System and method of treating abnormal tissue in the human esophagus

Information

  • Patent Grant
  • 8398631
  • Patent Number
    8,398,631
  • Date Filed
    Monday, October 27, 2008
    16 years ago
  • Date Issued
    Tuesday, March 19, 2013
    11 years ago
Abstract
An ablation catheter system and method of use is provided to endoscopically access portions of the human esophagus experiencing undesired growth of columnar epithelium. The ablation catheter system and method includes controlled depth of ablation features and use of either radio frequency spectrum, non-ionizing ultraviolet radiation, warm fluid or microwave radiation, which may also be accompanied by improved sensitizer agents.
Description
INCORPORATION BY REFERENCE

All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.


FIELD OF THE INVENTION

A system and method for treating abnormal epithelium in an esophagus.


BACKGROUND OF THE INVENTION

Two of the major functions of the human esophagus are the transport of food from intake to the stomach and the prevention of retrograde flow of gastrointestinal contents. The retrograde flow is, in part, prevented by two esophageal sphincters which normally remain closed and which are functional rather than distinct entities. In particular, a lower esophageal sphincter normally remains closed until parasympathetic activation causes its relaxation, allowing food to pass into the stomach from the esophagus. Various types of food and other activity may cause relaxation of the sphincter, such as fatty meals, smoking and beverages having xanthine content. Certain drugs or pharmaceuticals also may cause relaxation of this lower esophageal sphincter, as well as localized trauma or other problems such as neuromuscular disorders.


Regardless, patients having such difficulties may present with clinical indications including dysphagia, or difficulty in swallowing, as well as more classic symptoms of heartburn and other similar complaints. Recurrent problems of this nature often lead to a disorder known as reflux esophagitis, consisting of esophageal mucosa damage due to the interaction of the gastric or intestinal contents with portions of the esophagus having tissue not designed to experience such interaction. As suggested above, the causative agent for such problems may vary.


The treatment for the underlying cause of such inflammatory mechanisms is not the subject of this patent application, but rather the invention is focused on treatment of secondary damage to tissue in the effected region of the esophagus.


SUMMARY OF THE INVENTION

An ablation catheter and method of use is provided to endoscopically access portions of the human esophagus experiencing undesired growth of columnar epithelium. The ablation catheter system and method includes controlled depth of ablation features and use of either radio frequency spectrum, non-ionizing ultraviolet radiation, warm fluid or microwave radiation, which may also be accompanied by improved sensitizer agents.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic view of portions of an upper digestive tract in a human.



FIG. 2 is a schematic view of a device of the invention, in an expanded mode, within an esophagus.



FIG. 3 is a schematic view of a device of the invention.



FIG. 4 is a photograph of the device of FIG. 3.



FIG. 5 is a view of a device of the invention.



FIG. 6 shows the electrode patterns of the device of FIG. 3.



FIG. 7 shows electrode patterns of that may be used with a device of the invention.





DETAILED DESCRIPTION OF THE INVENTION

Various inflammatory disorders result in human patients who experience retrograde flow of gastric or intestinal contents from the stomach 10, as shown in FIG. 1, into the esophagus 15. This flow is shown by arrows A and B in FIG. 1. Although the causation of these problems are varied, this retrograde flow may result in secondary disorders which require treatment independent of and quite different from treatments appropriate for the primary disorder—such as disorders of the lower esophageal sphincter 18. One type of inflammatory disorder is known as Barrett's esophagus, in which the stomach acids, bile acids and enzymes regurgitated from the stomach and duodenum enter into the lower esophagus causing damage to the esophageal mucosa. Indeed, when this type of retrograde flow occurs frequently enough, damage may occur to esophageal epithelial cells 20. When normal replacement of damaged cells is overcome by the rate of damage, then the result may be symptomatic destruction of the healthy squamous epithelium. When this occurs, the squamous cells can be replaced by columnar epithelium 30 of the lower esophageal passageway. It is well established that although some of the columnar cells may be benign, others may result in adenocarcinoma. Accordingly, attention has been focused on identifying and removing this columnar epithelium in order to mitigate more severe implications for the patient. Examples of efforts to properly identify these growths, referred to as Barrett's epithelium or more generally as Barrett's esophagus, have included conventional visualization techniques known to practitioners in the field. Although certain techniques have been developed to characterize and distinguish such epithelium cells, such as disclosed in U.S. Pat. Nos. 5,524,622 and 5,888,743, there has yet to be shown efficacious means of accurately removing undesired growths of this nature from portions of the esophagus to mitigate risk of malignant transformation.


Means for accomplishing this procedure according to this invention includes use of the radio frequency spectrum at conventional levels to accomplish ablation of mucosal or submucosal level tissue. Such ablation is designed to remove the columnar growths 30 from the portions of the esophagus 15 so effected. In one embodiment, as shown in FIG. 2, an elongated flexible shaft 41 is provided for insertion into the body in any of various ways selected by the medical provider. The shaft may be preferably placed endoscopically, e.g. through the esophagus, or it may be placed surgically, or by other means. Radiant energy distribution means is provided at a distal end 45 of the flexible shaft to provide appropriate energy for ablation as desired. It is recognized that radiant energy of a preferred type includes radio frequency energy, microwave energy, or ultraviolet light, the latter possibly in combination with improved sensitizing agents. It is also recognized that another embodiment of this invention may utilize heatable fluid as an ablation energy medium.


In one embodiment the flexible shaft comprises a coaxial cable surrounded by an electrical insulation layer and comprises a radiant energy distribution means located at its distal end. In one form of the invention, a positioning and distending device around the distal end of the instrument is of sufficient size to contact and expand the walls of the body cavity in which it is placed (e.g. the esophagus) both in the front of the distribution means as well as on the sides of the distribution means. For example, the distal head of the instrument can be supported at a controlled distance from the wall of the esophagus by an expandable balloon member 52 so as to regulate and control the amount of energy transferred to the tissue comprising the esophageal wall. The balloon is preferably bonded to a portion of the flexible shaft at a point spaced from the distal head means.


