1. Field of the Invention
The present disclosure relates to a submerged organism detection system. Particularly, the present disclosure relates to a system and method for detection and counting of organisms comprising a microprocessor, a rotational mirror, a flash detecting camera, and laser light.
2. Description of the Related Art
Detection and counting of organisms underwater is of particular interest to the scientific community. Oceanic research relating to species count, species depletion, migration habits, and concentrations in a given area are of particular importance.
Conventional technologies that assist in detection and counting of underwater organisms may be invasive. Systems that utilize SONAR, for example, have been shown to cause damage in many underwater organisms due to the frequency and magnitude of noise. Other techniques, such as planktonic netting, rely upon physical capture of organism and typically harm or kill such organisms.
Recent years, however, have seen a shift in detection methods due to advances in technology. Such advances, however, tend to overcomplicate detection methods and require sensitive and expensive equipment. The detection and imaging technique described in U.S. Pat. No. 6,304,289 (hereinafter “the '289 patent”) exemplifies an overly complicated system with a limited area of detection. The '289 patent provides for a sophisticated imaging technique requiring precision control of laser oscillators and sensitive image pickup equipment. Similarly, U.S. Pat. No. 6,737,971 (hereinafter “the '971 patent”) overcomplicates laser detection techniques and requires backscatter information. Further, neither the '289 patent nor the '971 patent provide an ability to count organisms.
Conventional detection techniques suffer drawbacks due to the level of invasiveness and potential damage to aquatic life. More recent detection techniques suffer drawbacks associated with overly complicated designs and the rising cost associated with sophisticated equipment.
Due to these deficiencies, a need remains for a simplified low cost noninvasive system and method to detect and count submerged organisms.
A system is disclosed having a camera with a visible field and detects a flash; a laser device produces a laser beam; a mirror rotates about an axis and reflects the laser beam throughout a plane; the plane being substantially horizontal; the visible field being a portion of the plane; when an object obstructs the laser beam, the flash is produced; and a counter that has a count, wherein, when the flash is produced, the counter increases the count. Further, the system may be submerged underwater.
A second system is disclosed having a camera, a laser device, a mirror, and a microprocessor in communication with a database. The laser device produces a laser beam; the mirror rotates about an axis and reflects the laser beam in a plane, the plane being substantially horizontal and the camera records an image of a portion of the plane; and the microprocessor in communication with the camera and a database, stores the image in the database.
A method is also disclosed. The method includes producing a light about a plane using a laser beam and a rotational mirror; the plane being substantially horizontal; detecting a flash within a portion of the plane with a camera; when an object obstructs the laser beam the flash is produced; counting objects with a counter having a count that increases when the flash is produced and storing the count in a database.
The above-described and other features and advantages of the present disclosure will be appreciated and understood by those skilled in the art from the following detailed description, drawings, and appended claims.
System 100, in some embodiments, may be submerged underwater, but it is also be to understood that system 100 may be submerged in multiple environments and multiple fluids, gasses, and combinations thereof. In exemplary embodiments, system 100 may be used to count aquatic organisms such as jellyfish and ctenophores. Typically, such system is deployed in low light or no light environments. In operation, system 100 is lowered into water and continues to sink toward the bottom. During the course of sinking, laser beam 145 illuminates about plane 135 while camera 105 records flashes caused by objects obstructing the laser within visible field 120.
In operation, organisms travel through plane 450 within visible field 445 and are illuminated by laser beam 450, thereby producing a flash. The flash is recorded by camera 430 and when a flash is produced, an image is taken by camera 430. The image is preferably stored in a database. The database, in communication with access device 405, displays the image. Camera 430 is connected to camera connector 425. Camera connector 425 connects to power supply 415, thereby providing power to camera 430. In other embodiments, a separate and autonomous power supply can be enclosed within housing 435 to provide power to camera 430. Camera connector 425 may further connect to a database. The database in
In other embodiments, a counter may be incorporated into system 400 to tally the total quantity of organisms that disrupted laser beam 450. The counter can have a count that increases when a flash is produced. The counter may be a part of the camera 430, or alternatively, the counter may exist as an independent device.
Computer 605 includes a user interface 610, a processor 615, and a memory 620. Memory 620 may also be called a database for storing images recorded by a camera.
Although computer 605 is represented herein as a standalone device, it is not limited to such, but instead can be coupled to other devices, e.g. a camera, a rotational mirror, a laser device, a counter, or combinations thereof, in a distributed processing system.
User interface 610 includes an input device, e.g. a keyboard, for enabling a user to communicate information and command selections to processor 615. User interface 610 also includes an output device such as a display or a printer. A cursor control such as a mouse, track-ball, or joy stick, allows the user to manipulate a cursor on the display for communicating additional information and command selections to processor 615.
Processor 615 is an electronic device configured of logic circuitry that responds to and executes instructions.
Memory or database 620 is a computer-readable medium encoded with a computer program. In this regard, memory 620 stores data and instructions that are readable and executable by processor 615 for controlling the operation of processor 615. Memory 620 may be implemented in a random access memory (RAM), a hard drive, a read only memory (ROM), or a combination thereof. One of the components of memory 620 is a program module 625.
Program module 625 contains instructions for controlling processor 615 to execute the methods described herein. Processor 615, under control of program module 625 may provide commands to other devices in communication therewith. For example, processor 615 may be in communication with a camera, a laser device, a rotational mirror, a counter, memory 620, or combinations thereof. Processor 615 may command the laser device to produce laser light. Processor 615 may also command a rotational mirror to rotate about an axis. In this fashion, laser light produced by the laser device may be reflected from the rotational mirror to produce laser light throughout a plane. Further, processor 615 may also command the camera to record an image when a flash is produced. Processor 615 may also command the counter to count the total number of flashes. A flash occurs when an object obstructs and reflects the laser light thereby creating a difference in light gradient resulting in a flash. Processor 615, in communication with database 620, may transfer the image recorded by the camera, and/or transfer the count total from the counter to database 620 for storage.
The term “module” is used herein to denote a functional operation that may be embodied either as a stand-alone component or as an integrated configuration of a plurality of sub-ordinate components. Thus, program module 625 may be implemented as a single module or as a plurality of modules that operate in cooperation with one another. Moreover, although program module 625 is described herein as being installed in memory 620, and therefore being implemented in software, it could be implemented in any of hardware (e.g., electronic circuitry), firmware, software, or a combination thereof.
Processor 615 outputs, to user interface 610, a result of an execution of the methods described herein. Alternatively, processor 615 could direct the output to a remote device (not shown) via network 630. For example, user interface 610 may display the recorded images and may also display the count total. Alternatively, processor could direct the stored images and/or count total to a different database or remote device via network 630.
While program module 625 is indicated as already loaded into memory 620, it may be configured on a storage medium 635 for subsequent loading into memory 620. Storage medium 635 is also a computer-readable medium encoded with a computer program, and can be any conventional storage medium that stores program module 625 thereon in tangible form. Examples of storage medium 635 include a floppy disk, a compact disk, a magnetic tape, a read only memory, an optical storage media, universal serial bus (USB) flash drive, a digital versatile disc, or a zip drive. Alternatively, storage medium 635 can be a random access memory, or other type of electronic storage, located on a remote storage system and coupled to computer 605 via network 630.
While the present disclosure has been described with reference to one or more exemplary embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the present disclosure. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the disclosure without departing from the scope thereof. Therefore, it is intended that the present disclosure not be limited to the particular embodiment(s) disclosed as the best mode contemplated, but that the disclosure will include all embodiments falling within the scope of the appended claims.