 Ukrainetz et al. Jul 2006 A1
20060173912 Lindvall et al. Aug 2006 A1
20060195448 Newport Aug 2006 A1
20060272018 Fouant Nov 2006 A1
20060274659 Ouderkirk Dec 2006 A1
20060280179 Meier Dec 2006 A1
20060294219 Ogawa et al. Dec 2006 A1
20070014275 Bettink et al. Jan 2007 A1
20070025306 Cox et al. Feb 2007 A1
20070044147 Choi et al. Feb 2007 A1
20070097976 Wood et al. May 2007 A1
20070118654 Jamkhedkar et al. May 2007 A1
20070127491 Verzijp et al. Jun 2007 A1
20070162420 Ou et al. Jul 2007 A1
20070169179 Narad Jul 2007 A1
20070195729 Li et al. Aug 2007 A1
20070195794 Fujita et al. Aug 2007 A1
20070195797 Patel et al. Aug 2007 A1
20070201474 Isobe Aug 2007 A1
20070211637 Mitchell Sep 2007 A1
20070214348 Danielsen Sep 2007 A1
20070230415 Malik Oct 2007 A1
20070232265 Park et al. Oct 2007 A1
20070250930 Aziz et al. Oct 2007 A1
20070300061 Kim et al. Dec 2007 A1
20080002697 Anantharamaiah et al. Jan 2008 A1
20080022385 Crowell et al. Jan 2008 A1
20080028389 Genty et al. Jan 2008 A1
20080046708 Fitzgerald et al. Feb 2008 A1
20080049633 Edwards et al. Feb 2008 A1
20080056124 Nanda et al. Mar 2008 A1
20080082662 Danliker et al. Apr 2008 A1
20080101234 Nakil et al. May 2008 A1
20080120350 Grabowski et al. May 2008 A1
20080126534 Mueller et al. May 2008 A1
20080141246 Kuck et al. Jun 2008 A1
20080155245 Lipscombe et al. Jun 2008 A1
20080250122 Zsigmond et al. Oct 2008 A1
20080270199 Chess et al. Oct 2008 A1
20080282347 Dadhia et al. Nov 2008 A1
20080295163 Kang Nov 2008 A1
20080301765 Nicol et al. Dec 2008 A1
20090059934 Aggarwal et al. Mar 2009 A1
20090064332 Porras et al. Mar 2009 A1
20090109849 Wood et al. Apr 2009 A1
20090133126 Jang et al. May 2009 A1
20090138590 Lee et al. May 2009 A1
20090180393 Nakamura Jul 2009 A1
20090241170 Kumar et al. Sep 2009 A1
20090292795 Ford et al. Nov 2009 A1
20090296593 Prescott Dec 2009 A1
20090300180 Dehaan et al. Dec 2009 A1
20090307753 Dupont et al. Dec 2009 A1
20090313373 Hanna et al. Dec 2009 A1
20090313698 Wahl Dec 2009 A1
20090319912 Serr et al. Dec 2009 A1
20090323543 Shimakura Dec 2009 A1
20090328219 Narayanaswamy Dec 2009 A1
20100005288 Rao et al. Jan 2010 A1
20100049839 Parker et al. Feb 2010 A1
20100054241 Shah et al. Mar 2010 A1
20100077445 Schneider et al. Mar 2010 A1
20100095293 O'Neill et al. Apr 2010 A1
20100095367 Narayanaswamy Apr 2010 A1
20100095377 Krywaniuk Apr 2010 A1
20100138526 DeHaan et al. Jun 2010 A1
20100138810 Komatsu et al. Jun 2010 A1
20100148940 Gelvin et al. Jun 2010 A1
20100153316 Duffield et al. Jun 2010 A1
20100153696 Beachem et al. Jun 2010 A1
20100180016 Bugwadia et al. Jul 2010 A1
20100194741 Finocchio Aug 2010 A1
20100220584 DeHaan et al. Sep 2010 A1
20100235514 Beachem Sep 2010 A1
20100235879 Burnside et al. Sep 2010 A1
20100235915 Memon et al. Sep 2010 A1
20100287266 Asati et al. Nov 2010 A1
20100303240 Beachem Dec 2010 A1
20100306180 Johnson et al. Dec 2010 A1
20100317420 Hoffberg Dec 2010 A1
20100319060 Aiken et al. Dec 2010 A1
20110004935 Moffie et al. Jan 2011 A1
20110010585 Bugenhagen et al. Jan 2011 A1
20110022641 Werth et al. Jan 2011 A1
20110055381 Narasimhan et al. Mar 2011 A1
20110055388 Yumerefendi et al. Mar 2011 A1
20110066719 Miryanov et al. Mar 2011 A1
20110069685 Tofighbakhsh Mar 2011 A1
20110072119 Bronstein et al. Mar 2011 A1