Another embodiment comprises using the distending or expandable balloon member as the vehicle to deliver the ablation energy. A critical feature of this embodiment includes means by which the energy is transferred from the distal head portion of the invention to the membrane comprising the balloon member. For example, one type of energy distribution that may be appropriate and is incorporated herein in its entirety is shown in U.S. Pat. No. 5,713,942, in which an expandable balloon is connected to a power source which provides radio frequency power having the desired characteristics to selectively heat the target tissue to a desired temperature. The balloon 52 of the current invention may be constructed of an electroconductive elastomer such as a mixture of polymer, elastomer, and electroconductive particles, or it may comprise a nonextensable bladder having a shape and a size in its fully expanded form which will extend in an appropriate way to the tissue to be contacted. In another embodiment, an electroconductive member may be formed from an electroconductive elastomer wherein an electroconductive material such as copper is deposited onto a surface and an electrode pattern is etched into the material and then the electroconductive member is attached to the outer surface of the balloon member. In one embodiment, the electroconductive member, e.g. the balloon member 52, has a configuration expandable in the shape to conform to the dimensions of the expanded (not collapsed) inner lumen of the human lower esophageal tract. In addition, such electroconductive member may consist of a plurality of electrode area segments 58 having thermistor means or the like associated with each electrode segment by which the temperature from each of a plurality of segments is monitored and controlled by feedback arrangement. In another embodiment, it is possible that the electroconductive member may have means for permitting transmission of microwave energy to the ablation site. In yet another embodiment, the distending or expandable balloon member may have means for carrying or transmitting a heatable fluid within one or more portions of the member so that the thermal energy of the heatable fluid may be used as the ablation energy source.


A preferred device, such as that shown in FIG. 2, includes steerable and directional control means, a probe sensor for accurately sensing depth of cautery, and appropriate alternate embodiments so that in the event of a desire not to place the electroconductive elements within the membrane forming the expandable balloon member it is still possible to utilize the balloon member for placement and location control while maintaining the energy discharge means at a location within the volume of the expanded balloon member, such as at a distal energy distribution head of conventional design.


In one embodiment, the system disclosed herein may be utilized as a procedural method of treating Barrett's esophagus. This method includes the detection and diagnosis of undesired columnar epithelium within the esophagus. After determining that the portion or portions of the esophagus having this undesired tissue should be partially ablated, then the patient is prepared as appropriate according to the embodiment of the device to be utilized. Then, the practitioner prepares the patient as appropriate and inserts, in one embodiment, via endoscopic access and control, the ablation device shown and discussed herein through the mouth of the patient. Further positioning of portions of the device occur until proper location and visualization identifies the ablation site in the esophagus. Selection and activation of the appropriate quadrant(s) or portion(s)/segment(s) on the ablation catheter member is performed by the physician, including appropriate power settings according to the depth of cautery desired. Additional settings may be necessary as further ablation is required at different locations and/or at different depths within the patient's esophagus. Following the ablation, appropriate follow-up procedures as are known in the field are accomplished with the patient during and after removal of the device from the esophagus. The ablation treatment with ultraviolet light may also be accompanied by improved sensitizer agents, such as hematoporphyrin derivatives such as Photofrin®(porfimer sodium, registered trademark of Johnson & Johnson Corporation, New Brunswick, N.J.).


In yet another embodiment of the method of the invention, the system disclosed herein may be utilized as a procedural method of treating dysplasia or cancerous tissue in the esophagus. After determining that the portion or portions of the esophagus having undesired tissue which should be partially ablated, then the patient is prepared as appropriate according to the embodiment of the device to be utilized and treatment is provided as described above.


In yet another method of the invention, the practitioner may first determine the length of the portion of the esophagus requiring ablation and then may choose an ablation catheter from a plurality of ablation catheters of the invention, each catheter having a different length of the electrode member associated with the balloon member. For example, if the practitioner determined that 1 centimeter of the esophageal surface required ablation, an ablation catheter having 1 centimeter of the electrode member could be chosen for use in the ablation. The length of the electrode member associated with the balloon member can vary in length from 1 to 10 cm.


In yet another embodiment, a plurality of ablation catheters wherein the radiant energy distribution means are associated with the balloon member can be provided wherein the diameter of the balloon member when expanded varies from 12 mm to 25 mm. In this method, the practitioner will choose an ablation catheter having a diameter when expanded which will cause the esophagus to stretch and the mucosal layer to thin out, thus, reducing blood flow at the site of the ablation. The esophagus normally is 5 to 6 mm thick, with the method of the invention the esophagus is stretched and thinned so that the blood flow through the esophageal vasculature is occluded. It is believed that by reducing the blood flow in the area of ablation, the heat generated by the radiant energy is less easily dispersed to other areas of the esophagus thus focusing the energy to the ablation site.


One means a practitioner may use to determine the appropriate diameter ablation catheter to use with a particular patient would be to use in a first step a highly compliant balloon connected to pressure sensing means. The balloon would be inserted into the esophagus and positioned at the desired site of the ablation and inflated until an appropriate pressure reading was obtained. The diameter of the inflated balloon would be determined and an ablation device of the invention having a balloon member capable of expanding to that diameter would be chosen for use in the treatment. It is well known that the esophagus may be expanded to a pressure of 60-120 lbs./square inch. In the method of this invention, it is desirable to expand the expandable electroconductive member such as a balloon sufficiently to occlude the vasculature of the submucosa, including the arterial, capillary or venular vessels. The pressure to be exerted to do so should therefore be greater than the pressure exerted by such vessels.


Operation and use of a device of the invention are described as follows. The device used is shown schematically in FIGS. 3 and 5 and a photograph of the device is shown in FIG. 4. As shown in FIG. 5, the elongated flexible shaft 41 is connected to a multi-pin electrical connector 94 which is connected to the power source and includes a male luer connector 96 for attachment to a fluid source useful in expanding the expandable member. The elongated flexible shaft has an electrode 98 wrapped around the circumference. The expandable member of the device shown in FIGS. 3 and 4 further includes three different electrode patterns, the patterns of which are represented in greater detail in FIG. 6. Normally, only one electrode pattern would be used in a device of this invention. In this device, the elongated flexible shaft 41 comprises six bipolar rings 62 with 2 mm separation at one end of the shaft (one electrode pattern), adjacent to the bipolar rings is a section of six monopolar bands or rectangles 65 with 1 mm separation (a second electrode pattern), and another pattern of bipolar axial interlaced finger electrodes 68 is positioned at the other end of the shaft (a third electrode pattern). In this device, a null space 70 was positioned between the last of the monopolar bands and the bipolar axial electrodes. The catheter used in the study was prepared using a polyimide flat sheet of about 1 mil (0.001″) thickness coated with copper. The desired electrode patterns were then etched into the copper.


The electrode patterns of the invention may vary, other possible electrode patterns are shown in FIG. 7 as 80, 84, 88, and 92, respectively. Pattern 80 is a pattern of bipolar axial interlaced finger electrodes with 0.3 mm separation. Pattern 84 includes monopolar bands with 0.3 mm separation. Pattern 88 includes bipolar rings with 0.3 mm separation. Pattern 92 is electrodes in a pattern of undulating electrodes with 0.2548 mm separation.


