The field of the present invention relates systems and methods for storing high level waste (“HLW”), such as spent nuclear fuel, in ventilated vertical modules.
The storage, handling, and transfer of HLW, such as spent nuclear fuel, requires special care and procedural safeguards. For example, in the operation of nuclear reactors, it is customary to remove fuel assemblies after their energy has been depleted down to a predetermined level. Upon removal, this spent nuclear fuel is still highly radioactive and produces considerable heat, requiring that great care be taken in its packaging, transporting, and storing. In order to protect the environment from radiation exposure, spent nuclear fuel is first placed in a canister. The loaded canister is then transported and stored in large cylindrical containers called casks. A transfer cask is used to transport spent nuclear fuel from location to location while a storage cask is used to store spent nuclear fuel for a determined period of time.
In a typical nuclear power plant, an open empty canister is first placed in an open transfer cask. The transfer cask and empty canister are then submerged in a pool of water. Spent nuclear fuel is loaded into the canister while the canister and transfer cask remain submerged in the pool of water. Once fully loaded with spent nuclear fuel, a lid is typically placed atop the canister while in the pool. The transfer cask and canister are then removed from the pool of water, the lid of the canister is welded thereon and a lid is installed on the transfer cask. The canister is then properly dewatered and filled with inert gas. The transfer cask (which is holding the loaded canister) is then transported to a location where a storage cask is located. The loaded canister is then transferred from the transfer cask to the storage cask for long term storage. During transfer from the transfer cask to the storage cask, it is imperative that the loaded canister is not exposed to the environment.
One type of storage cask is a ventilated vertical overpack (“VVO”). A VVO is a massive structure made principally from steel and concrete and is used to store a canister loaded with spent nuclear fuel (or other HLW). VVOs stand above ground and are typically cylindrical in shape and extremely heavy, weighing over 150 tons and often having a height greater than 16 feet. VVOs typically have a flat bottom, a cylindrical body having a cavity to receive a canister of spent nuclear fuel, and a removable top lid.
In using a VVO to store spent nuclear fuel, a canister loaded with spent nuclear fuel is placed in the cavity of the cylindrical body of the VVO. Because the spent nuclear fuel is still producing a considerable amount of heat when it is placed in the VVO for storage, it is necessary that this heat energy is able to escape from the VVO cavity. This heat energy is removed from the outside surface of the canister by ventilating the VVO cavity. In ventilating the VVO cavity, cool air enters the VVO chamber through inlet ventilation ducts, flows upward past the loaded canister, and exits the VVO at an elevated temperature through outlet ventilation ducts.
While it is necessary that the VVO cavity be vented so that heat can escape from the canister, it is also imperative that the VVO provide adequate radiation shielding and that the spent nuclear fuel not be directly exposed to the external environment. U.S. Pat. No. 7,933,374, issued Apr. 26, 2011, the disclosure of which is incorporated herein by reference in its entirety, discloses a VVO which meets these shielding needs.
The effect of wind on the thermal performance of a ventilated system can also be a serious drawback that, to some extent, afflicts all systems in use in the industry at the present time. Storage VVO's with only two inlet or outlet ducts are especially vulnerable. While axisymmetric air inlet and outlet ducts behave extremely well in quiescent air, when the wind is blowing, the flow of air entering and leaving the system is skewed, frequently leading to a reduced heat rejection capacity.
A module for storing high level radioactive waste includes an outer shell having a hermetically closed bottom end and an inner shell disposed inside the outer shell so as to form a space between the inner shell and the outer shell. At least one divider extends from a top of the inner shell to a bottom of the inner shell, the at least one divider creating a plurality of inlet passageways through the space, each inlet passageway connecting to a bottom portion of the cavity. A plurality of inlet ducts each connect at least one of the inlet passageways to ambient atmosphere. The inlet ducts are configured such that when the module is inset into the ground, the air pressure about each inlet duct is substantially the same. A removable lid is positioned on the inner shell, and the lid having at least one outlet passageway connecting the cavity and the ambient atmosphere. The lid and the top of the inner shell are respectively configured to form a hermetic seal at a top of the cavity.
In a first separate aspect of the present invention, each inlet duct comprises an inlet duct cover affixed over a surrounding inlet wall, with the inlet wall being peripherally perforated. The inlet wall may be peripherally perforated to have a minimum of 60% open area.