20110083125 Komatsu et al. Apr 2011 A1
20110085556 Breslin et al. Apr 2011 A1
20110103259 Aybay et al. May 2011 A1
20110107074 Chan et al. May 2011 A1
20110107331 Evans et al. May 2011 A1
20110126136 Abella et al. May 2011 A1
20110126275 Anderson et al. May 2011 A1
20110145885 Rivers et al. Jun 2011 A1
20110153039 Gvelesiani et al. Jun 2011 A1
20110153811 Jeong et al. Jun 2011 A1
20110158088 Lofstrand et al. Jun 2011 A1
20110170860 Smith et al. Jul 2011 A1
20110173490 Narayanaswamy et al. Jul 2011 A1
20110185423 Sallam Jul 2011 A1
20110196957 Ayachitula et al. Aug 2011 A1
20110202655 Sharma et al. Aug 2011 A1
20110214174 Herzog et al. Sep 2011 A1
20110225207 Subramanian et al. Sep 2011 A1
20110228696 Agarwal et al. Sep 2011 A1
20110238793 Bedare et al. Sep 2011 A1
20110246663 Meisen et al. Oct 2011 A1
20110277034 Hanson Nov 2011 A1
20110283277 Castillo et al. Nov 2011 A1
20110302652 Westerfeld Dec 2011 A1
20110314148 Petersen et al. Dec 2011 A1
20110317982 Xu et al. Dec 2011 A1
20120005542 Petersen et al. Jan 2012 A1
20120079592 Pandrangi Mar 2012 A1
20120089664 Igelka Apr 2012 A1
20120102361 Sass et al. Apr 2012 A1
20120102543 Kohli et al. Apr 2012 A1
20120110188 Van Biljon et al. May 2012 A1
20120117226 Tanaka et al. May 2012 A1
20120117642 Lin et al. May 2012 A1
20120136996 Seo et al. May 2012 A1
20120137278 Draper et al. May 2012 A1
20120137361 Yi et al. May 2012 A1
20120140626 Anand et al. Jun 2012 A1
20120195198 Regan Aug 2012 A1
20120197856 Banka et al. Aug 2012 A1
20120198541 Reeves Aug 2012 A1
20120216271 Cooper et al. Aug 2012 A1
20120218989 Tanabe et al. Aug 2012 A1
20120219004 Balus et al. Aug 2012 A1
20120233348 Winters Sep 2012 A1
20120233473 Vasseur et al. Sep 2012 A1
20120240232 Azuma Sep 2012 A1
20120246303 Petersen et al. Sep 2012 A1
20120254109 Shukla et al. Oct 2012 A1
20120260227 Shukla et al. Oct 2012 A1
20120278021 Lin et al. Nov 2012 A1
20120281700 Koganti et al. Nov 2012 A1
20120300628 Prescott et al. Nov 2012 A1
20130003538 Greenburg et al. Jan 2013 A1
20130003733 Venkatesan et al. Jan 2013 A1
20130006935 Grisby Jan 2013 A1
20130007435 Bayani Jan 2013 A1
20130038358 Cook et al. Feb 2013 A1
20130041934 Annamalaisami et al. Feb 2013 A1
20130054682 Malik et al. Feb 2013 A1
20130085889 Fitting et al. Apr 2013 A1
20130086272 Chen et al. Apr 2013 A1
20130103827 Dunlap et al. Apr 2013 A1
20130107709 Campbell et al. May 2013 A1
20130124807 Nielsen et al. May 2013 A1
20130125107 Bandakka et al. May 2013 A1
20130145099 Liu et al. Jun 2013 A1
20130148663 Xiong Jun 2013 A1
20130159999 Chiueh et al. Jun 2013 A1
20130173784 Wang et al. Jul 2013 A1
20130174256 Powers Jul 2013 A1
20130179487 Lubetzky et al. Jul 2013 A1
20130179879 Zhang et al. Jul 2013 A1
20130198517 Mazzarella Aug 2013 A1
20130198839 Wei et al. Aug 2013 A1
20130201986 Sajassi et al. Aug 2013 A1
20130205293 Levijarvi et al. Aug 2013 A1
20130219161 Fontignie et al. Aug 2013 A1
20130219500 Lukas et al. Aug 2013 A1
20130232498 Mangtani et al. Sep 2013 A1
20130242999 Kamble et al. Sep 2013 A1
20130246925 Ahuja et al. Sep 2013 A1
20130247201 Alperovitch et al. Sep 2013 A1
20130254879 Chesla et al. Sep 2013 A1
20130268994 Cooper et al. Oct 2013 A1
20130275579 Hernandez et al. Oct 2013 A1
20130283374 Zisapel et al. Oct 2013 A1
20130290521 Labovitz Oct 2013 A1