In this case the electrodes were attached to the outside surface of an esophageal dilation balloon 72 having a diameter of 18 mm. The device was adapted to use radio frequency by attaching wires 74 as shown in FIG. 4 to the electrodes to connect them to the power source.


The balloon was deflated and the catheter inserted into the esophagus as described below. In addition to the series of three different electrode patterns a number of different energy factors were applied to the esophagus of a normal immature swine (about 25 kgs). First, an endoscope was passed into the stomach of the subject. The device of the invention was placed into the distal esophagus using endoscopic guidance. The balloon member was inflated to press the electrodes against the esophageal mucosa. There was no indication that balloon dilation resulted in untoward effects on the esophagus.


Once the balloon member and electrodes were in place the first set of radio frequency (“RF”) applications were made. Following endoscopic evaluation of the treated areas, the device was withdrawn proximally. The placement of the device was evaluated endoscopically to assure a gap of normal tissue between the area of the first application and the second application, which gap will assure identification of the two treatment areas during post procedure evaluations. The procedure was repeated a third time using a similar procedure to that of the second application. During the treatment the tissue impedance was monitored as an indicator of the progress of the treatment, high impedance being an indication of desiccation. Accordingly, the practitioner can determine through monitoring the tissue impedance when sufficient ablation has occurred.


The treatment parameters and observations from the first set of RF applications are shown in Table 1. The effect of the treatment was evaluated endoscopically. The areas of the esophagus treated (the “treatment patterns”) were clearly visible as white bands. Untreated areas had the normal red/pink color.









TABLE 1







Treatment Set 1: Parameters and Observations








Device
Observed Impedance










Location &

Initial
Terminal


Configuration
Treatment Protocol
(Ohms)1
(Ohms)













Distal//
25 watts @ 30 secs +
33
258


Bipolar
40 watts @ 30 secs


Monopolar
25 watts @ 30 secs
125
Shut off at 29 secs2


Band 1


Band 2
25 watts @ 30 secs
107
Shut off at 20 secs


Band 3
25 watts @ 30 secs
125
Shut off at 25 secs


Band 4
25 watts @ 30 secs
105
Shut off at 22 secs


Band 5
25 watts @ 30 secs
125
Full3 at 30 secs


Band 6
25 watts @ 30 secs
90
Shut off at 19 secs


Proximal//
15 watts @ 30 secs +
No data
No change from


Bipolar
40 watts @ 30 secs

baseline





Transformer tap = 50


Shut off usually occurs at 300 ohms.


“Full” indicates treatment progressed for the entire scheduled interval without an automatic termination event.






As can be seen from the table, once the observed impedance at the ablation site reached 300 ohms the radio frequency generator shut off the signal. The treatment parameters and observations from the second set of RF applications made mid level in the esophagus are shown in Table 2. As before the effect of the treatment was evaluated endoscopically. The treatment patterns were clearly visible.









TABLE 2







Treatment Set 2: Parameters and Observations








Device
Observed Impedance










Location &

Initial
Terminal


Configuration
Treatment Protocol
(Ohms)4
(Ohms)













Distal//
25 watts @ 60 secs
30
121


Bipolar


(jump at 30 secs)


Monopolar
20 watts @ 60 secs
112
103


Band 1


Full at 60 secs5


Band 2
20 watts @ 60 secs
108
300





Shut off at 25 secs


Band 3
20 watts @ 60 secs
109
301





Shut off at 31 secs


Band 4
20 watts @ 60 secs
108
300





Shut off at 27 secs


Band 5
20 watts @ 60 secs
115
301





Shut off at 42 secs


Band 6
20 watts @ 60 secs
109
301





Shut off at 24 secs


Proximal//
40 watts @ 60 secs
32
 37


Bipolar





Transformer tap = 50


“Full” indicates treatment progressed for the entire scheduled interval without an automatic termination event.






The treatment parameters and observations from the third set of RF applications are depicted in Table 3. The effect of the treatment was evaluated endoscopically. The treatment patterns were clearly visible as white bands as compared to the normal red/pink color.









TABLE 3







Treatment Set 3: Parameters and Observations








Device
Observed Impedance










Location &

Initial
Terminal


Configuration
Treatment Protocol
(Ohms)6
(Ohms)













Distal//
25 watts @ 120 secs
67
168


Bipolar


Dec at 106 secs


Monopolar
15 watts @ 90 secs
104
283


Band 1


Full at 90 secs8


Band 2
15 watts @ 90 secs
110
301





Shut off at 37 secs


Band 3
15 watts @ 90 secs
115
300





Shut off at 43 secs


Band 4
15 watts @ 90 secs
105
287





Full at 90 secs


Band 5
15 watts @ 90 secs
104
281





Full at 90 secs


Band 6
15 watts @ 90 secs
105
289





(inc at 38 secs)


Proximal//
40 watts @ 120 secs
87
105


Bipolar





Bipolar transformer tap = 35; Monopolar = 50


Monopolar treatment usually resulted in a dramatic decreased in “watts” read out within the middle and the end of the treatment interval. The decrease was from 15 watts (initial setting) to 3 or 4 watts at the end of the treatment cycle.


“Full” indicates treatment progressed for the entire scheduled interval without an automatic termination event.






The treatment transformer tap was changed for the bipolar treatments from 50 to 35. Of note is the observation that towards the end of the monopolar treatments, the watts output as reported on the generator decreased from a setting of 15 watts to a reading of 3 to 4 watts. The increase in impedance observed in the study may be useful as an endpoint for controlling the RF energy at the ablation site.


The RF energy can be applied to the electroconductive members in a variety of ways. In one embodiment, it is applied in the bipolar mode to the bipolar rings through simnultaneous activation of alternating rings. In another embodiment, it is applied to the bipolar rings through sequential activation of pairs of rings. In another embodiment, the RF energy can be applied in monopolar mode through sequential activation of individual monopolar bands or simultaneous activation of the monopolar bands.


