The present invention relates generally to pumps, and more particularly, a system and method operable to prevent the displacement of flexible tubing within a peristaltic pump.
Peristaltic pumps offer many advantages over other pumping systems. Primarily peristaltic pumps offer increased cleanliness. Such pumps have no valves, seals or glands, and the fluid only contacts the interior of a flexible tube or flexible flow path. This greatly reduces the risk of contaminating fluid to be pumped or fluid contaminating the pump itself. Within a peristaltic pump fluid is drawn into a flexible tube or flexible flow path and trapped between two shoes or rollers before finally being expelled from the pump. The complete closure of the flexible tubing or flow path is squeezed between the shoes or rollers to provide a positive displacement action and prevent backflow eliminating the need for check valves when the pump is running. Such pumps have a variety of applications including medical, pharmaceutical, chemical, or any other industry or any other like application where non-contamination is important. However, the flexible hose or flow path within the pump can be dislodged within the pump creating a situation where the metered action of the peristaltic pump is defeated or potentially allowing backflow. Therefore, an improved means of preventing free flow within the flexible flow path or backflow within the flexible flow path is desirable.
The advantages of peristaltic pumps are that the components of the pump may be chosen when the integrity of the media is a requirement of the application since the fluid type does not contact any internal parts. Seals and valves are not needed as in other pumps. Many peristaltic pumps come with wash down capabilities and/or IP54 or IP55 ratings.
Embodiments to the present invention provide a peristaltic pump. This peristaltic pump includes a flexible flow path, an exterior casing, an elastomeric member, and a number of rollers driven by a motor. The exterior casing and elastomeric member have a first and second annular recess, respectively. An annular flow path guide is formed when the exterior casing and elastomeric member are mechanically coupled. Rollers move along the annular flow path to compress and release the flexible flow path and in so doing draw fluid through the flexible flow patch to achieve pumping action. Mechanical guides proximate to the first annular recess and second annular recess prevent relative motion between the first annular recess and second annular recess ensuring that the flexible flow path remains in place.
For a more complete understanding of the present invention and the advantages thereof, reference is now made to the following description taken in conjunction with the accompanying drawings in which like reference numerals indicate like features and wherein:
Preferred embodiments of the present invention are illustrated in the FIGS., like numerals being used to refer to like and corresponding parts of the various drawings.
Embodiments of the present invention provide a peristaltic pump. One embodiment of this peristaltic pump is depicted in
To further assist in the precise delivery of fluids using the peristaltic pump of the present invention, sensors may monitor flow within the flexible flow path. A controller monitoring the sensed flow may use pinch valves or other like devices to halt or restrict flow if necessary.
In summary, embodiments of the present invention provide a peristaltic pump. This peristaltic pump includes a flexible flow path, an exterior casing, an elastomeric member, and a number of rollers driven by a motor. The exterior casing and elastomeric member have a first and second annular recess, respectively. An annular flow path guide is formed when the exterior casing and elastomeric member are mechanically coupled. Rollers move along the annular flow path to compress and release the flexible flow path and in so doing draw fluid through the flexible flow patch to achieve pumping action. Mechanical guides proximate to the first annular recess and second annular recess prevent relative motion between the first annular recess and second annular recess ensuring that the flexible flow path remains in place to prevent backflow or other flow irregularities.
As one of average skill in the art will appreciate, the term “substatially” or “approximately”, as may be used herein, provides an industry-accepted tolerance to its corresponding term. Such an industry-accepted tolerance ranges from less than one percent to twenty percent and corresponds to, but is not limited to, component values, integrated circuit process variations, temperature variations, rise and fall times, and/or thermal noise. As one of average skill in the art will further appreciate, the term “operably coupled”, as may be used herein, includes direct coupling and indirect coupling via another component, element, circuit, or module where, for indirect coupling, the intervening component, element, circuit, or module does not modify the information of a signal but may adjust its current level, voltage level, and/or power level. As one of average skill in the art will also appreciate, inferred coupling (i.e., where one element is coupled to another element by inference) includes direct and indirect coupling between two elements in the same manner as “operably coupled”. As one of average skill in the art will further appreciate, the term “compares favorably”, as may be used herein, indicates that a comparison between two or more elements, items, signals, etc., provides a desired relationship. For example, when the desired relationship is that signal 1 has a greater magnitude than signal 2, a favorable comparison may be achieved when the magnitude of signal is greater than that of signal 2 or when the magnitude of signal 2 is less than that of signal 1.
Although the present invention is described in detail, it should be understood that various changes, substitutions and alterations can be made hereto without departing from the spirit and scope of the invention as described.
This application claims the benefit of, priority to, and incorporates by reference in its entirety for all purposes U.S. Provisional Application No. 60/755,607 entitled “SYSTEM AND METHOD OPERABLE TO PREVENT TUBING DISPLACEMENT WITHIN A PERISTATLTIC PUMP” filed on 31 Dec. 2005.
Number | Name | Date | Kind |
---|---|---|---|
2917002 | Mascaro | Dec 1959 | A |
4201525 | Brown et al. | May 1980 | A |
4392794 | Foxcroft | Jul 1983 | A |
6293926 | Sorensen et al. | Sep 2001 | B1 |
6962488 | Davis et al. | Nov 2005 | B2 |
Number | Date | Country | |
---|---|---|---|
20080240951 A1 | Oct 2008 | US |
Number | Date | Country | |
---|---|---|---|
60755607 | Dec 2005 | US |