Embodiments of the present disclosure relate generally to textile manufacturing machines, and more specifically, to the field of strand unspooling mechanisms on textile manufacturing machines.
Most textile equipment is used for traditional textile manufacturing applications, such as apparel, and utilizes traditional yarns such as cotton, wool, polyester, nylon, elastics, and other common materials. OEM textile equipment is generally engineered to support the apparel industry. Modern textile machines, such as electronic knitting equipment, have variable speed motors driving the fabric making process. This is true for circular knitting machines, warp knitting machines, flat knitting machines, certain braiding and webbing machines. Flat V-bed knitting machines create unique challenges. Particularly, when feeding traditional materials into a flat V-bed machine in a knitting process, selected feeders may travel different distances on each traverse of the machine, may remain static for some periods of time in the knitting process, may start abruptly or come to sudden halts. Knitting materials (e.g., yarns or strands) are wound or otherwise packaged on spools, flanged cores or other cylindrical packaging, which stand on end according to the OEM standard feed configuration.
When they are deployed and fed to the machine for knitting, the materials tend to over spin, snag on flanges, and slide over itself. Standard machine builder package holders or spindles hold the cylinder-shaped packages on their ends and deploy the materials. For example, a holder or spindle pulls a yarn up one end where it spirals on itself, adding twist to the material. This twist builds up as the material is deployed and creates a hard spot, containing excess twist in one section, typically resulting in the material work-hardening and breaking on itself. When the machine stops, the cylinder continues to spin and the slack slides over itself, which can cause tanglement when the feed starts again. The same packages, if mounted on a slanted or level horizontal spindle that is perpendicular to the machine as in circular stands or creels, pose the same torqueing problem. Slanting the perpendicular spindles (package holders) adds to the tangling problem, with the materials sliding over themselves.
Slick materials (such as monofilaments and wires) slide down the spools over other wrapped strands of material, which usually causes a snag on the spool and stops the deployment of material. The material may break at the needle in the machine or at the spool. Conversely, strong materials can break machine parts, guides and needles, and stop motions.
Mounting the packages horizontal and parallel to the machine solves the torqueing problem, but this makes the packages difficult to start spinning during operation. Sudden starts can break the material, sudden stops cause the issues of: an undesired unraveling; loose strands; tangling the material on the packaging; potential snagging on other parts of the equipment; loose material (slack) not wound back on to the spool; slack in the strand causing loose rows to be knitted in the next or several next fabric rows and resulting in inconsistent fabrication. Conversely, restarting the cylindrical packaging in order to deploy material again after a machine stop or feeder pause can create tight rows in the next or several next fabric rows, resulting in inconsistent knitting. The row may be so tight as to break at the knitting needle, perhaps even break the needle. Once a break has occurred in a material such a filament, there is no way to repair the knitted construction without producing an obvious defect. The machine must be stopped, the end of the tangled mess found on the cylinder package must be located and restrung throughout the machine, which is a frustrating process.
This is particularly true of monofilaments, multi-filaments, carbon fiber constructions, fiber glass, filament wires, cables, fiber optics, silicon, rubber, elastics, chain, cord, cable, fiber reinforcement materials for composites, stiff materials, fishing line, and other slick or shiny materials. The knitting process must be restarted again. The existing workpiece has to be discarded, no matter where it is currently in the knitting process. There can be minutes, hours, or in the case of some composite materials, days already invested into the knitting process, as well as expensive materials.
Precisely controlled unspooling is particularly important when controlled amounts of material must be incorporated into a fabrication. Most existing unspooling tensioning devices apply torque to the cylinder-shaped package and spindle on which the package or the spool is mounted, thereby allowing the material to be deployed constantly as a positive feed. However, this is problematic on textile equipment, specifically weft knitting or V-bed machines. The main reason is that the belt drive systems move feeders only where there is knitting operation occurring, and thus the feeders start/stop suddenly. Starting a feeder can be a jerky motion, which is difficult for positive feed systems to manage precisely.
For typical yarn constructions on standard packaging on a knitting machine, standard spindle positioning is used on the machine, and the machine is designed to keep this erratic motion by using an electronic stop motion system.