After the treatment of the swine esophagus as described above using radio frequency, the esophagus was extirpated and fixed in 10 percent normal buffered formalin (NBF). Three distinct lesion areas were observed corresponding to the three treatment sites and the esophagus was divided into three sections that approximated the three treatment zones. Each segment was cut into 4 to 5 mm thick serial cross sections. Selected sections from each treatment segment were photographed and the photographs of representative treatment segments were assembled side by side to compare similar catheter electrode patterns among the three treatment regimens. The following observations were made. Almost all the treated segments demonstrated necrosis of the mucosa. Changes with the submucosal, muscularis and adventitial layers were observed, typically demonstrated by tissue discoloration suggestive of hemorrhage within the tissue. Finally in comparing the tissue to the normal esophageal morphology, most treated segments were dilated with thinned walls. Thus, all the electrode patterns and treatment parameters resulted in ablation of the mucosal layer of the esophagus.


The treated esophagus was sectioned into 44 sections with each section labeled as either a treatment region or a region adjacent to a treatment region. Each section was processed for histological examination and stained with H&E and reviewed twice. The following parameters were estimated and noted.


a. Percent Epithelial Slough:

  • Slough was defined as a separation of one or more layers of the epithelium as visualized at 100-× magnification.
  • b. Epith: Percent cell death:
  • The basal layers of the epithelium were reviewed at 400-× magnification.
  • Determination of “cell death” was based upon the following criteria:


Condensation of the nuclear material.


Loss of well-defined nuclear outline.


Loss of well-defined cellular detail.

  • c. Lamina propria//Muscularis mucosal//Submucosa:
  • Percent death:


Cell death was based primarily on the condensation of nuclear material.

  • d. Muscularis/Adventitia:


    Same as above.


The following table summarizes the percent slough, percent death in the mucosa and submucosa and percent death in the muscularis as determined during the above-described study.













TABLE 4








Percent
Percent





death//
death//


Section

Percent
Mucosa &
Muscu-


Number
Section Location
Slough
submucosa
laris



















1
Distal spacer
0
0
0


2
Distal//Bipolar Ring
0
0
0


3
Distal//Bipolar Ring
33
100
75


4
Distal//Bipolar Ring
100
100
50


5
Distal//Monopolar Band
100
100
75


6
Distal//Monopolar Band
100
100
75


7
Distal//Null band
100
100
50


8
Distal//Null band
100
100
75


9
Distal//Bipolar axial
50
95
50


10
Distal//Bipolar axial
75
90
25


11
Distal//Bipolar axial
50
75
25


12
Distal//Bipolar axial
50
75
25


13
Distal//Bipolar axial
50
100
25


14
Distal <> Mid spacer
0
0
0


15
Distal <> Mid spacer
0
0
0


16
Distal <> Mid spacer
0
0
0


17
Distal <> Mid spacer
0
0
0


18
Distal <> Mid spacer
5
5
5


19
Mid tmt//Bipolar ring
75
100
25


20
Mid tmt//Bipolar ring
60
100
25


21
Mid tmt//Bipolar ring
90
100
25


22
Mid tmt//Monpolar band
60
75
25


23
Mid tmt//Null band
65
95
10


24
Mid tmt//Null band
75
100
10


25
Mid tmt//Bipolar axial
65
95
10


26
Mid tmt//Bipolar axial
35
25
25


27
Mid tmt//Bipolar axial
25
25
10


28
Mid tmt//Bipolar axial
30
50
25


29
Mid tmt <> proximal spacer
65
25
50


30
Proximal//Bipolar ring
50
75
50


31
Proximal//Bipolar ring
25
75
25


32
Proximal//Bipolar ring
50
80
25


33
Proximal//Bipolar ring
75
75
50


34
Proximal//Monopolar band
90
50
50


35
Proximal//Monopolar band
100
99
75


36
Proximal//Monopolar band
100
100
75


37
Proximal//Null band
90
95
75


38
Proximal//Bipolar axial
50
25
50


39
Proximal//Bipolar axial
90
50
50


40
Proximal//Bipolar axial
100
75
75


41
Proximal//Bipolar axial
90
90
50


42
Proximal spacer
0
0
0


43
Proximal spacer
0
0
0


44
Proximal spacer
0
0
0









Various modifications to the above-mentioned treatment parameters can be made to optimize the ablation of the abnormal tissue. To obtain shallower lesions than the ones obtained in the above-mentioned study the RF energy applied may be increased while decreasing the treatment time. Also, the electrode patterns may be modified such as shown FIG. 7 to improve the evenness and shallowness of the resulting lesions. The system and method of the invention may also be modified to incorporate temperature feedback, resistance feedback and/or multiplexing electrode channels.


While a preferred embodiment of the present invention has been described, it should be understood that various changes, adaptations and modifications may be made therein without departing from the spirit of the invention and the scope of the appended claims.

Claims
  • 1. A method of ablating mucosal tissue in an esophagus, comprising: positioning an ablation device at a desired site in the esophagus, the ablation device comprising a highly compliant balloon capable of expanding in the esophagus;inflating the balloon to an appropriate pressure thereby extending at least a portion of the ablation device to a mucosal tissue surface at the site; andablating the tissue surface using the ablation device;wherein the ablating causes necrosis to at least 75% of a mucosa layer and a submucosa layer and less than 25% of an underlying muscalaris layer.
  • 2. The method of claim 1, wherein the inflating comprises expanding at least a portion of a circumference of the balloon into contact with the tissue surface.
  • 3. The method of claim 1, wherein the inflating comprises injecting expansion fluid into the balloon.
  • 4. The method of claim 1, wherein the inflating comprises expanding the balloon to a diameter conforming to an inner lumen of the esophagus.
  • 5. The method of claim 1, wherein the inflating comprises expanding the balloon to apply pressure to the tissue surface.
  • 6. The method of claim 5, further comprising applying a pressure to the tissue surface to at least partially occlude the vasculature of the submucosa layer.
  • 7. The method of claim 1, wherein the ablating comprises delivering sufficient energy to the mucosal tissue surface to create a lesion in the mucosal tissue.
  • 8. The method of claim 7, wherein the ablating comprises delivering between 15 Watts and 40 Watts to the tissue surface.
  • 9. The method of claim 1, wherein the ablating causes necrosis to at least 95% of the mucosa and submucosa layers.
  • 10. The method of claim 9, wherein the ablating causes necrosis to less than or equal to 10% of the underlying muscalaris layer.
  • 11. The method of claim 10, wherein the ablating causes necrosis to none of the underlying muscalaris layer.
  • 12. The method of claim 1, wherein ablation device is configured to deliver radiofrequency (RF) energy.
  • 13. The method of claim 12, the ablation device comprising bipolar alternating rings, wherein the ablating comprises delivering RF energy through simultaneous activation of the bipolar alternating rings.
  • 14. The method of claim 12, the ablation device comprising bipolar alternating rings, wherein the ablating comprises delivering RF energy through sequential activation of the bipolar alternating rings.
  • 15. The method of claim 12, the ablation device comprising monopolar rectangles, wherein the ablating comprises sequential activation of sets of rectangles.
  • 16. The method of claim 1, further comprising: determining impedance at the mucosal tissue surface of the esophagus during the ablating; andceasing the ablating based on the determined impedance.
  • 17. The method of claim 16, wherein the ceasing ablating is performed based on an observed increase in the determined impedance.
  • 18. The method of claim 16, wherein the ablating comprises delivering 40 Watts to the tissue surface and the ceasing occurs when the determined impedance reaches a terminal impedance value.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 10/370,645, filed Feb. 19, 2003 entitled “METHOD OF TREATING ABNORMAL TISSUE IN THE HUMAN ESOPHAGUS”, which is a divisional of U.S. patent application Ser. No. 09/714,344 filed Nov. 16, 2000, now U.S. Pat. No. 6,551,310 entitled “SYSTEM AND METHOD OF TREATING ABNORMAL TISSUE IN THE HUMAN ESOPHAGUS”, which claims the benefit of U.S. Provisional Patent Application No.: 60/165,687 filed Nov. 16, 1999 entitled “SYSTEM AND METHOD OF TREATING BARRETT'S EPITHELIUM”.