20130297771 Osterloh et al. Nov 2013 A1
20130301472 Allan Nov 2013 A1
20130304900 Trabelsi et al. Nov 2013 A1
20130305369 Karta et al. Nov 2013 A1
20130318357 Abraham et al. Nov 2013 A1
20130326623 Kruglick Dec 2013 A1
20130333029 Chesla et al. Dec 2013 A1
20130336164 Yang et al. Dec 2013 A1
20130346736 Cook et al. Dec 2013 A1
20130347103 Veteikis et al. Dec 2013 A1
20140006610 Formby et al. Jan 2014 A1
20140006871 Lakshmanan et al. Jan 2014 A1
20140012814 Bercovici et al. Jan 2014 A1
20140019972 Yahalom et al. Jan 2014 A1
20140031005 Sumcad et al. Jan 2014 A1
20140033193 Palaniappan Jan 2014 A1
20140036688 Stassinopoulos et al. Feb 2014 A1
20140040343 Nickolov et al. Feb 2014 A1
20140047185 Peterson et al. Feb 2014 A1
20140047372 Gnezdov et al. Feb 2014 A1
20140056318 Hansson et al. Feb 2014 A1
20140059200 Nguyen et al. Feb 2014 A1
20140074946 Dirstine et al. Mar 2014 A1
20140089494 Dasari et al. Mar 2014 A1
20140092884 Murphy et al. Apr 2014 A1
20140096058 Molesky et al. Apr 2014 A1
20140105029 Jain et al. Apr 2014 A1
20140115219 Ajanovic et al. Apr 2014 A1
20140129942 Rathod May 2014 A1
20140137109 Sharma et al. May 2014 A1
20140140244 Kapadia et al. May 2014 A1
20140143825 Behrendt et al. May 2014 A1
20140149490 Luxenberg et al. May 2014 A1
20140156814 Barabash et al. Jun 2014 A1
20140156861 Cruz-Aguilar et al. Jun 2014 A1
20140164607 Bai et al. Jun 2014 A1
20140165200 Singla Jun 2014 A1
20140165207 Engel et al. Jun 2014 A1
20140173623 Chang et al. Jun 2014 A1
20140192639 Smirnov Jul 2014 A1
20140201717 Mascaro et al. Jul 2014 A1
20140215573 Cepuran Jul 2014 A1
20140215621 Xaypanya et al. Jul 2014 A1
20140224784 Kohler Aug 2014 A1
20140225603 Auguste et al. Aug 2014 A1
20140233387 Zheng et al. Aug 2014 A1
20140269777 Rothstein et al. Sep 2014 A1
20140280499 Basavaiah et al. Sep 2014 A1
20140281030 Cui et al. Sep 2014 A1
20140286354 Van De Poel et al. Sep 2014 A1
20140289854 Mahvi Sep 2014 A1
20140298461 Hohndel et al. Oct 2014 A1
20140307686 Su et al. Oct 2014 A1
20140317278 Kersch et al. Oct 2014 A1
20140317737 Shin et al. Oct 2014 A1
20140330616 Lyras Nov 2014 A1
20140331048 Casas-Sanchez et al. Nov 2014 A1
20140331276 Frascadore et al. Nov 2014 A1
20140331280 Porras et al. Nov 2014 A1
20140331304 Wong Nov 2014 A1
20140348182 Chandra et al. Nov 2014 A1
20140351203 Kunnatur et al. Nov 2014 A1
20140351415 Harrigan et al. Nov 2014 A1
20140359695 Chari et al. Dec 2014 A1
20150006689 Szilagyi et al. Jan 2015 A1
20150006714 Jain Jan 2015 A1
20150009840 Pruthi et al. Jan 2015 A1
20150026809 Altman et al. Jan 2015 A1
20150033305 Shear et al. Jan 2015 A1
20150036480 Huang et al. Feb 2015 A1
20150036533 Sodhi et al. Feb 2015 A1
20150039751 Harrigan et al. Feb 2015 A1
20150046882 Menyhart et al. Feb 2015 A1
20150052441 Degioanni Feb 2015 A1
20150058976 Carney et al. Feb 2015 A1
20150067143 Babakhan et al. Mar 2015 A1
20150067786 Fiske Mar 2015 A1
20150082151 Liang et al. Mar 2015 A1
20150082430 Sridhara et al. Mar 2015 A1
20150085665 Kompella et al. Mar 2015 A1
20150095332 Beisiegel et al. Apr 2015 A1
20150112933 Satapathy Apr 2015 A1
20150113133 Srinivas et al. Apr 2015 A1
20150124608 Agarwal et al. May 2015 A1
20150124652 Dhamapurikar et al. May 2015 A1
20150128133 Pohlmann May 2015 A1
20150128205 Mahaffey et al. May 2015 A1