As illustrated, the stop motion system has a metal (or metalized) spring tension arm 7 with an eyelet 9 at the end to thread material strands 9. When there is too much slack (tension is too low) on the material strand or the material breaks, the metalized spring arm 7 raises to meet an electrified wire inside the housing to create a circuit that stops the machine abruptly. This spring arm action halts materials being pulled and the entire knitting process. The spring arm action is activated if the strand breaks.
A secondary mechanical action occurs with either of two metal strips 10 that ride along the strand in the stop motion assembly and are triggered by linear irregularity in the material, or in the case if there is a knot sensed in the cymbal guides 11, or in one of several manual tensioning devices 12 on the stop motion assembly. As long as a minimum tension is continuously applied to the material feeding through the machine, and there are no sensed linear defects, the stop sensors will not be activated. The tensions in most stop motion assemblies are adjustable thought a series of mechanical spring-loaded dials that put torque tension on the spring arm 7, the manual tensioning devises 12, and the sensitivity of the knot catchers 10.
In a majority of flat knitting or V-bed machines currently on the market, for example: a Stoll CMS 530 HP electronic knitting machine, or a Shima Seiki SRY123lp, or a Cixing HP2-45, or one of many other similarly laid out flat-knitting machine makes and models, which have the standard OEM stop motions mounted atop the machine as in
The term “V-bed” or “flat-bed weft knitting” is used to describe the construction of fabric by feeding yarn and forming loops in the horizontal (“weft”) direction.
Yarn 9 is fed into the machine by automatically. As shown in
Several strands may be grouped together in a warp structure. These groups may knit, tuck, inlay or plait or in any combination of structures and in any combination of directions. They may travel asymmetrically 32, in separate groups with differing structures 33, in overlapping group structures 34.
The embodiments can be better understood with reference to the following drawings and description. The components in the figures are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the embodiments. Moreover, in the figures, like reference numerals designate corresponding parts throughout the different views.
Embodiments of the present disclosure provide an automated unspooling mechanism on a textile machine that includes a feed device capable of controlling the tension of the knitting material and creating a variable deployment speed by which the material is unspooled from a cylinder-shaped package.
Embodiments of the present disclosure provide a unspooling mechanism for a specialized and non-traditional material from a package at graduating speeds of deployment, avoiding the release of too much or too little material that would occur in abrupt deployment, while also preventing the material from torqueing on itself during deployment. The knitting machine can be stopped by a metal deployment arm and arm guide, which flexes and bows with the increased and decreased resistance of drag and friction of deploying yarn from a package. When the arc of the deployment arm reaches a designated obtuse angle and touches a contact point on the stop motion, it creates a closed circuit to send a signal to the machine controller to stop the machine. Additionally, a magnetic motor system (e.g., a step motor, or other such variable motor) is used to slow or speed the deployment of material from a spool package in relation to the speed of the knitting machines. The metal deployment arm is used to create a physical sensor, which is connected to a PCB with an Arduino configuration. A control program is configured to rapidly control and vary the speed of the motor of the unspooling device corresponding to the machine speed. In turn, the speed of deployment of the material from the spool is controlled corresponding to the machine speed. An independent variable motor can stop the machine if too much or too little material is deployed from the material spool, advantageously preventing interruption in the knitting process or inconsistent knitting quality. Interchangeable rollers, pot eyes, and strand guides with engineered surfaces are used to control friction and drag of various types of high-performance, conductive, abrasive, and specialized materials fed into the knitting machine.
Embodiments of the present disclosure allow easy unspooling of conductive wires, silicon, fiber optics, carbon fiber or other fiber reinforcing materials to become one or more parts of the spacer construction, incorporated consistently and repeated automatically in production with controlled deployment of speed and tension into the machine's yarn feed system. Without the limit of two OEM unspooling devices mounted on the floor next to the knitting machines, as available from the current knitting machines, embodiments of the present disclosure allow mounting of multiple unspooling devices on the OEM bar 13, used for OEM stop motions 5, and integrating into the OEM stop motion system by utilizing the OEM stop motion wiring system 14.