In a second separate aspect of the present invention, the lid further includes an outlet duct connecting the at least one outlet passageway and the ambient atmosphere. The outlet duct includes an outlet duct cover affixed over a surrounding outlet wall, with the outlet wall being peripherally perforated. The outlet wall may be peripherally perforated to have a minimum of 60% open area.
In a third separate aspect of the present invention, a hermetically sealed canister for containing high-level waste is positioned within the cavity, wherein the cavity has a horizontal cross-section that accommodates no more than one canister.
In a fourth separate aspect of the present invention, the top of the upper shield extends to or above the inlet ducts.
In a fourth separate aspect of the present invention, at least four dividers extend from a top of the inner shell to a bottom of the inner shell, thereby forming a plurality of the inlet passageways, and each divider includes an extension portion extending into the cavity, the extension portion configured as a positioning flange for a canister disposed within the cavity.
In a fifth separate aspect of the present invention, each of the inlet ducts maintains an intake air pressure independently of each of the other inlet ducts.
In a sixth separate aspect of the present invention, each of the inlet ducts maintains an intake air pressure substantially the same as each of the other inlet ducts.
In a seventh separate aspect of the present invention, a system including a plurality of the modules is employed, with the inlet ducts of a first of the modules maintains air pressure independently of the inlet ducts of a second of the modules.
In an eighth separate aspect of the present invention, a method of storing high level waste includes providing a module having an outer shell having a hermetically closed bottom end and an inner shell disposed inside the outer shell so as to form a space between the inner shell and the outer shell. At least one divider extends from a top of the inner shell to a bottom of the inner shell, the at least one divider creating a plurality of inlet passageways through the space, each inlet passageway connecting to a bottom portion of the cavity. A plurality of inlet ducts each connect at least one of the inlet passageways to ambient atmosphere. The inlet ducts are configured such that when the module is inset into the ground, the air pressure at each inlet duct is substantially the same, and the air pressure at each inlet duct is independent of the air pressure at the other inlet ducts. A canister containing high level radioactive waste is placed into the cavity. A lid is positioned over the cavity, with the lid having at least one outlet passageway connecting the cavity and the ambient atmosphere. The lid and the top of the inner shell are respectively configured to form a hermetic seal at a top of the cavity.
In a ninth separate aspect of the present invention, one or more of the preceding separate aspects may be employed in combination.
Advantages of the improvements will be apparent from the drawings and the description of the preferred embodiment.
The foregoing summary, as well as the following detailed description of the exemplary embodiments, will be better understood when read in conjunction with the appended drawings. It should be understood, however, that the invention is not limited to the precise arrangements and instrumentalities shown in the following figures:
The description of illustrative embodiments according to principles of the present invention is intended to be read in connection with the accompanying drawings, which are to be considered part of the entire written description. In the description of embodiments of the invention disclosed herein, any reference to direction or orientation is merely intended for convenience of description and is not intended in any way to limit the scope of the present invention. Relative terms such as “lower,” “upper,” “horizontal,” “vertical,” “above,” “below,” “up,” “down,” “left,” “right,” “top” and “bottom” as well as derivatives thereof (e.g., “horizontally,” “downwardly,” “upwardly,” etc.) should be construed to refer to the orientation as then described or as shown in the drawing under discussion. These relative terms are for convenience of description only and do not require that the apparatus be constructed or operated in a particular orientation unless explicitly indicated as such. Terms such as “attached,” “affixed,” “connected,” “coupled,” “interconnected,” and similar refer to a relationship wherein structures are secured or attached to one another either directly or indirectly through intervening structures, as well as both movable or rigid attachments or relationships, unless expressly described otherwise. Moreover, the features and benefits of the invention are illustrated by reference to the preferred embodiments. Accordingly, the invention expressly should not be limited to such preferred embodiments illustrating some possible non-limiting combinations of features that may exist alone or in other combinations of features; the scope of the invention being defined by the claims appended hereto.
The HLW storage container 10 is designed to be a vertical, ventilated dry system for storing HLW such as spent fuel. The HLW storage container 10 is fully compatible with 100 ton and 125 ton transfer casks for HLW transfer procedures, such as spent fuel canister transfer operations. All spent fuel canister types engineered for storage in free-standing, below grade, and/or anchored overpack models can be stored in the HLW storage container 10.