US Referenced Citations (386)
Number Name Date Kind
552832 Fort Jan 1896 A
3901241 Allen, Jr. Aug 1975 A
3924628 Droegemueller et al. Dec 1975 A
4011872 Komiya Mar 1977 A
4304239 Perlin Dec 1981 A
4311154 Sterzer et al. Jan 1982 A
4407298 Lentz et al. Oct 1983 A
4411266 Cosman Oct 1983 A
4532924 Auth et al. Aug 1985 A
4565200 Cosman Jan 1986 A
4640298 Pless et al. Feb 1987 A
4658836 Turner Apr 1987 A
4662383 Sogawa et al. May 1987 A
4674481 Boddie, Jr. et al. Jun 1987 A
4676258 Inokuchi et al. Jun 1987 A
4709698 Johnston et al. Dec 1987 A
4765331 Petruzzi et al. Aug 1988 A
4776349 Nashef et al. Oct 1988 A
4860744 Johnson et al. Aug 1989 A
4887614 Shirakami et al. Dec 1989 A
4895138 Yabe Jan 1990 A
4907589 Cosman Mar 1990 A
4930521 Metzger et al. Jun 1990 A
4943290 Rexroth et al. Jul 1990 A
4947842 Marchosky et al. Aug 1990 A
4949147 Bacuvier Aug 1990 A
4955377 Lennox et al. Sep 1990 A
4966597 Cosman Oct 1990 A
4969890 Sugita et al. Nov 1990 A
4976711 Parins et al. Dec 1990 A
4979948 Geddes et al. Dec 1990 A
4998539 Delsanti Mar 1991 A
5006119 Acker et al. Apr 1991 A
5010895 Maurer et al. Apr 1991 A
5019075 Spears et al. May 1991 A
5035696 Rydell Jul 1991 A
5045056 Behl Sep 1991 A
5046512 Murchie Sep 1991 A
5047028 Qian Sep 1991 A
5056532 Hull et al. Oct 1991 A
5057107 Parins et al. Oct 1991 A
5078717 Parins et al. Jan 1992 A
5083565 Parins Jan 1992 A
5084044 Quint Jan 1992 A
5088979 Filipi et al. Feb 1992 A
5100423 Fearnot Mar 1992 A
5106360 Ishiwara et al. Apr 1992 A
5117828 Metzger et al. Jun 1992 A
5122137 Lennox Jun 1992 A
5125928 Parins et al. Jun 1992 A
5151100 Abele et al. Sep 1992 A
5156151 Imran Oct 1992 A
5163938 Kambara et al. Nov 1992 A
5171299 Heitzmann et al. Dec 1992 A
5190541 Abele et al. Mar 1993 A
5197963 Parins Mar 1993 A
5197964 Parins Mar 1993 A
5215103 Desai Jun 1993 A
5236413 Fiering Aug 1993 A
5242441 Avitall Sep 1993 A
5255679 Imran Oct 1993 A
5256138 Burek et al. Oct 1993 A
5257451 Edwards et al. Nov 1993 A
5263493 Avitall Nov 1993 A
5275162 Edwards et al. Jan 1994 A
5275169 Afromowitz et al. Jan 1994 A
5277201 Stern Jan 1994 A
5281216 Klicek Jan 1994 A
5281217 Edwards et al. Jan 1994 A
5281218 Imran Jan 1994 A
5290286 Parins Mar 1994 A
5292321 Lee Mar 1994 A
5293869 Edwards et al. Mar 1994 A
5309910 Edwards et al. May 1994 A
5313943 Houser et al. May 1994 A
5314438 Shturman May 1994 A
5314466 Stern et al. May 1994 A
5316020 Truffer May 1994 A
5324284 Imran Jun 1994 A
5328467 Edwards et al. Jul 1994 A
5336222 Durgin, Jr. et al. Aug 1994 A
5345936 Pomeranz et al. Sep 1994 A
5348554 Imran et al. Sep 1994 A
5363861 Edwards et al. Nov 1994 A
5365926 Desai Nov 1994 A
5366490 Edwards et al. Nov 1994 A
5368557 Nita et al. Nov 1994 A
5368592 Stern et al. Nov 1994 A
5370675 Edwards et al. Dec 1994 A
5370678 Edwards et al. Dec 1994 A
5375594 Cueva Dec 1994 A
5383874 Jackson et al. Jan 1995 A
5383876 Nardella Jan 1995 A
5383917 Desai et al. Jan 1995 A
5385544 Edwards et al. Jan 1995 A
5397339 Desai Mar 1995 A
5398683 Edwards et al. Mar 1995 A
5401272 Perkins Mar 1995 A
5403311 Abele et al. Apr 1995 A
5409453 Lundquist et al. Apr 1995 A
5409483 Campbell et al. Apr 1995 A
5411025 Webster, Jr. May 1995 A
5413573 Koivukangas May 1995 A
5415657 Taymor-Luia May 1995 A
5421819 Edwards et al. Jun 1995 A
5423808 Edwards et al. Jun 1995 A
5423811 Imran et al. Jun 1995 A
5423812 Ellman et al. Jun 1995 A
5425704 Sakurai et al. Jun 1995 A
5428658 Oettinger et al. Jun 1995 A
5433739 Sluijter et al. Jul 1995 A
5435805 Edwards Jul 1995 A
5441499 Fritzsch Aug 1995 A
5443470 Stern et al. Aug 1995 A
5454782 Perkins Oct 1995 A
5454809 Janssen Oct 1995 A
5456662 Edwards et al. Oct 1995 A
5456682 Edwards et al. Oct 1995 A
5458571 Lampropoulos et al. Oct 1995 A
5458596 Lax et al. Oct 1995 A
5458597 Edwards et al. Oct 1995 A
5462545 Wang et al. Oct 1995 A
5465717 Imran et al. Nov 1995 A
5470308 Edwards et al. Nov 1995 A
5471982 Edwards et al. Dec 1995 A
5472441 Edwards et al. Dec 1995 A
5484400 Edwards et al. Jan 1996 A
5486161 Lax et al. Jan 1996 A
5490984 Freed Feb 1996 A
5496271 Burton et al. Mar 1996 A
5496311 Abele et al. Mar 1996 A
5500012 Brucker et al. Mar 1996 A
5505728 Ellman et al. Apr 1996 A
5505730 Edwards Apr 1996 A
5507743 Edwards et al. Apr 1996 A