Additional mounting bars may be added to the OEM machine, allowing for as many unspooling devices as there are available feeders on the machine. The unspooling devices may operate in conjunction with stop motions sensors. For a Stoll ADF electronic knitting machine with thirty-two feeders, each feed may have an unspooling device designated to feed a material.
Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings. While the invention will be described in conjunction with the preferred embodiments, it will be understood that they are not intended to limit the invention to these embodiments. On the contrary, the invention is intended to cover alternatives, modifications and equivalents, which may be included within the spirit and scope of the invention as defined by the appended claims. Furthermore, in the following detailed description of embodiments of the present invention, numerous specific details are set forth in order to provide a thorough understanding of the present invention. However, it will be recognized by one of ordinary skill in the art that the present invention may be practiced without these specific details. In other instances, well-known methods, procedures, components, and circuits have not been described in detail so as not to unnecessarily obscure aspects of the embodiments of the present invention. The drawings showing embodiments of the invention are semi-diagrammatic and not to scale and, particularly, some of the dimensions are for the clarity of presentation and are shown exaggerated in the drawing Figures. Similarly, although the views in the drawings for the ease of description generally show similar orientations, this depiction in the Figures is arbitrary for the most part. Generally, the invention can be operated in any orientation.
In the embodiments described in greater detail herein, the unspooling devices are used for flat knitting and/or V-bed knitting, in which material strands are side fed or overhead fed. However, it will be appreciated that the present disclosure can be used on any type of textile machine.
In the case of top feeding knitting machines, for example: Stoll CMS ADF and the Steiger Participations Aries 3130, the unspooling device offers multiple advantages over existing OEM unspooling systems, such as the Shima Seiki unspooling, and H. Stoll AG & CO. KG dancer unspooling device. For both the existing Shima Seiki unspooling device and the Stoll dancer device, an unspooling device is mounted on the floor, next to the knitting machine, taking up considerable space. Only two devices per machine may be used. The machine also runs considerably slower to accommodate both the Shima and Stoll devices on their respective machines, as both devices are customized to their respective brands of equipment.
Embodiments of the present disclosure,
For example, regarding the Stoll ADF 32, aside from the separation feeder material in one (the first) reserved feeder, and the comb thread feeder as a second reserved feeder, the remaining feeders each may have an unspooling device attached. If on the machine, there is a modified standard feeder (e.g., with the crochet/warp pattern guide) containing a plurality of strands, the plurality of strands can be directed into one feeder device. Therefore, the plurality of unspooling devices operates to feed a single warp feed. Multiple modified standard feeders containing a plurality of strands, or multiple standard feeders, may be fed by a plurality of unspooling devices.
In some embodiments, an unwinding/unspooling device includes a means for automatically controlling the rate of deployment, which corresponds to the speed at which a material is withdrawn from the package. The unwinding device may include two components: a variable motor drive assembly (as shown by 36 in
In
In some embodiments, the pre-existing wiring system of the knitting machine (as one that is commercially available) as previously described can be used to stop the knitting process by standard OEM stop motion devices. An exemplary unwinding/unspooling device may utilize the pre-existing OEM wiring system for the yarn storage system and the OEM stop motion devices to enable a plurality of units to be utilized on a machine. The unwinding/unspooling device may derive power from the pre-existing OEM wiring system for yarn storage system. Alternatively, a separate power supply and transformer may be added to the knitting machine assembly to power a series of unspooling devices.
In some embodiment, coordinated by the pre-programmed control circuits in a chip, the unwinding/unspooling device is operable to, in conjunction with the pre-existing OEM wiring system for the OEM stop motion devices, to deploy material, vary the speed at which the material is deployed from the spool 28, and stop the machine in case too much or too little material is deployed, for example, based on certain predefined minimum and maximum tension thresholds. The pre-existing OEM wiring system for OEM stop motion devices utilizes a mechanical spring arm to trigger the OEM device to stop the machine, as previously described. Particularly, when the spring arm of an OEM stop motion senses slack (or lack of adequate tension) in the material, the slack causes the arm to rise to approximately ninety degrees to close a circuit. The closed circuit in turn causes the machine to signal the machine controller to cease the knitting process.