As used herein the term “canister” broadly includes any spent fuel containment apparatus, including, without limitation, multi-purpose canisters and thermally conductive casks. For example, in some areas of the world, spent fuel is transferred and stored in metal casks having a honeycomb grid-work/basket built directly into the metal cask. Such casks and similar containment apparatus qualify as canisters, as that term is used herein, and can be used in conjunction with the HLW storage container 10 as discussed below.
The HLW storage container 10 can be modified/designed to be compatible with any size or style of transfer cask. The HLW storage container 10 can also be designed to accept spent fuel canisters for storage at an Independent Spent Fuel Storage Installations (“ISFSI”). ISFSIs employing the HLW storage container 10 can be designed to accommodate any number of the HLW storage container 10 and can be expanded to add additional HLW storage containers 100 as the need arises. In ISFSIs utilizing a plurality of the HLW storage container 10, each HLW storage container 10 functions completely independent form any other HLW storage container 10 at the ISFSI.
The HLW storage container 10 has a body 20 and a lid 30. The lid 30 rests atop and is removable/detachable from the body 20. Although an HLW storage container can be adapted for use as an above grade storage system, by incorporating design features found in U.S. Pat. No. 7,933,374, this HLW storage container 10, as shown, is designed for use as a below grade storage system.
Referring to
The space 23 formed between the inner shell 22 and the outer shell 21 acts as a passageway for cool air. The exact width of the space 23 for any HLW storage container 10 is determined on a case-by-case design basis, considering such factors as the heat load of the HLW to be stored, the temperature of the cool ambient air, and the desired fluid flow dynamics. In some embodiments, the width of the space 23 will be in the range of 1 to 6 inches. While the width of space 23 can vary circumferentially, it may be desirable to design the HLW storage container 10 so that the width of the space 23 is generally constant in order to effectuate symmetric cooling of the HLW container and even fluid flow of the incoming air. As discussed in greater detail below, the space 23 may be divided up into a plurality of passageways.
The inner shell 22 and the outer shell 21 are secured atop a floor plate 50. The floor plate 50 is hermetically sealed to the outer shell 21, and it may take on any desired shape. A plurality of spacers 51 are secured atop the floor plate 50 within the space 23. The spacers 51 support a pedestal 52, which in turn supports a canister. When a canister holding HLW is loaded into the cavity 24 for storage, the bottom surface of the canister rests atop the pedestal 52, forming an inlet air plenum between the underside of the pedestal 52 and the floor of cavity 24. This inlet air plenum contributes to the fluid flow and proper cooling of the canister.
Preferably, the outer shell 21 is seal joined to the floor plate 50 at all points of contact, thereby hermetically sealing the HLW storage container 10 to the ingress of fluids through these junctures. In the case of weldable metals, this seal joining may comprise welding or the use of gaskets. Most preferably, the outer shell 21 is integrally welded to the floor plate 50.
An upper flange 77 is provided around the top of the outer shell 21 to stiffen the outer shell 21 so that it does not buckle or substantially deform under loading conditions. The upper flange 77 can be integrally welded to the top of the outer shell 21.
The inner shell 22 is laterally and rotationally restrained in the horizontal plane at its bottom by support legs 27 which straddle lower ribs 53. The lower ribs 53 are preferably equispaced about the bottom of the cavity 24. The inner shell 22 is preferably not welded or otherwise permanently secured to the bottom plate 50 or outer shell 21 so as to permit convenient removal for decommissioning, and if required, for maintenance.
The inner shell 22, the outer shell 21, the floor plate 50, and the upper flange 77 are preferably constructed of a metal, such as a thick low carbon steel, but can be made of other materials, such as stainless steel, aluminum, aluminum-alloys, plastics, and the like. Suitable low carbon steels include, without limitation, ASTM A516, Gr. 70, A515 Gr. 70 or equal. The desired thickness of the inner and outer shells 22, 21 is matter of design choice and will determined on a case-by-case basis.