20150138993 Forster et al. May 2015 A1
20150142962 Srinivas et al. May 2015 A1
20150195291 Zuk et al. Jul 2015 A1
20150222939 Gallant et al. Aug 2015 A1
20150249622 Phillips et al. Sep 2015 A1
20150256555 Choi et al. Sep 2015 A1
20150261842 Huang et al. Sep 2015 A1
20150261886 Wu et al. Sep 2015 A1
20150271008 Jain et al. Sep 2015 A1
20150271255 Mackay et al. Sep 2015 A1
20150281099 Banavalikar Oct 2015 A1
20150295945 Canzanese, Jr. et al. Oct 2015 A1
20150312233 Graham, III et al. Oct 2015 A1
20150356297 Yang et al. Oct 2015 A1
20150347554 Vasantham et al. Dec 2015 A1
20150358352 Chasin et al. Dec 2015 A1
20160006753 McDaid et al. Jan 2016 A1
20160019030 Shukla et al. Jan 2016 A1
20160020959 Rahaman Jan 2016 A1
20160021131 Heilig Jan 2016 A1
20160026552 Holden et al. Jan 2016 A1
20160036636 Erickson et al. Feb 2016 A1
20160036837 Jain et al. Feb 2016 A1
20160050132 Zhang et al. Feb 2016 A1
20160072815 Rieke et al. Mar 2016 A1
20160080414 Kolton et al. Mar 2016 A1
20160087861 Kuan et al. Mar 2016 A1
20160094394 Sharma et al. Mar 2016 A1
20160094529 Mityagin Mar 2016 A1
20160103692 Guntaka et al. Apr 2016 A1
20160105350 Greifeneder et al. Apr 2016 A1
20160112270 Danait et al. Apr 2016 A1
20160112284 Pon et al. Apr 2016 A1
20160119234 Valencia Lopez et al. Apr 2016 A1
20160127395 Underwood et al. May 2016 A1
20160147585 Konig et al. May 2016 A1
20160162308 Chen et al. Jun 2016 A1
20160162312 Doherty et al. Jun 2016 A1
20160173446 Nantel Jun 2016 A1
20160173535 Barabash et al. Jun 2016 A1
20160183093 Vaughn et al. Jun 2016 A1
20160191476 Schutz et al. Jun 2016 A1
20160205002 Rieke et al. Jul 2016 A1
20160216994 Sefidcon et al. Jul 2016 A1
20160217022 Velipasaoglu et al. Jul 2016 A1
20160255082 Rathod Sep 2016 A1
20160269424 Chandola et al. Sep 2016 A1
20160269442 Shieh Sep 2016 A1
20160269482 Jamjoom et al. Sep 2016 A1
20160294691 Joshi Oct 2016 A1
20160308908 Kirby et al. Oct 2016 A1
20160337204 Dubey et al. Nov 2016 A1
20160352633 Kapadia Dec 2016 A1
20160357424 Pang et al. Dec 2016 A1
20160357546 Chang et al. Dec 2016 A1
20160357587 Yadav et al. Dec 2016 A1
20160357957 Deen et al. Dec 2016 A1
20160359592 Kulshreshtha et al. Dec 2016 A1
20160359628 Singh et al. Dec 2016 A1
20160359658 Yadav et al. Dec 2016 A1
20160359673 Gupta et al. Dec 2016 A1
20160359677 Kulshreshtha et al. Dec 2016 A1
20160359678 Madani et al. Dec 2016 A1
20160359679 Parasdehgheibi et al. Dec 2016 A1
20160359680 Parasdehgheibi et al. Dec 2016 A1
20160359686 Parasdehgheibi et al. Dec 2016 A1
20160359695 Yadav et al. Dec 2016 A1
20160359696 Yadav et al. Dec 2016 A1
20160359697 Scheib et al. Dec 2016 A1
20160359698 Deen et al. Dec 2016 A1
20160359699 Gandham et al. Dec 2016 A1
20160359700 Pang et al. Dec 2016 A1
20160359701 Pang et al. Dec 2016 A1
20160359703 Gandham et al. Dec 2016 A1
20160359704 Gandham et al. Dec 2016 A1
20160359705 Parasdehgheibi et al. Dec 2016 A1
20160359708 Gandham et al. Dec 2016 A1
20160359709 Deen et al. Dec 2016 A1
20160359711 Deen et al. Dec 2016 A1
20160359712 Alizadeh Attar et al. Dec 2016 A1
20160359740 Parasdehgheibi et al. Dec 2016 A1
20160359759 Singh et al. Dec 2016 A1
20160359872 Yadav et al. Dec 2016 A1
20160359877 Kulshreshtha et al. Dec 2016 A1
20160359878 Prasad et al. Dec 2016 A1
20160359879 Deen et al. Dec 2016 A1
20160359880 Pang et al. Dec 2016 A1