5509419 Edwards et al. Apr 1996 A
5514130 Baker May 1996 A
5514131 Edwards et al. May 1996 A
5517989 Frisbie et al. May 1996 A
5520684 Imran May 1996 A
5522815 Durgin, Jr. et al. Jun 1996 A
5524622 Wilson Jun 1996 A
5531676 Edwards et al. Jul 1996 A
5531677 Lundquist et al. Jul 1996 A
5533958 Wilk Jul 1996 A
5536240 Edwards et al. Jul 1996 A
5536267 Edwards et al. Jul 1996 A
5540655 Edwards et al. Jul 1996 A
5542916 Hirsch et al. Aug 1996 A
5542928 Evans et al. Aug 1996 A
5549644 Lundquist et al. Aug 1996 A
5549661 Kordis et al. Aug 1996 A
RE35330 Malone et al. Sep 1996 E
5554110 Edwards et al. Sep 1996 A
5556377 Rosen et al. Sep 1996 A
5558672 Edwards et al. Sep 1996 A
5558673 Edwards et al. Sep 1996 A
5562720 Stern et al. Oct 1996 A
5566221 Smith et al. Oct 1996 A
5569241 Edwards Oct 1996 A
5571116 Bolanos et al. Nov 1996 A
5578007 Imran Nov 1996 A
5588432 Crowley Dec 1996 A
5588960 Edwards et al. Dec 1996 A
5591195 Taheri et al. Jan 1997 A
5599345 Edwards et al. Feb 1997 A
5609151 Mulier et al. Mar 1997 A
5620480 Rudie Apr 1997 A
5621780 Smith et al. Apr 1997 A
5624439 Edwards et al. Apr 1997 A
5651780 Jackson et al. Jul 1997 A
5651788 Fleischer et al. Jul 1997 A
5658278 Imran et al. Aug 1997 A
5672153 Lax et al. Sep 1997 A
5676674 Bolanos et al. Oct 1997 A
5688266 Edwards et al. Nov 1997 A
5688490 Tournier et al. Nov 1997 A
5702438 Avitall Dec 1997 A
5709224 Behl et al. Jan 1998 A
5713942 Stern et al. Feb 1998 A
5716410 Wang et al. Feb 1998 A
5720293 Quinn et al. Feb 1998 A
5730128 Pomeranz et al. Mar 1998 A
5732698 Swanson et al. Mar 1998 A
5738096 Ben-Haim Apr 1998 A
5748699 Smith May 1998 A
5769846 Edwards et al. Jun 1998 A
5769880 Truckai et al. Jun 1998 A
5779698 Clayman et al. Jul 1998 A
5797835 Green Aug 1998 A
5797903 Swanson et al. Aug 1998 A
5800334 Wilk Sep 1998 A
5800429 Edwards Sep 1998 A
5807261 Benaron et al. Sep 1998 A
5820629 Cox Oct 1998 A
5823197 Edwards Oct 1998 A
5823955 Kuck et al. Oct 1998 A
5827273 Edwards Oct 1998 A
5830129 Baer et al. Nov 1998 A
5830213 Panescu et al. Nov 1998 A
5833688 Sieben et al. Nov 1998 A
5836874 Swanson et al. Nov 1998 A
5842984 Avitall Dec 1998 A
5846196 Siekmeyer et al. Dec 1998 A
5860974 Abele Jan 1999 A
5861036 Godin Jan 1999 A
5863291 Schaer Jan 1999 A
5871483 Jackson et al. Feb 1999 A
5876340 Tu et al. Mar 1999 A
5888743 Das Mar 1999 A
5891134 Goble et al. Apr 1999 A
5895355 Schaer Apr 1999 A
5902263 Patterson et al. May 1999 A
5904711 Flom et al. May 1999 A
5925044 Hofmann et al. Jul 1999 A
5938694 Jaraczewski et al. Aug 1999 A
5964755 Edwards Oct 1999 A
5976129 Desai Nov 1999 A
5984861 Crowley Nov 1999 A
5997534 Tu et al. Dec 1999 A
6006755 Edwards Dec 1999 A
6010511 Murphy Jan 2000 A
6012457 Lesh Jan 2000 A
6016437 Tu et al. Jan 2000 A
6023638 Swanson et al. Feb 2000 A
6027499 Johnston et al. Feb 2000 A
6033397 Laufer et al. Mar 2000 A
6039701 Sliwa et al. Mar 2000 A
6041260 Stern et al. Mar 2000 A
6044846 Edwards Apr 2000 A
6053172 Hovda et al. Apr 2000 A
6053913 Tu et al. Apr 2000 A
6056744 Edwards May 2000 A
6059719 Yamamoto et al. May 2000 A
6068629 Haissaguerre et al. May 2000 A
6071277 Farley et al. Jun 2000 A
6073052 Zelickson et al. Jun 2000 A
6086558 Bower et al. Jul 2000 A
6091993 Bouchier et al. Jul 2000 A
6091995 Ingle et al. Jul 2000 A
6092528 Edwards Jul 2000 A
6095966 Chornenky et al. Aug 2000 A
6096054 Wyzgala et al. Aug 2000 A
6102908 Tu et al. Aug 2000 A
6112123 Kelleher et al. Aug 2000 A
6120434 Kimura et al. Sep 2000 A
6123703 Tu et al. Sep 2000 A
6123718 Tu et al. Sep 2000 A
6138046 Dalton Oct 2000 A
6142994 Swanson et al. Nov 2000 A
6146149 Daoud Nov 2000 A
6149647 Tu et al. Nov 2000 A
6162237 Chan Dec 2000 A
6179836 Eggers et al. Jan 2001 B1
6182666 Dobak, III Feb 2001 B1
6183468 Swanson et al. Feb 2001 B1
6197022 Baker Mar 2001 B1
6237355 Li May 2001 B1
6238392 Long May 2001 B1
6245065 Panescu et al. Jun 2001 B1
6254598 Edwards et al. Jul 2001 B1
6254599 Lesh et al. Jul 2001 B1
6258087 Edwards et al. Jul 2001 B1
6273886 Edwards et al. Aug 2001 B1
6321121 Zelickson et al. Nov 2001 B1
6325798 Edwards et al. Dec 2001 B1
6325800 Durgin et al. Dec 2001 B1
6338726 Edwards et al. Jan 2002 B1
6355031 Edwards et al. Mar 2002 B1
6355032 Hovda et al. Mar 2002 B1
6358245 Edwards et al. Mar 2002 B1