The inner shell 22 forms a cavity 24. The size and shape of the cavity 24 is also a matter of design choice. However, it is preferred that the inner shell 22 be designed so that the cavity 24 is sized and shaped so that it can accommodate a canister of spent nuclear fuel or other HLW. While not necessary, it is preferred that the horizontal cross-sectional size and shape of the cavity 24 be designed to generally correspond to the horizontal cross-sectional size and shape of the canister-type that is to be used in conjunction with a particular HLW storage container. More specifically, it is desirable that the size and shape of the cavity 24 be designed so that when a canister containing HLW is positioned in the cavity 24 for storage (as illustrated in
Designing the cavity 24 so that a small clearance is formed between the side walls of the stored canister and the side walls of the cavity 24 limits the degree the canister can move within the cavity during a catastrophic event, thereby minimizing damage to the canister and the cavity walls and prohibiting the canister from tipping over within the cavity. This small clearance also facilitates flow of the heated air during HLW cooling. The exact size of the clearance can be controlled/designed to achieve the desired fluid flow dynamics and heat transfer capabilities for any given situation. In some embodiments, for example, the clearance may be 1 to 3 inches. A small clearance also reduces radiation streaming.
The inner shell 22 is also equipped with multiple sets of equispaced longitudinal ribs 54, 55, in addition to the lower ribs 53 discussed above. One set of ribs 54 are preferably disposed at an elevation that is near the top of a canister of HLW placed in the cavity 24. This set of ribs 54 may be shorter in length in comparison to the height of the cavity 24 and a canister. Another set of ribs 55 are set below the first set of ribs 54. This second set of ribs 55 is more elongated than the first set of ribs 54, and these ribs 55 extend to, or nearly to, the bottom of the cavity 24. These ribs 53, 54, 55 serve as guides for a canister of HLW is it is lowered down into the cavity 24, helping to assure that the canister properly rests atop the pedestal 52. The ribs also serve to limit the canister's lateral movement during an earthquake or other catastrophic event to a fraction of an inch.
A plurality of openings 25 are provided in the inner shell 22 at or near its bottom between the support legs 27. Each opening 25 provides a passageway between the annular space 23 and the bottom of the cavity 24. The openings 25 provide passageways by which fluids, such as air, can pass from the annular space 23 into the cavity 24. The openings 25 are used to facilitate the inlet of cooler ambient air into the cavity 24 for cooling a stored HLW having a heat load. As illustrated, eight openings 25 are equispaced about the bottom of the inner shell 22. However, any number of openings 25 can be included, and they may have any spacing desired. The exact number and spacing will be determined on a case-by-case basis and will dictated by such considerations as the heat load of the HLW, desired fluid flow dynamics, etc. Moreover, while the openings 25 are illustrated as being located in the side wall of the inner shell 22, the openings can be provided in the floor plate in certain modified embodiments of the HLW storage container.
The openings 25 in the inner shell 22 are sufficiently tall to ensure that if water enters the cavity 24, the bottom region of a canister resting on the pedestal 52 would be submerged for several inches before the water level reaches the top edge of the openings 25. This design feature helps ensure thermal performance of the system under accidental flooding of the cavity 24.
With reference to
As shown in
Referring back to
The lid 30 rests atop and is supported by the upper flange 77 and a shell flange 78, the latter being disposed on and connected to the tops edge of the inner shell 22. The lid 30 encloses the top of the cavity 24 and provides the necessary radiation shielding so that radiation does not escape from the top of the cavity 24 when a canister loaded with HLW is stored therein. The lid 30 is designed to facilitate the release of heated air from the cavity 24.
The
The outlet duct 40, which is constructed similar to the inlet ducts, includes a duct cover 41, to help prevent rain water or other debris from entering and/or blocking the outlet passageways 39, affixed on top of an outlet wall 42 that surrounds the outlet passageways 39 on the top surface of the upper lid part 33. The outlet wall 42 is peripherally perforated around the entire periphery of the opening of the outlet passageways 39. At least a portion of the lower part of the outlet duct is left without perforations, to aid in preventing rain water from entering the HLW storage container. Preferably, the outlet wall 42 is perforated over 60% or more of its surface, and the perforations can be made in any shape, size, and distribution in accordance with design preferences.
The external shell of the lid 30 may be constructed of a wide variety of materials, including without limitation metals, stainless steel, aluminum, aluminum-alloys, plastics, and the like. The lid may also be constructed of a single piece of material, such as concrete or steel for example, so that it has no separate external shell.