The roller guided stop motion assembly with a spring arm trigger 29 is connected electronically by an electronic cable 43 to the PCB in the motor housing of the step motor drive assembly 36 and back to the machines stop motion system. For example, when the spring arm is in Position One, with the spring arm raised to approximately an angle of one o'clock, the step motor drive is signaled to slow deployment of material without stopping the machine. When the spring arm is in Position Three, with the spring arm lowered to approximately an angle of three o'clock, the step motor drive is signaled to expedite deployment of material, e.g., at the maximum speed, without stopping the machine. When the spring arm is in Position Ten, with the spring arm raised to approximately an angle of ten o'clock the stop motion system is activated, sensing a broken yarn or material deploying at too rapid a speed. When the spring arm is in Position Three, and remains at Position Three (three o'clock angle) for more than three seconds at the maximum speed, the unspooling device signals the stop motion system of the machine, which may stop the knitting process as controlled by the Arduino program. Thus, the deployment speed of the material is varied depending upon the angle of the spring arm. Should the spring arm be completely raised up (e.g., in an angle of twelve o'clock), the stop motion system is triggered, and the knitting process is stopped. The step motor drive can be implemented in any suitable manner that is well known in the art.
The central rod axel 39 can hold packages up to 10 inches (25 cm) in height, with a center core hole of a minimum of 1.5 cm. The diameter of the package and/or packaging flange has a minimum of the core hole of 1.5 cm, and the maximum can be 10 inches (25 cm) or more, depending on the mounting distance from the center rod axel to the rear stop motion rail on the knitting machine. A special rack may be installed to accommodate large diameter packages. The weight of the spool package may be in direct relationship to the size of the step motor. For instance, a 5.0 ampere motor can safely rotate a three-pound (1.5 kilogram) package on high speed of the device and deploy enough material for a flat knitting machine operating at 0.95 meters per second.
The central rod axel/spindle shaft 39 has two removable and repositionable cone shaped spool abutments 44. These abutments allow accommodation of multiple sized packages 28 with varying center core apertures, cylinder diameters, and flange sizes. The cone abutments each have a hollow center, with a screw pin 45 accessible from the outside that can be tightened to fix in place or be loosened in order to reposition or remove. These cone shaped abutments 44 fit snuggly on either side of the package holding it in place.
The package 28 is inserted onto the rod axel/spindle shaft 39 horizontally. The rod axel/spindle shaft can rotate clockwise and counter clockwise. On a top-feeding machine such as a Stoll ADF or a Steiger Aires Vesta Series V-bed knitting machine, this is parallel to the knitting machine's OEM stop motion bars 13, and parallel to the floor. On a side-feeding machine, the units are mounted on a rack to each side of the machine, and the rotation of the spools is parallel to the floor. There is one strand of filament or multi-filament material per unspooling device (one spool or package per device). However, the unspooling devices may be staked one on top of the other as in
While unwinding during the process of knitting, embroidering, braiding or crocheting, the material is drawn from the package, and the strand passes from the package and under one set of roller wheels 46 mounted on the motor housing segment and over a second pair of wheels 47 that are mounted on the roller guide stop motion assembly. These wheels align the material. The material then passes to the spring arm controlling component 29 which has roller guide wheels on the end and a pot eye or roller wheel on the end of the trigger arm, depending on the type of material being used, as shown in
The material passes through a coated guide eye 51 and over another pair of roller wheels 47. The material then enters the spring arm assembly unit passing through a coated guide eye 51 and over a first set of roller wheels 48. It then passes under an additional roller wheel 52 located under the spring tension arm 29. This wheel serves to keep the material aligned and dimensionally controlled directly under the spring arm so that it flows at a desired angle. The spring arm 29 has a guide arm 53, as many vintage knitting machine stop motions have, including the Stoll Ajum. This guide arm is a standard support for a spring structure arm assisting the spring arm 29 to resist bending due to the stiff nature of the materials being deployed. This spring arm support guide arm 53 slides on the spring arm as it bobs up and down deploying material. The tip of the spring arm 29 has a coated pot eye 49, shown in
In some embodiments, with very stiff material, the pot eye at the end of the spring arm may be removed and a set of rollers are put in its place. Specific types of materials may require special care. The roller wheel may be of various materials to insure the strand feed properly with the least amount of drag and friction. Alternate materials such as polypropylene, ceramic, titanium coatings may be applied to the wheels guides, dependent upon the material properties of the strands being deployed.