6363937 Hovda et al. Apr 2002 B1
6383181 Johnston et al. May 2002 B1
6394949 Crowley et al. May 2002 B1
6402744 Edwards et al. Jun 2002 B2
6405732 Edwards et al. Jun 2002 B1
6409723 Edwards Jun 2002 B1
H2037 Yates et al. Jul 2002 H
6416511 Lesh et al. Jul 2002 B1
6423058 Edwards et al. Jul 2002 B1
6425877 Edwards Jul 2002 B1
6428536 Panescu et al. Aug 2002 B2
6432104 Durgin et al. Aug 2002 B1
6440128 Edwards et al. Aug 2002 B1
6448658 Takata et al. Sep 2002 B2
6451014 Wakikaido et al. Sep 2002 B1
6454790 Neuberger et al. Sep 2002 B1
6464697 Edwards et al. Oct 2002 B1
6468272 Koblish et al. Oct 2002 B1
6514246 Swanson et al. Feb 2003 B1
6514249 Maguire et al. Feb 2003 B1
6535768 Baker et al. Mar 2003 B1
6544226 Gaiser et al. Apr 2003 B1
6547776 Gaiser et al. Apr 2003 B1
6547787 Altman et al. Apr 2003 B1
6551302 Rosinko et al. Apr 2003 B1
6551310 Ganz et al. Apr 2003 B1
6562034 Edwards et al. May 2003 B2
6572578 Blanchard Jun 2003 B1
6572639 Ingle et al. Jun 2003 B1
6575966 Lane et al. Jun 2003 B2
6589238 Edwards et al. Jul 2003 B2
6613047 Edwards Sep 2003 B2
6641581 Muzzammel Nov 2003 B2
6663626 Truckai et al. Dec 2003 B2
6673070 Edwards et al. Jan 2004 B2
6682528 Frazier et al. Jan 2004 B2
6695764 Silverman et al. Feb 2004 B2
6712074 Edwards et al. Mar 2004 B2
6712814 Edwards et al. Mar 2004 B2
6740082 Shadduck May 2004 B2
6749607 Edwards et al. Jun 2004 B2
6752806 Durgin et al. Jun 2004 B2
6837886 Collins et al. Jan 2005 B2
6846312 Edwards et al. Jan 2005 B2
6860878 Brock Mar 2005 B2
6866663 Edwards et al. Mar 2005 B2
6872206 Edwards et al. Mar 2005 B2
6917834 Koblish et al. Jul 2005 B2
6929642 Xiao et al. Aug 2005 B2
6971395 Edwards et al. Dec 2005 B2
6974456 Edwards et al. Dec 2005 B2
6994704 Qin et al. Feb 2006 B2
7048734 Fleischman et al. May 2006 B1
7056320 Utley et al. Jun 2006 B2
7083620 Jahns et al. Aug 2006 B2
7089063 Lesh et al. Aug 2006 B2
7122031 Edwards et al. Oct 2006 B2
7125407 Edwards et al. Oct 2006 B2
7150745 Stern et al. Dec 2006 B2
7165551 Edwards Jan 2007 B2
7167758 Baker et al. Jan 2007 B2
7184827 Edwards Feb 2007 B1
7293563 Utley et al. Nov 2007 B2
7326207 Edwards Feb 2008 B2
7329254 West et al. Feb 2008 B2
7425212 Danek et al. Sep 2008 B1
7727191 Mihalik et al. Jun 2010 B2
20010041887 Crowley Nov 2001 A1
20010044625 Hata et al. Nov 2001 A1
20010051802 Woloszko et al. Dec 2001 A1
20030093117 Saadat May 2003 A1
20030109837 McBride-Sakal Jun 2003 A1
20030158550 Ganz et al. Aug 2003 A1
20030191512 Laufer et al. Oct 2003 A1
20040087936 Stern et al. May 2004 A1
20040147916 Baker Jul 2004 A1
20040172016 Bek et al. Sep 2004 A1
20040204708 Edwards et al. Oct 2004 A1
20040215235 Jackson et al. Oct 2004 A1
20040215296 Ganz et al. Oct 2004 A1
20050010162 Utley et al. Jan 2005 A1
20050033271 Qin et al. Feb 2005 A1
20050070978 Bek et al. Mar 2005 A1
20050107829 Edwards et al. May 2005 A1
20050143727 Koblish et al. Jun 2005 A1
20050149013 Lee Jul 2005 A1
20050159743 Edwards et al. Jul 2005 A1
20050215983 Brock Sep 2005 A1
20050245926 Edwards et al. Nov 2005 A1
20060009758 Edwards et al. Jan 2006 A1
20060015162 Edward et al. Jan 2006 A1
20060041256 Edwards et al. Feb 2006 A1
20060086363 Qin et al. Apr 2006 A1
20060095032 Jackson et al. May 2006 A1
20060247614 Sampson et al. Nov 2006 A1
20060259028 Utley et al. Nov 2006 A1
20060259029 Utley et al. Nov 2006 A1
20060259030 Utley et al. Nov 2006 A1
20060282071 Utley et al. Dec 2006 A1
20070066973 Stern et al. Mar 2007 A1
20070100333 Jackson et al. May 2007 A1
20070118104 Wallace et al. May 2007 A1
20070118106 Utley et al. May 2007 A1
20070135809 Utley et al. Jun 2007 A1
20070142831 Shadduck Jun 2007 A1
20070299433 Williams et al. Dec 2007 A1
20080097427 Stern et al. Apr 2008 A1
20080275445 Kelly et al. Nov 2008 A1
20080319350 Wallace et al. Dec 2008 A1
20090012512 Utley et al. Jan 2009 A1
20090012513 Utley et al. Jan 2009 A1
20090012518 Utley et al. Jan 2009 A1
20100063495 Utley et al. Mar 2010 A1
20100130970 Williams et al. May 2010 A1
20100234840 Jackson et al. Sep 2010 A1
Foreign Referenced Citations (51)
Number Date Country
3838840 May 1990 DE
4303882 Aug 1994 DE
0105677 Apr 1984 EP
0115420 Aug 1984 EP
0139607 May 1985 EP
0251745 Jan 1988 EP
0521595 Jan 1993 EP
0608609 Aug 1994 EP
1634542 Mar 2006 EP