When the lid 30 is positioned atop the body 20, the outlet passageways 39 are in spatial cooperation with the cavity 24. As a result, cool ambient air can enter the HLW storage container 10 through the inlet ducts 60, flow into the space 23, and into the bottom of the cavity 24 via the openings 62. When a canister containing HLW having a heat load is supported within the cavity 24, this cool air is warmed by the HLW canister, rises within the cavity 24, and exits the cavity 24 via the outlet ducts 40.
Because the inlet ducts 60 are placed on different sides of the lid 30, and the dividers separate the inlet passageways associated with the different inlet ducts, the hydraulic resistance to the incoming air flow, a common limitation in ventilated modules, is minimized. This configuration makes the HLW storage container less apt to build up heat internally under high wind conditions.
A plurality of HLW storage containers 100 can be used at the same ISFSI site and situated in arrays as shown in
While the invention has been described with respect to specific examples including presently preferred modes of carrying out the invention, those skilled in the art will appreciate that there are numerous variations and permutations of the above described systems and techniques. It is to be understood that other embodiments may be utilized and structural and functional modifications may be made without departing from the scope of the present invention. Thus, the spirit and scope of the invention should be construed broadly as set forth in the appended claims.
The present application is a continuation of U.S. patent application Ser. No. 15/798,705 filed Oct. 31, 2017, which is continuation of U.S. patent application Ser. No. 14/395,790 filed Oct. 20, 2014, which is a U.S. national stage application under 35 U.S.C. § 371 of PCT Application No. PCT/US2013/037228, filed on Apr. 18, 2013, which claims the benefit of U.S. Provisional Patent Application 61/625,869, filed Apr. 18, 2012; the disclosures of which are incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
1978610 | Straty | Oct 1934 | A |
2040370 | Fisher | May 1936 | A |
2173759 | McCloskey | Sep 1939 | A |
2412169 | O'Neil | Dec 1946 | A |
2432929 | Parrish | Dec 1947 | A |
2486199 | Nier | Oct 1949 | A |
2630936 | Freygang | Mar 1953 | A |
3101532 | Christensen | Aug 1963 | A |
3111078 | Breckenridge | Nov 1963 | A |
3111586 | Rogers | Nov 1963 | A |
3414727 | Bonilla | Dec 1968 | A |
3487756 | Glaza et al. | Jan 1970 | A |
3629062 | Muenchow | Dec 1971 | A |
3739451 | Jacobson | Jun 1973 | A |
3745707 | Herr | Jul 1973 | A |
3755079 | Soodak et al. | Aug 1973 | A |
3765549 | Jones | Oct 1973 | A |
3800973 | Weaver | Apr 1974 | A |
3836267 | Schatz | Sep 1974 | A |
3845315 | Blum | Oct 1974 | A |
3910006 | James | Oct 1975 | A |
3917953 | Wodrich | Nov 1975 | A |
3935062 | Keller et al. | Jan 1976 | A |
3945509 | Weems | Mar 1976 | A |
3962587 | Dufrane et al. | Jun 1976 | A |
3963052 | Mercier | Jun 1976 | A |
3984942 | Schroth | Oct 1976 | A |
4055508 | Yoli et al. | Oct 1977 | A |
4078968 | Golden et al. | Mar 1978 | A |
4158599 | Andrews et al. | Jun 1979 | A |
4192350 | Mercier | Mar 1980 | A |