20160359881 Yadav et al. Dec 2016 A1
20160359888 Gupta et al. Dec 2016 A1
20160359889 Yadav et al. Dec 2016 A1
20160359890 Deen et al. Dec 2016 A1
20160359891 Pang et al. Dec 2016 A1
20160359897 Yadav et al. Dec 2016 A1
20160359905 Touboul et al. Dec 2016 A1
20160359912 Gupta et al. Dec 2016 A1
20160359913 Gupta et al. Dec 2016 A1
20160359914 Deen et al. Dec 2016 A1
20160359915 Gupta et al. Dec 2016 A1
20160359917 Rao et al. Dec 2016 A1
20160373481 Sultan et al. Dec 2016 A1
20160380865 Dubai et al. Dec 2016 A1
20170006141 Bhadra Jan 2017 A1
20170024453 Raja et al. Jan 2017 A1
20170032310 Mimnaugh Feb 2017 A1
20170034018 Parasdehgheibi et al. Feb 2017 A1
20170048121 Hobbs et al. Feb 2017 A1
20170070582 Desai et al. Mar 2017 A1
20170085483 Mihaly et al. Mar 2017 A1
20170208487 Ratakonda et al. Jul 2017 A1
20170250880 Akens et al. Aug 2017 A1
20170250951 Wang et al. Aug 2017 A1
20170289067 Lu et al. Oct 2017 A1
20170295141 Thubert et al. Oct 2017 A1
20170302691 Singh et al. Oct 2017 A1
20170331747 Singh et al. Nov 2017 A1
20170346736 Chander Nov 2017 A1
20170364380 Frye, Jr. et al. Dec 2017 A1
20180006911 Dickey Jan 2018 A1
20180007115 Nedeltchev et al. Jan 2018 A1
20180013670 Kapadia et al. Jan 2018 A1
20180145906 Yadav et al. May 2018 A1
Foreign Referenced Citations (26)
Number Date Country
101093452 Dec 2007 CN
101770551 Jul 2010 CN
102521537 Jun 2012 CN
103023970 Apr 2013 CN
103716137 Apr 2014 CN
104065518 Sep 2014 CN
107196807 Sep 2017 CN
0811942 Dec 1997 EP
1076848 Jul 2002 EP
1383261 Jan 2004 EP
1450511 Aug 2004 EP
2045974 Apr 2008 EP
2043320 Apr 2009 EP
2249525 Nov 2010 EP
2860912 Apr 2015 EP
2887595 Jun 2015 EP
2009-016906 Jan 2009 JP
1394338 May 2014 KR
WO 2007014314 Feb 2007 WO
WO 2007070711 Jun 2007 WO
WO 2008069439 Jun 2008 WO
WO 2013030830 Mar 2013 WO
WO 2015042171 Mar 2015 WO
WO 2015099778 Jul 2015 WO
WO 2016004075 Jan 2016 WO
WO 2016019523 Feb 2016 WO
Non-Patent Literature Citations (86)
Entry
Communication pursuant to Article 94(3) EPC from the European Patent Office, dated Feb. 11, 2019, 9 pages, for the corresponding European Patent Application No. 17181900.6.
Extended European Search Report from the European Patent Office for the corresponding EP Application No. 17181900.6, completion date, dated Oct. 26, 2017, 13 pages.
Arista Networks, Inc., “Application Visibility and Network Telemtry using Splunk,” Arista White Paper, Nov. 2013, 11 pages.
Author Unknown, “Blacklists & Dynamic Reputation: Understanding Why the Evolving Threat Eludes Blacklists,” www.dambala.com, 9 pages, Dambala, Atlanta, GA, USA.
Aydin, Galip, et al., “Architecture and Implementation of a Scalable Sensor Data Storage and Analysis Using Cloud Computing and Big Data Technologies,” Journal of Sensors, vol. 2015, Article ID 834217, Feb. 2015, 11 pages.
Backes, Michael, et al., “Data Lineage in Malicious Environments,” IEEE 2015, pp. 1-13.
Bauch, Petr, “Reader's Report of Master's Thesis, Analysis and Testing of Distributed NoSQL Datastore Riak,” May 28, 2015, Brno. 2 pages.
Bayati, Mohsen, et al., “Message-Passing Algorithms for Sparse Network Alignment,” Mar. 2013, 31 pages.
Berezinski, Przemyslaw, et al., “An Entropy-Based Network Anomaly Detection Method,” Entropy, 2015, vol. 17, www.mdpi.com/journal/entropy, pp. 2367-2408.