In some embodiments, the unspooling device may be used for embedding thermally conductive material, thermo coupling cables, shielded wires and other elements which might be utilized for heating elements. The material may be unspooled and inlaid and or knitted, if inlaid, passed between the legs of loop structures of a knitted structure such as, a jersey, double bed structure, spacer 30; passed inside a tunnel, a channel, or a three-dimensional raised structure, or embedded into a structure with a series of knit loops, tucking loops, missed loops, or transfers. The unspooled material may be guided horizontally, vertically, or diagonally, or any combination of directions on an X, Y, Z directional plane grid. The knitted construction may have a single layer or a multiple layer configuration. The material would be incorporated consistently, and the integration repeated automatically in production with controlled deployment of speed and tension into the machine's yarn feed system.
In some embodiments, the unspooling device may be used for embedding a data transmitting cable, which might be utilized for smart textile and or e-textile elements, etc. The material would be unspooled and inlaid and or knitted, if inlaid, passed between the legs of loop structures of a knitted structure. The knitted structure may be a jersey, double bed, spacer, may be passed inside a tunnel, channel, or a three-dimensional raised structure, or may be embedded into a structure with a series of knit loops, tucking loops, missed loops, or transfers. The unspooled material may be guided horizontally, vertically, or diagonally, or any combination of directions on an X, Y, Z directional plane grid. The knitted construction may have a single layer or a multiple layer configuration. The material would be incorporated consistently, and the integration repeated automatically in production with controlled deployment of speed and tension into the machine's yarn feed system.
In some embodiments, the unspooling device may be used for embedding an energy transmitting wire or power cord, which might be utilized for smart textile wiring connected to devices such as sensors and or e-textile elements requiring connectors. The material would be unspooled and inlaid and or knitted, if inlaid, passed between the legs of loop structures of a knitted structure such as, a jersey, double bed, spacer; passed inside a tunnel, channel, or three-dimensional raised structure; or embedded into a structure with a series of knit loops, tucking loops, missed loops, or transfers. The unspooled material may be guided horizontally, vertically, or diagonally, or any combination of directions on an X, Y, Z directional plane grid. The knitted construction may have a single layer or a multiple layer configuration. The construction may also have fully-shaped appendage elements and/or liner areas receiving the unspooled materials, where the entire construction and or component is completely fashioned to shape by the machines, with no cutting, no sewing, and no trimming of the component or component layers. There is no need for a separate sub-assembly process or sewing application. The material would be incorporated consistently, and the integration repeated automatically in production with controlled deployment of speed and tension into the machine's yarn feed system.
In some embodiments, the unspooling device may be used for integration of shape changing and/or shape memory wire, such as NiTinol (nickel titanium alloy) or other performance alloys, which might be utilized for transformation textile applications. The material would be unspooled and inlaid and or knitted, if inlaid, passed between the legs of loop structures of a knitted structure such as, a jersey, double bed, spacer; passed inside a tunnel, channel, or three-dimensional raised structure; or embedded into a structure with a series of knit loops, tucking loops, missed loops, or transfers. The unspooled material may be guided horizontally, vertically, or diagonally, or any combination of directions on an X, Y, Z directional plane grid. The knitted construction may have a single layer or a multiple layer configuration. The construction may also have fully-shaped appendage elements and/or liner areas receiving the unspooled materials, where the entire construction and/or component is completely fashioned to shape by the machines, with no cutting, and no sewing of the component or component layers. There is no need for a separate sub-assembly process or sewing application. The material would be incorporated consistently, and the integration repeated automatically in production with controlled deployment of speed and tension into the machine's yarn feed system.