4278892 | Baatz et al. | Jul 1981 | A |
4288698 | Baatz et al. | Sep 1981 | A |
4289987 | Russell et al. | Sep 1981 | A |
4336460 | Best et al. | Jun 1982 | A |
4355000 | Lumelleau | Oct 1982 | A |
4356146 | Knappe et al. | Oct 1982 | A |
4366095 | Takats et al. | Dec 1982 | A |
4377509 | Haynes et al. | Mar 1983 | A |
4388273 | Graf, Jr. et al. | Jun 1983 | A |
4394022 | Gilmore | Jul 1983 | A |
4423802 | Botzem et al. | Jan 1984 | A |
4450134 | Soot et al. | May 1984 | A |
4498011 | Dyck et al. | Feb 1985 | A |
4525324 | Spilker et al. | Jun 1985 | A |
4526344 | Oswald et al. | Jul 1985 | A |
4527066 | Dyck et al. | Jul 1985 | A |
4527067 | Dyck et al. | Jul 1985 | A |
4532104 | Wearden et al. | Jul 1985 | A |
4532428 | Dyck et al. | Jul 1985 | A |
4582638 | Homer et al. | Apr 1986 | A |
4585611 | Perl | Apr 1986 | A |
4596688 | Popp | Jun 1986 | A |
4623510 | Troy | Nov 1986 | A |
4634875 | Kugeler et al. | Jan 1987 | A |
4635477 | Simon | Jan 1987 | A |
4649018 | Waltersdorf et al. | Mar 1987 | A |
4663533 | Kok et al. | May 1987 | A |
4666659 | Lusk et al. | May 1987 | A |
4671326 | Wilhelm et al. | Jun 1987 | A |
4683533 | Shiozaki et al. | Jul 1987 | A |
4690795 | Hardin et al. | Sep 1987 | A |
4730663 | Voelkl et al. | Mar 1988 | A |
4764333 | Minshall et al. | Aug 1988 | A |
4765525 | Popp et al. | Aug 1988 | A |
4780269 | Fischer et al. | Oct 1988 | A |
4800062 | Craig et al. | Jan 1989 | A |
4834916 | Chaudon et al. | May 1989 | A |
4847009 | Madle et al. | Jul 1989 | A |
4851183 | Hampel | Jul 1989 | A |
4893022 | Hall et al. | Jan 1990 | A |
4971752 | Parker | Nov 1990 | A |
5018772 | Obermeyer et al. | May 1991 | A |
5102615 | Grande et al. | Apr 1992 | A |
5161413 | Junker et al. | Nov 1992 | A |
5182076 | De Seroux et al. | Jan 1993 | A |
5205966 | Elmaleh | Apr 1993 | A |
5267280 | Duquesne | Nov 1993 | A |
5297917 | Freneix | Mar 1994 | A |
5307388 | Inkester et al. | Apr 1994 | A |
5319686 | Pizzano et al. | Jun 1994 | A |
5387741 | Shuttle | Feb 1995 | A |
5442186 | Walker et al. | Aug 1995 | A |
5469936 | Lauga et al. | Nov 1995 | A |
5475721 | Baatz et al. | Dec 1995 | A |
5513231 | Jones et al. | Apr 1996 | A |
5513232 | Jones et al. | Apr 1996 | A |
5546436 | Jones et al. | Aug 1996 | A |
5564498 | Bochard | Oct 1996 | A |
5633904 | Gilligan, III et al. | May 1997 | A |
5646971 | Howie | Jul 1997 | A |
5661768 | Gilligan, III et al. | Aug 1997 | A |
5685449 | Oblak | Nov 1997 | A |
5753925 | Yamanaka et al. | May 1998 | A |
5771265 | Montazer | Jun 1998 | A |
5852643 | Copson | Dec 1998 | A |
5862195 | Peterson | Jan 1999 | A |
5898747 | Singh | Apr 1999 | A |
5926602 | Okura | Jul 1999 | A |
6064710 | Singh | May 2000 | A |
6064711 | Copson | May 2000 | A |
6074771 | Cubukcu et al. | Jun 2000 | A |
6114710 | Contrepois et al. | Sep 2000 | A |
6252923 | Iacovino et al. | Jun 2001 | B1 |
6452994 | Pennington | Sep 2002 | B2 |
6489623 | Peters et al. | Dec 2002 | B1 |
6519307 | Singh et al. | Feb 2003 | B1 |
6519308 | Boardman | Feb 2003 | B1 |
6587536 | Singh et al. | Jul 2003 | B1 |
6625246 | Singh et al. | Sep 2003 | B1 |
6718000 | Singh et al. | Apr 2004 | B2 |
6793450 | Singh et al. | Sep 2004 | B2 |
6853697 | Singh et al. | Feb 2005 | B2 |