Berthier, Robin, et al. “Nfsight: Netflow-based Network Awareness Tool,” 2010, 16 pages.
Bhuyan, Dhiraj, “Fighting Bots and Botnets,” 2006, pp. 23-28.
Blair, Dana, et al., U.S. Appl. No. 62/106,006, filed Jan. 21, 2015, entitled “Monitoring Network Policy Compliance.”
Bosch, Greg, “Virtualization,” 2010, 33 pages.
Breen, Christopher, “MAC 911, How to dismiss Mac App Store Notifications,” Macworld.com, Mar. 24, 2014, 3 pages.
Chari, Suresh, et al., “Ensuring continuous compliance through reconciling policy with usage,” Proceedings of the 18th ACM symposium on Access control models and technologies (SACMAT '13). ACM, New York, NY, USA, 49-60.
Chen, Xu, et al., “Automating network application dependency discovery: experiences, limitations, and new solutions,” 8th USENIX conference on Operating systems design and implementation (OSDI'08), USENIX Association, Berkeley, CA, USA, 117-130.
Chou, C.W., et al., “Optical Clocks and Relativity,” Science vol. 329, Sep. 24, 2010, pp. 1630-1633.
Cisco Systems, Inc., “A Cisco Guide to Defending Against Distributed Denial of Service Attacks,” May 3, 2016, 34 pages.
Cisco Systems, Inc., “Cisco Application Visibility and Control,” Oct. 2011, 2 pages.
Cisco Systems, Inc., “Cisco Tetration Platform Data Sheet”, Updated Mar. 5, 2018, 21 pages.
Cisco Technology, Inc., “Cisco Lock-and-Key:Dynamic Access Lists,” http://www/cisco.com/c/en/us/support/docs/security-vpn/lock-key/7604-13.html; Updated Jul. 12, 2006, 16 pages.
Di Lorenzo, Guisy, et al., “EXSED: An Intelligent Tool for Exploration of Social Events Dynamics from Augmented Trajectories,” Mobile Data Management (MDM), pp. 323-330, Jun. 3-6, 2013.
Duan, Yiheng, et al., Detective: Automatically Identify and Analyze Malware Processes in Forensic Scenarios via DLLs, IEEE ICC 2015—Next Generation Networking Symposium, pp. 5691-5696.
Feinstein, Laura, et al., “Statistical Approaches to DDoS Attack Detection and Response,” Proceedings of the DARPA Information Survivability Conference and Exposition (DISCEX '03), Apr. 2003, 12 pages.
George, Ashley, et al., “NetPal: A Dynamic Network Administration Knowledge Base,” 2008, pp. 1-14.
Goldsteen, Abigail, et al., “A Tool for Monitoring and Maintaining System Trustworthiness at Run Time,” REFSQ (2015), pp. 142-147.
Hamadi, S., et al., “Fast Path Acceleration for Open vSwitch in Overlay Networks,” Global Information Infrastructure and Networking Symposium (GIIS), Montreal, QC, pp. 1-5, Sep. 15-19, 2014.
Heckman, Sarah, et al., “On Establishing a Benchmark for Evaluating Static Analysis Alert Prioritization and Classification Techniques,” IEEE, 2008; 10 pages.
Hewlett-Packard, “Effective use of reputation intelligence in a security operations center,” Jul. 2013, 6 pages.
Hideshima, Yusuke, et al., “STARMINE: A Visualization System for Cyber Attacks,” https://www.researchgate.net/pubiication/221536306, Feb. 2006, 9 pages.
Huang, Hing-Jie, et al., “Clock Skew Based Node Identification in Wireless Sensor Networks,” IEEE, 2008, 5 pages.
Ives, Herbert, E., et al., “An Experimental Study of the Rate of a Moving Atomic Clock,” Journal of the Optical Society of America, vol. 28, No. 7, Jul. 1938, pp. 215-226.
Janoff, Christian, et al., “Cisco Compliance Solution for HIPAA Security Rule Design and Implementation Guide,” Cisco Systems, Inc., Updated Nov. 14, 2015, part 1 of 2, 350 pages.
Janoff, Christian, et al., “Cisco Compliance Solution for HIPAA Security Rule Design and Implementation Guide,” Cisco Systems, Inc., Updated Nov. 14, 2015, part 2 of 2, 588 pages.
Kerrison, Adam, et al., “Four Steps to Faster, Better Application Dependency Mapping—Laying the Foundation for Effective Business Service Models,” BMCSoftware, 2011.
Kim, Myung-Sup, et al. “A Flow-based Method for Abnormal Network Traffic Detection, ” IEEE, 2004, pp. 599-612.