7-184919 Jul 1995 JP
8-506738 Jul 1996 JP
8-509875 Oct 1996 JP
2003510160 Mar 2003 JP
WO 9101773 Feb 1991 WO
WO 9103207 Mar 1991 WO
WO 9210142 Jun 1992 WO
WO 9308755 May 1993 WO
WO 9407446 Apr 1994 WO
WO 9410925 May 1994 WO
WO 9421165 Sep 1994 WO
WO 9422366 Oct 1994 WO
WO 9426178 Nov 1994 WO
WO 9518575 Jul 1995 WO
WO 9519142 Jul 1995 WO
WO 9525472 Sep 1995 WO
WO 9600042 Jan 1996 WO
WO 9616606 Jun 1996 WO
WO 9629946 Oct 1996 WO
WO 9704702 Feb 1997 WO
WO 9706857 Feb 1997 WO
WO 9732532 Sep 1997 WO
WO 9743971 Nov 1997 WO
WO 9812999 Apr 1998 WO
WO 9814238 Apr 1998 WO
WO 9818393 May 1998 WO
WO 9903413 Jan 1999 WO
WO 9935987 Jul 1999 WO
WO 9942046 Aug 1999 WO
WO 9955245 Nov 1999 WO
WO 0001313 Jan 2000 WO
WO 0059393 Oct 2000 WO
WO 0062699 Oct 2000 WO
WO 0066017 Nov 2000 WO
WO 0066021 Nov 2000 WO
WO 0066052 Nov 2000 WO
WO 0069376 Nov 2000 WO
WO 0122897 Apr 2001 WO
WO 0135846 May 2001 WO
WO 0145550 Jun 2001 WO
WO 0189440 Nov 2001 WO
WO 2007061984 May 2007 WO
Non-Patent Literature Citations (22)
Entry
Castell, D.O. Gastroesophageal Reflux Disease: Current Strategies for Patient Management. Arch Fam Med. 1996; 5(4):221-227.
Dallamagne et al; Laparoscopic Nissen Fundoplication: Preliminary. Surgical Laparoscopy and Endoscopy. 1991; 1(3):138-143.
Hinder et al; The Technique of Laparoscopic Nissen Fundoplication. Surgical Laparoscopy and Endoscopy. 1992; 2(3):265-272.
Kaneko et al; Physiological Laryngeal Pacemaker. Trans Am Soc. Artif Intern Organs. 1985; XXXI:293-296.
Karlstrom et al; Ectopic Jejunal Pacemakers and Enterogastric Reflux Roux Gastrectomy: Effect of Intestinal Pacing. Surgery. 1989; 106(3):486-495.
Kelly, K.A. et al; Duodenal-Gastric Reflux and Slowed Gastric Emptying by Electrical Pacing of the Canine Duodenal Pacesetter Potential. Gastroenterology. 1977; 72(3):429-433.
Mugica, et al. Direct Diaphragm Stimulation. PACE. 1987; 10:252-256.
Mugica, et al., Preliminary Test of a Muscular Diaphragm Pacing System on Human Patients. Neurostimulation: An Overview, chapter 21. 1985; 263-279.
Reynolds, J.C. Influence of Pathophysiology, Severity, and Cost on the Medical Management of Gastroesophageal Reflux Disease. Am J. Health-Syst Phar. 1996; 53(22sul3):S5-S12.
Rice et al; Endoscopic Paranasal Sinus Surgery. Chapter 5, Functional Endoscopic Paranasal Sinus Surgery, The Technique of Messerklinger. Raven Press. 1988; 75-102.
Rice et al; Endoscopic Paranasal Sinus Surgery. Chapter 6, Total Endoscopic Sphenoethmoidectomy. The Technique of Wigand. Raven Press. 1988; 103-125.
Urshel, J.D. Complications of Antireflux Surgery. Am J. Surg. 1993; 166 (1):68-70.
Wallace et al; U.S. Appl. No. 11/830,251 entitled “Cleaning Devices and Methods,” filed Jul. 30, 2007.
Utley et al; U.S. Appl. No. 11/830,291 entitled “Cleaning Device and Methods,” filed Jul. 30, 2007.
Utley, David S.; U.S. Appl. No. 12/270,373 entitled “System and method for ablational treatment of uterine cervical neoplasma,” filed Nov. 13, 2008.
Shadduck, John H.; U.S. Appl. No. 12/751,803 entitled “Surgical instruments and techniques for treating gastro-esophageal reflux disease,” filed Mar. 31, 2010.
Shadduck, John; U.S. Appl. No. 12/368,943 entitled “Surgical instruments and techniques for treating gastro-esophageal reflux disease,” filed Feb. 10, 2009.
Wallace et al.; U.S. Appl. No. 12/404,159 entitled “Auto-aligning ablating device and method of use,” filed Mar. 13, 2009.
Wallace et al.; U.S. Appl. No. 13/051,738 entitled “Selectively expandable operative element support structure and methods of use,” filed Mar. 18, 2011.
Jackson, Jerome; U.S. Appl. No. 13/181,484 entitled “Methods and systems for treatment of tissue in a body lumen,” filed Jul. 12, 2011.
Utley et al.; U.S. Appl. No. 13/181,490 entitled “Precision ablating method,” filed Jul. 12, 2011.
Jackson et al.; U.S. Appl. No. 13/189,793 entitled “Methods and Systems for Determining Physiologic Characteristics for Treatment of the Esophagus,” filed Jul. 25, 2011.
Related Publications (1)
Number Date Country
20090048593 A1 Feb 2009 US
Provisional Applications (1)
Number Date Country
60165687 Nov 1999 US
Divisions (1)
Number Date Country
Parent 09714344 Nov 2000 US
Child 10370645 US
Continuations (1)
Number Date Country
Parent 10370645 Feb 2003 US
Child 12259136 US