7068748 | Singh | Jun 2006 | B2 |
7194060 | Ohsono et al. | Mar 2007 | B2 |
7294375 | Taniuchi et al. | Nov 2007 | B2 |
7330525 | Singh et al. | Feb 2008 | B2 |
7330526 | Singh | Feb 2008 | B2 |
7590213 | Singh | Sep 2009 | B1 |
7628287 | Arnold | Dec 2009 | B1 |
7933374 | Singh | Apr 2011 | B2 |
7994380 | Singh et al. | Aug 2011 | B2 |
8042598 | Bredemus et al. | Oct 2011 | B2 |
8067659 | Singh et al. | Nov 2011 | B2 |
8351562 | Singh | Jan 2013 | B2 |
8798224 | Singh | Aug 2014 | B2 |
20030004390 | Matsunaga et al. | Jan 2003 | A1 |
20030144568 | Singh et al. | Jul 2003 | A1 |
20030147486 | Singh et al. | Aug 2003 | A1 |
20030147730 | Singh et al. | Aug 2003 | A1 |
20030194042 | Singh et al. | Oct 2003 | A1 |
20040020919 | Hirano et al. | Feb 2004 | A1 |
20040071254 | Malalel | Apr 2004 | A1 |
20040109523 | Singh et al. | Jun 2004 | A1 |
20040175259 | Singh et al. | Sep 2004 | A1 |
20050008462 | Singh et al. | Jan 2005 | A1 |
20050066541 | Singh et al. | Mar 2005 | A1 |
20050173432 | Chanzy | Aug 2005 | A1 |
20050207525 | Singh | Sep 2005 | A1 |
20050207535 | Alving et al. | Sep 2005 | A1 |
20050220256 | Singh | Oct 2005 | A1 |
20050220257 | Singh | Oct 2005 | A1 |
20050224729 | Tamaki | Oct 2005 | A1 |
20060215803 | Singh | Sep 2006 | A1 |
20060251201 | Singh | Nov 2006 | A1 |
20060272175 | Singh | Dec 2006 | A1 |
20060288607 | Singh | Dec 2006 | A1 |
20070003000 | Singh et al. | Jan 2007 | A1 |
20080017644 | Wickland et al. | Jan 2008 | A1 |
20080031396 | Singh et al. | Feb 2008 | A1 |
20080031397 | Singh et al. | Feb 2008 | A1 |
20080056935 | Singh | Mar 2008 | A1 |
20080069291 | Singh et al. | Mar 2008 | A1 |
20080076953 | Singh et al. | Mar 2008 | A1 |
20080084958 | Singh et al. | Apr 2008 | A1 |
20080086025 | Van Der Lee et al. | Apr 2008 | A1 |
20080095295 | Fuls | Apr 2008 | A1 |
20080210891 | Wagner et al. | Sep 2008 | A1 |
20080260088 | Singh et al. | Oct 2008 | A1 |
20080265182 | Singh et al. | Oct 2008 | A1 |
20080314570 | Singh et al. | Dec 2008 | A1 |
20090069621 | Singh et al. | Mar 2009 | A1 |
20090158614 | Singh et al. | Jun 2009 | A1 |
20090159550 | Singh et al. | Jun 2009 | A1 |
20090175404 | Singh et al. | Jul 2009 | A1 |
20090198092 | Singh et al. | Aug 2009 | A1 |
20090252274 | Singh | Oct 2009 | A1 |
20100032591 | Lemer | Feb 2010 | A1 |
20100150297 | Singh | Jun 2010 | A1 |
20100212182 | Singh | Aug 2010 | A1 |
20100232563 | Singh et al. | Sep 2010 | A1 |
20100272225 | Singh | Oct 2010 | A1 |
20100282448 | Singh et al. | Nov 2010 | A1 |
20100282451 | Singh et al. | Nov 2010 | A1 |
20100284506 | Singh | Nov 2010 | A1 |
20110021859 | Singh | Jan 2011 | A1 |
20110033019 | Rosenbaum et al. | Feb 2011 | A1 |
20110049155 | Levine et al. | Mar 2011 | A1 |
20110150164 | Singh et al. | Jun 2011 | A1 |
20110172484 | Singh et al. | Jul 2011 | A1 |
20110239683 | Czamara et al. | Oct 2011 | A1 |
20110255647 | Singh | Oct 2011 | A1 |
20110286567 | Singh et al. | Nov 2011 | A1 |
20120083644 | Singh et al. | Apr 2012 | A1 |
20120142991 | Singh et al. | Jun 2012 | A1 |
20120226088 | Singh et al. | Sep 2012 | A1 |
20120267377 | Mueller et al. | Oct 2012 | A1 |
20120294737 | Singh et al. | Nov 2012 | A1 |
20120306172 | Singh | Dec 2012 | A1 |