Li, Ang, et al., “Fast Anomaly Detection for Large Data Centers,” Global Telecommunications Conference (GLOBECOM 2010, Dec. 2010, 6 pages.
Li, Bingbong, et al., “A Supervised Machine Learning Approach to Classify Host Roles on Line Using sFlow,” in Proceedings of the first edition workshop on High performance and programmable networking, 2013, ACM, New York, NY, USA, 53-60.
Liu, Ting, et al., “Impala: A Middleware System for Managing Autonomic, Parallel Sensor Systems,” In Proceedings of the Ninth ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming(PPoPP '03), ACM, New York, NY, USA, Jun. 11 -13, 2003, pp. 107-118.
Lu, Zhonghai, et al., “Cluster-based Simulated Annealing for Mapping Cores onto 2D Mesh Networks on Chip,” Design and Diagnostics of Electronic Circuits and Systems, pp. 1, 6, 16-18, Apr. 2008.
Matteson, Ryan, “Depmap: Dependency Mapping of Applications Using Operating System Events: a Thesis,” Master's Thesis, California Polytechnic State University, Dec. 2010.
Natarajan, Arun, et al., “NSDMiner: Automated Discovery of Network Service Dependencies,” Institute of Electrical and Electronics Engineers INFOCOM, Feb. 2012, 9 pages.
Navaz, A.S. Syed, et al., “Entropy based Anomaly Detection System to Prevent DDoS Attacks in Cloud,” International Journal of computer Applications (0975-8887), vol. 62, No. 15, Jan. 2013, pp. 42-47.
Nilsson, Dennis K., et al., “Key Management and Secure Software Updates in Wireless Process Control Environments,” In Proceedings of the First ACM Conference on Wireless Network Security (WiSec '08), ACM, New York, NY, USA, Mar. 31-Apr. 2, 2008, pp. 100-108.
Nunnally, Troy, et al., “P3D: A Parallel 3D Coordinate Visualization for Advanced Network Scans,” IEEE 2013, Jun. 9-13, 2013, 6 pages.
Ohta, Kohei, et al., “Detection, Defense, and Tracking of Internet-Wide Illegal Access in a Distributed Manner,” 2000, pp. 1-16.
Pathway Systems International Inc., “How Blueprints does Integration,” Apr. 15, 2014, 9 pages, http://pathwaysystems.com/company-blog/.
Popa, Lucian, et al., “Macroscope: End-Point Approach to Networked Application Dependency Discovery,” CoNEXT'09, Dec. 1-4, 2009, Rome, Italy, 12 pages.
Prasad, K. Munivara, et al., “An Efficient Detection of Flooding Attacks to Internet Threat Monitors (ITM) using Entropy Variations under Low Traffic,” Computing Communication & Networking Technologies (ICCCNT '12), Jul. 26-28, 2012, 11 pages.
Sachan, Mrinmaya, et al., “Solving Electrical Networks to incorporate Supervision in Random Walks,” May 13-17, 2013, pp. 109-110.
Sammarco, Matteo, et al., “Trace Selection for Improved WLAN Monitoring,” Aug. 16, 2013, pp. 9-14.
Shneiderman, Ben, et al., “Network Visualization by Semantic Substrates,” Visualization and Computer Graphics, vol. 12, No. 5, pp. 733,740, Sep.-Oct. 2006.
Thomas, R., “Bogon Dotted Decimal List,” Version 7.0, Team Cymru NOC, Apr. 27, 2012, 5 pages.
Wang, Ru, et al., “Learning directed acyclic graphs via bootstarp aggregating,” 2014, 47 pages, http://arxiv.org/abs/1406.2098.
Wang, Yongjun, et al., “A Network Gene-Based Framework for Detecting Advanced Persistent Threats,” Nov. 2014, 7 pages.
Witze, Alexandra, “Special relativity aces time trial, ‘Time dilation’ predicted by Einstein confirmed by lithium ion experiment,” Nature, Sep. 19, 2014, 3 pages.
Woodberg, Brad, “Snippet from Juniper SRX Series” Jun. 17, 2013, 1 page, O'Reilly Media, Inc.
Zatrochova, Zuzana, “Analysis and Testing of Distributed NoSQL Datastore Riak,” Spring, 2015, 76 pages.
Zhang, Yue, et al., “CANTINA: A Content-Based Approach to Detecting Phishing Web Sites,” May 8-12, 2007, pp. 639-648.
Al-Fuqaha, Ala, et al., “Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications,” IEEE Communication Surveys & Tutorials. Vol. 17, No. 4, Nov. 18, 2015, pp. 2347-2376.
Baek, Kwang-Hyun, et al., “Preventing Theft of Quality of Service on Open Platforms,” 2005 Workshop of the 1st International Conference on Security and Privacy for Emerging Areas in Communication Networks, 2005, 12 pages.
