The present invention relates generally to the control and color tuning of luminaries and more particularly to a system and method that controls and color tunes multiple luminaries on a 2-wire circuit.
During the past few years, there have been different methodologies developed to control light fixtures. Many of these have required sophisticated networks of transmitters and receivers. These systems have generally been too costly for residential use.
Recently, systems that transmit power of network cabling have also been developed. One particular system is called “Power Over Ethernet” (POE). These systems apply a power source and supply current to power devices over network data signaling lines. This allows remote powering of both controllers and end devices.
It would be tremendously advantageous to have a system that allowed both light bulb brightness and color temperature to be controlled remotely over two wires. This system should use simple components that keep the cost within bounds. A controller should accept color and brightness commands from a network.
The present invention relates to a system and method for controlling a multiplicity of light bulbs or luminaries connected to a single wire pair. These can be light fixtures, individual luminaries, strings of luminaries or any other type of lighting. The bulbs contain minimum circuitry to allow dimming and color tuning by pulses on the wire pair without the need for a separate control wire or control communication bus or network. A single bulb can be color tuned to many different colors as well as dimmed and turned on and off. The present invention includes a driver module with a controller that receives commands over a network. The driver module also contains a pulse generation circuit that generates and applies cyclic pulses to the two-wire output. The controller can adjust and control the amplitude of the cyclic pulses dynamically on a pulse by pulse basis. Each luminary has a two-wire input attached to the two-wire output of the driver module. The luminary contains a several LED strings, each with a different color temperature. Each luminary also has a voltage filter associated with each LED string. The voltage filter accepts a particular pulse amplitude window to turn on its associated LED string. The driver selects a particular LED string by supplying a pulse to the voltage filter associated with that LED string where the amplitude falls within the particular pulse amplitude window of the voltage filter. The driver controls average bulb color temperature by selecting different LED strings within the luminary cyclically on a time-percentage basis to produce a desired average bulb color temperature. The cyclic pulses form a pulse train with each cycle typically containing at least a sync pulse and a power pulse. In various embodiments of the invention, color tuning is done with the amplitude of the sync pulse, while brightness is controlled by the amplitude of the power pulse.
Attention is now directed to several drawings that illustrate features of the present invention.
Several figures and illustrations have been provided to aid in understanding the present invention. The scope of the present invention is not limited to what is shown in the figures.
The present invention relates to a system and method that achieves full control of power and light color while keeping the component count down and the cost low. The invention includes a local driver powered by a local voltage or powered over a network with a system such as POE. It also includes a multiplicity of luminaries connected to the driver using only a single wire pair.
The driver 1 in the embodiment of
In the embodiment of
Current from the PWM switch 24 passes through an off/on switch 29 that is under control of the controller 21 through command over the network. The off/on switch 29 performs the simple function of turning the entire driven system completely off or on.
An optional current control circuit 30 allows the controller 21 to adjust and control the total current with a transistor 33. A monitor circuit 34 monitors the total bulb current and reports that to the controller through a current feedback path 31. Current is actually measured across a resistor 32 that drives an amplifier 35 to produce the current feedback 31.
Turning to
Voltage pulses enter at the port 40 and enter a voltage divider of two resistors R141 and R242. This voltage divider drives the base of transistor Q343 through a resistor R347. A capacitor C248 is also connected to the base of Q343 to smooth since the input consists of pulses. Resistors R242 and R347 are typically the same value R. Changing R selects different voltage windows. If the voltage is below the window (too low), switch Q146 is open preventing the LEDs from lighting. Also, if the voltage is too low, transistor Q343 is off preventing electronic switch Q244 from firing. When the voltage is above the window (too high), transistor Q343 conducts causing electronic switch Q244 to fire effectively shunting incoming current away from the LED string to ground through resistor R445. When the pulse height voltage is within a particular range determined by the voltage divider and capacitor, switch Q146 is on, and electronic switch Q244 is off allowing current to flow through the LED string 47. The circuit depicted in
A typical bulb can have two or more circuits such as shown in
If R2 and R3 are set equal, the following is a sample color selection table:
R=1 k ohm—Green
R=2 k ohm—Blue
R=3 k ohm—Red
R=4 k ohm—Warm White
R=5 k ohm—Cold White
The above table is for reference only. The designer can select LED strings with different colors as desired and assign them to different voltage windows. The resistor value R is determined at manufacture time to match a particular voltage filter to a particular LED string within the bulb. It is clear that the circuit can allow N different color values, where N is a positive integer. In the above example, N=5.
A typical embodiment of the present invention is to have two LED strings and two voltage filters present in a single bulb. For example, the first LED string may have a color temperature of 3000 degree white color, while the second LED string may have a color temperature of 5000 degrees. By switching power between these two stings on a percentage basis, the color temperature of the single bulb can be varied over a wide range. In this example, the cycle repetition rate can be around 500 cycles per second (or one power pulse every 2 msec), causing a blend of colors from the two strings. For example, if the 3000 degree string is driven 40% of the time, and the 5000 degree string is driven 60% of the time, the resulting color temperature is 3800 degrees. The human eye performs the integration making the color appear uniform at 3800 degrees. The timing of the signal comes from the controller in the drive module and adjusts the final bulb color to a color that can be commanded over the network from a remote location. As previously stated, the driver and bulbs can be powered over the network using a system like POE, or they can be locally powered.
The above example used only two LED strings; however, it is clear that a single bulb could contain more than two strings. The constraint is available space and cost. It is also clear that different bulbs can be supplied with different color ranges using LEDs of different color and different voltage filters.
It is also clear that the driver module can be wired in parallel to a multiplicity of different luminaries, and that different luminaries can have different selectable color temperatures.
In summary, the present invention allows a local driver module to control a multiplicity of bulbs or luminaries from network commands. The driver can turn bulbs or stings on and off, control brightness, and control color through pulse height. Different LED strings within the same bulb are dynamically selected on a cycle-based system allowing color tuning by selecting a particular LED string for a different percentage of on time.
Several descriptions and illustrations have been presented to aid in understanding the present invention. One with skill in the art will realize that numerous changes and variations may be made without departing from the spirit of the invention. Each of these changes and variations is within the scope of the present invention.