20120307956 | Singh et al. | Dec 2012 | A1 |
20130068578 | Saito et al. | Mar 2013 | A1 |
20130070885 | Singh et al. | Mar 2013 | A1 |
20130163710 | Singh | Jun 2013 | A1 |
20140047733 | Singh et al. | Feb 2014 | A1 |
20140105347 | Singh et al. | Apr 2014 | A1 |
20140192946 | Singh | Jul 2014 | A1 |
20140341330 | Singh | Nov 2014 | A1 |
Number | Date | Country |
---|---|---|
1345452 | Apr 2002 | CN |
2821780 | Nov 1979 | DE |
3107158 | Jan 1983 | DE |
3144113 | May 1983 | DE |
3151475 | May 1983 | DE |
3404666 | Aug 1985 | DE |
3515871 | Nov 1986 | DE |
19529357 | Feb 1997 | DE |
0253730 | Jan 1988 | EP |
1061011 | Dec 2000 | EP |
1312874 | May 2003 | EP |
2853813 | Apr 2015 | EP |
2434463 | Mar 1980 | FR |
2295484 | May 1996 | GB |
2327722 | Feb 1999 | GB |
2337722 | Dec 1999 | GB |
59193000 | Nov 1984 | JP |
62185199 | Aug 1987 | JP |
10297678 | Nov 1998 | JP |
2001056392 | Feb 2001 | JP |
2001141891 | May 2001 | JP |
2001264483 | Sep 2001 | JP |
2003207597 | Jul 2003 | JP |
2003240894 | Aug 2003 | JP |
2004233055 | Aug 2004 | JP |
100833207 | May 2008 | KR |
2168022 | May 2001 | RU |
Entry |
---|
International Atomic Energy Agency, “Multi-purpose container technologies for spent fuel management,” Dec. 2000 (IAEA-TECDOC-1192) pp. 1-49. |
U.S. Department of Energy, “Conceptual Design for a Waste-Management System that Uses Multipurpose Canisters,” Jan. 1994 pp. 1-14. |
Federal Register Environmental Documents, “Implementation Plan for the Environmental Impact Statement for a Multi-Purpose Canister System for Management of Civialian and Naval Spent Nuclear Fuel,” Aug. 30, 1995 (vol. 60, No. 168) pp. 1-7. |
National Conference of State Legislatures, “Developing a Multipurpose Canister System for Spent Nuclear Fuel,” State Legislative Report, col. 19, No. 4 by Sia Davis et al., Mar. 1, 1994, pp. 1-4. |
Energy Storm Article, “Multi-purpose canister system evaluation: A systems engineering approach,” Author unavailable, Sep. 1, 1994, pp. 1-2. |
Science, Society, and America's Nuclear Waste-Teacher Guide, “The Role of the Multi-Purpose Canister in the Waste Management System,” Author—unknown, Date—unknown, 5 pgs. |
USEC Inc. Article, “NAC International: A Leader in Used Fuel Storage Technologies,” copyright 2008, 2 pages. |
Federal Register Notice, Nept. of Energy, “Record of Decision for a Multi-Purpose Canister or Comparable System,” vol. 64, No. 85, May 4, 1999. |
Zorpette, Glenn: “CAnnet Heat”, Nuclear Power, Special Report, in IEEE Spectrum, Nov. 2001, pp. 44-47. |
Optimization Strategies for Cask Design and Container Loading in Long Term Spent Fuel Storage, Dec. 2006 (Dec. 2006) [retrieved on Jan. 23, 2013 (Jan. 23, 2013)]. Retrieved from the Internet:<URL: http://www-pub.iaea.org/MTCD/publications/PDF/te_1523_web.pdf (US). |
International Search Report and Written Opinion of the International Searching Authority for PCT/US2012/62470, dated Feb. 21, 2013. |
Number | Date | Country | |
---|---|---|---|
20210225539 A1 | Jul 2021 | US |
Number | Date | Country | |
---|---|---|---|
61625869 | Apr 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15798705 | Oct 2017 | US |
Child | 17135930 | US | |
Parent | 14395790 | US | |
Child | 15798705 | US |