Brocade Communications Systems, Inc., “Chapter 5—Configuring Virtual LANs (VLANs),” Jun. 2009, 38 pages.
Cisco Systems, Inc. “Cisco, Nexus 3000 Series NX-OS Release Notes, Release 5.0(3)U3(1),” Feb. 29, 2012, Part No. OL-26631-01, 16 pages.
Cisco Systems, Inc., “Cisco—VPN Client User Guide for Windows,” Release 4.6, Aug. 2004, 148 pages.
Cisco Systems, Inc., “Cisco 4710 Application Control Engine Appliance Hardware Installation Guide,” Nov. 2007, 66 pages.
Cisco Systems, Inc., “Cisco Data Center Network Architecture and Solutions Overview,” Feb. 2006, 19 pages.
Cisco Systems, Inc., “Cisco IOS Configuration Fundamentals Configuration Guide: Using Autoinstall and Setup,” Release 12.2, first published Apr. 2001, last updated Sep. 2003, 32 pages.
Cisco Systems, Inc., “Cisco VN-Link: Virtualization-Aware Networking,” White Paper, Mar. 2009, 10 pages.
Cisco Systems, Inc., “Cisco, Nexus 5000 Series and Cisco Nexus 2000 Series Release Notes, Cisco NX-OS Release 5.1(3)N2(1b), NX-OS Release 5.1(3)N2(1a) and NX-OS Release 5.1(3)N2(1),” Sep. 5, 2012, Part No. OL-26652-03 CO, 24 pages.
Cisco Systems, Inc., “Nexus 3000 Series NX-OS Fundamentals Configuration Guide, Release 5.0(3)U3(1): Using PowerOn Auto Provisioning,” Feb. 29, 2012, Part No. OL-26544-01, 10 pages.
Cisco Systems, Inc., “Quick Start Guide, Cisco ACE 4700 Series Application Control Engine Appliance,” Software Ve740rsion A5(1.0), Sep. 2011, 138 pages.
Cisco Systems, Inc., “Routing and Bridging Guide, Cisco ACE Application Control Engine,” Software Version A5(1.0), Sep. 2011, 248 pages.
Cisco Systems, Inc., “VMWare and Cisco Virtualization Solution: Scale Virtual Machine Networking,” Jul. 2009, 4 pages.
Cisco Systems, Inc., “Cisco Remote Integrated Service Engine for Citrix NetScaler Appliances and Cisco Nexus 7000 Series Switches Configuration Guide,” Last modified Apr. 29, 2014, 78 pages.
Cisco Technology, Inc., “Cisco IOS Software Release 12.4T Features and Hardware Support,” Feb. 2009, 174 pages.
Cisco Systems, Inc., “Cisco Application Control Engine (ACE) Troubleshooting Guide—Understanding the ACE Module Architecture and Traffic Flow,” Mar. 11, 2011, 6 pages.
Costa, Raul, et al., “An Intelligent Alarm Management System for Large-Scale Telecommunication Companies,” In Portuguese Conference on Artificial Intelligence, Oct. 2009, 14 pages.
De Carvalho, Tiago Filipe Rodrigues, “Root Cause Analysis in Large and Complex Networks,” Dec. 2008. Repositorio.ul.pt, pp. 1-55.
Foundation for Intelligent Physical Agents, “FIPA Agent Message Transport Service Specification,” Dec. 3, 2002, http://www.fipa.org; 15 pages.
Gia, Tuan Nguyen, et al., “Fog Computing in Healthcare Internet of Things: A Case Study on ECG Feature Extraction,” 2015 IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing, Oct. 26, 2015, pp. 356-363.
Joseph, Dilip, et al., “Modeling Middleboxes,” IEEE Network, Sep./Oct. 2008, pp. 20-25.
Kent, S., et al. “Security Architecture for the Internet Protocol,” Network Working Group, Nov. 1998, 67 pages.
Online Collins English Dictionary, 1 page (Year: 2018).
Theodorakopoulos, George, et al., “On Trust Models and Trust Evaluation Metrics for Ad Hoc Networks,” IEEE Journal on Selected Areas in Communications. vol. 24, Issue 2, Feb. 2006, pp. 318-328.
Voris, Jonathan, et al., “Bait and Snitch: Defending Computer Systems with Decoys,” Columbia University Libraries, Department of Computer Science, 2013, pp. 1-25.
Zeng, Sai, et al., “Managing Risk in Multi-node Automation of Endpoint Management,” 2014 IEEE Network Operations and Management Symposium (NOMS), 2014, 6 pages.
Related Publications (1)
Number Date Country
20200328969 A1 Oct 2020 US
Continuations (1)
Number Date Country
Parent 15216653 Jul 2016 US
Child 16915657 US