In some embodiments the unspooling device may be used for creating stretch ligaments in knitted textile applications, utilizing materials such as silicon, Dupont's Hytrel, Elastane, Dupont's Lycra, Natural or synthetic rubber, stretch olefin, silicon extructions, auxetic materials, or other materials with stretch and recovery properties. The material would be unspooled and inlaid, passed between the legs of loop structures of a knitted structure such as, a jersey, double bed, spacer; passed inside a tunnel, channel, or three-dimensional raised structure; or embedded into a structure with a series of knit loops, tucking loops, missed loops, or transfers. The unspooled material may be guided horizontally, vertically, or diagonally, or any combination of directions on an X, Y, Z directional plane grid. The knitted construction may have a single layer or a multiple layer configuration. The construction may also have fully-shaped appendage elements and/or liner areas receiving the unspooled materials, where the entire construction and or component is completely fashioned to shape by the machines, with no cutting, no sewing, and no trimming of the component or component layers. There is no need for a separate sub-assembly process or sewing application. The material would be incorporated consistently, and the integration repeated automatically in production with controlled deployment of speed and tension into the machine's yarn feed system.
In some embodiments, the unspooling device may be used for creating high tenacity ligaments in knitted textile applications, utilizing materials such as Dyneema, Kevlar, ultra high molecular polyurethane (UHMWPE), fiber glass, carbon fiber, hemp, linen, flax, resin pre-impregnated materials, monofilaments, multi-filaments or other materials which limit stretch and or provide reinforcing properties. The material would be unspooled and inlaid, passed between the legs of loop structures of a knitted structure such as, a jersey, double bed, spacer; passed inside a tunnel, channel, or three-dimensional raised structure; or embedded into a structure with a series of knit loops, tucking loops, missed loops, or transfers. The unspooled material may be guided horizontally, vertically, or diagonally, or any combination of directions on an X, Y, Z directional plane grid. The knitted construction may have a single layer or a multiple layer configuration. The construction may also have fully-shaped appendage elements and/or liner areas receiving the unspooled materials, where the entire construction and or component is completely fashioned to shape by the machines, with no cutting, no sewing, and no trimming of the component or component layers. There is no need for a separate sub-assembly process or sewing application. The material would be incorporated consistently, and the integration repeated automatically in production with controlled deployment of speed and tension into the machine's yarn feed system.
With the existing stock machine software and motions of the standard machine feeder system raising, lowering, and lateral actions one or more feeders may introduce a plurality of strands to inlay, move between the already made loops, in a designated and constant knitting system of the cam box.
Embodiments of the present disclosure offer several advantages. First, the device enables a controlled unspooling process in a compressed amount of space. In most cases the controlled unspooling process can implemented by using the existing floor space of the textile machine and utilizing the existing OEM stop motion wiring systems. Second, the unspooling device can be used to deploy variously sized and configured spools, which may be pre-wound under equally various tensions, to be knitted consistently into the same knitted fabric, a component or a three-dimensional textile construction. Third, the unspooling device allows a plurality of devices to be mounted on a single machine and used in a single knitted structure. Fourth, the unspooling device allows integration of many materials that would otherwise require additional sub-assembly, as in the case of embedded wiring, fiber optics, silicon, ligament structures. Fifth, the unspooling device is suitable for deployment and integration of fiber reinforcing materials, including resin pre-impregnated materials, and combinations of materials in the same knitted panel, a knitted component, or a three-dimensional textile configuration. Sixth, the unspooling device enables dynamic adjustment of the yarn deployment speed based on the tension that is sensed in real time. Thereby, the yarn deployment speed and so the amount of the yarn used in the knitting process can be precisely controlled, advantageously preventing interruption of the process and preventing creation of defects in the resultant knitting fabric.
Although certain preferred embodiments and methods have been disclosed herein, it will be apparent from the foregoing disclosure to those skilled in the art that variations and modifications of such embodiments and methods may be made without departing from the spirit and scope of the invention. It is intended that the invention shall be limited only to the extent required by the appended claims and the rules and principles of applicable law.
This patent application claims priority and benefit of U.S. Provisional Patent Application No. 62/672,519, entitled “METHOD FOR UNSPOOLING A FIBER INTO A TEXTILE MACHINE,” filed on May 16, 2018, the entire content of which is herein incorporated by reference for all purposes.
Number | Date | Country | |
---|---|---|---|
62672519 | May 2018 | US |