The present invention is directed to integrated circuits. More particularly, the invention provides a control system and method for over-current protection and over-power protection. Merely by way of example, the invention has been applied to a power converter. But it would be recognized that the invention has a much broader range of applicability.
Power converters are widely used for consumer electronics such as portable devices. The power converters can convert electric power from one form to another form. As an example, the electric power is transformed from alternate current (AC) to direct current (DC), from DC to AC, from AC to AC, or from DC to DC. Additionally, the power converters can convert the electric power from one voltage level to another voltage level.
The power converters include linear converters and switch-mode converters. The switch-mode converters often use pulse-width-modulated (PWM) or pulse-frequency-modulated mechanisms. These mechanisms are usually implemented with a switch-mode controller including various protection components. These components can provide over-voltage protection, over-temperature protection, over-current protection (OCP), and over-power protection (OPP). These protections can often prevent the power converters and connected circuitries from suffering permanent damage.
For example, a power converter includes a power switch and transformer winding that is in series with the power switch. The current flowing through the power switch and transformer winding may be limited by an OCP system. If the OCP system is not effective, the current can reach a level at which damage to the power switch is imminent due to excessive current and voltage stress at switching or thermal run-away during operation. For example, this current level can be reached when the output short circuit or over loading occurs. Consequently, the rectifier components on the transformer secondary side are subject to permanent damage due to excessive voltage and current stress in many offline flyback converters. Hence an effective OCP system is important for a reliable switch-mode converter.
For example, the PWM controller component 120 generates a PWM signal 122, which is received by the gate driver 130. In yet another example, the OCP comparator 110 receives and compares an over-current threshold signal 112 (e.g., Vth_oc) and a current sensing signal 114 (e.g., Vcs), and sends an over-current control signal 116 to the PWM controller component 120. When the current of the primary winding is greater than a limiting level, the PWM controller component 120 turns off the power switch 140 and shuts down the switch-mode power converter 100.
For switch-mode converter, a cycle-by-cycle or pulse-by-pulse control mechanism is often used for OCP. For example, the cycle-by-cycle control scheme limits the maximum current and thus the maximum power delivered by the switch-mode converter. This limitation on maximum power can protect the power converter from thermal run-away. Some conventional OCP systems use an adjustable OCP threshold value based on line input voltage, but the actual limitation on maximum current and thus maximum power is not always constant over a wide range of line input voltage. Other conventional OCP systems use additional resistors 152 and 154 that are external to the chip 180 and inserted between Vin and the resistor 150 as shown in
As shown in
where ILimit represents the current limit. For example, the current limit is the current threshold for triggering over-current protection. Additionally, Vin is the line input voltage at node 190, and Vth_oc is the voltage level at an input terminal 112 of the OCP comparator 110. Rs is the resistance of the resistor 150, and Lp is the inductance of the primary winding 160. Moreover, ton represents on time of the power switch 140 for each cycle. Accordingly, the maximum energy ε stored in the primary winding 160 is
ε=½×Lp×ILimit2=PT (Equation 2)
where T represents the clock period, and P represents the maximum power. So the maximum power P can be expressed as follows:
Therefore the power can be limited by controlling the current limit ILimit. But Equation 3 does not take into account the “delay to output” that includes the propagation delay through a current sense path to the power switch 140. For example, the propagation delay includes propagation delays through the OCP comparator 110, the PWM controller component 120, the gate driver 130, and the response delay of turning off of the power switch 140. During the “delay to output,” the power switch 140 remains on, and the input current through the switch 140 keeps ramping up despite the current has already reached the threshold level of the OCP comparator 110. The extra current ramping amplitude, ΔI, due the “delay to output” is proportional to the line input voltage Vin as follows:
where Tdelay represents the “delay to output.”
For example, Tdelay depends on internal delays, gate charges, and circuitry related to the gate driver 130. In another example, for the predetermined switch-mode converter 100, Tdelay is constant, and hence the actual maximum power depends on the line input voltage. To compensate for variations of the actual maximum power, the threshold for over-current protection should be adjusted based on the line input voltage.
For example, the current threshold has the following relationship with the line input voltage:
where Ith_oc is the current threshold, Vin is the line input voltage, Lp is the inductance of the primary winding, and Tdelay is the “delay to output.” Additionally, Ith_oc (Vin1) is the current threshold that is predetermined for the line input voltage Vin1. For example, Vin1 is the minimum line input voltage. In another example, the current is sensed that flows through the power switch and the primary winding. If the sensed current reaches Ith_oc, the PWM controller component sends a signal to turn off the power switch. After “delay to output,” the power switch is turned off.
In Equation 6, the second term
represents a threshold offset to compensate for the effects of “delay to output.”
is the slope that depends on the “delay to output” and the inductance of primary winding. As shown in
There are at least two conventional approaches to implement the current threshold as a function of line input voltage according to
In another example, the line input voltage is sensed based on the maximum width of PWM signal. The PWM signal is applied to the gate of a power switch in series to the primary winding of a power converter.
According to
Additionally, to achieve high efficiency, a power converter usually works in CCM mode at low line input voltage and works in DCM mode at high line input voltage.
ε=½×Lp×(I_p1)2 (Equation 32)
In contrast, as shown in
ε=½×Lp×[(I_p2)2−(I_i2)2] (Equation 33)
where the ratio of
can vary with line input voltage. For example, the ratio increases with decreasing line input voltage. As described in Equations 32 and 33, if the two current limits I_p1 and I_p2 are equal, the amount of energy delivered to the load in DCM mode is higher than the amount of energy delivered to the load in CCM mode at each cycle.
Hence the maximum energy is not constant over the entire range of line input voltage. For example, as shown by a curve 1300, the maximum energy decreases significantly with decreasing line input voltage in CCM mode, even though the maximum energy appears substantially constant in the DCM mode.
In order to improve consistency of maximum energy in the CCM mode and the DCM mode, the compensation slope for the current threshold or the corresponding voltage threshold can be made different in different modes. Specifically, as shown in Equations 32 and 33, the compensation slope in the CCM mode is greater than the compensation slope in the DCM mode in magnitude.
But the maximum energy of the power converter can also be affected by other characteristics of the system. Hence it is highly desirable to improve techniques for over-current protection and over-power protection.
The present invention is directed to integrated circuits. More particularly, the invention provides a control system and method for over-current protection and over-power protection. Merely by way of example, the invention has been applied to a power converter. But it would be recognized that the invention has a much broader range of applicability.
According to one embodiment, a system for protecting a power converter includes a duty-cycle detection component configured to receive a modulation signal, determine a first duty cycle corresponding to a first period of the modulation signal, compare the first duty cycle with a threshold duty cycle, and generate a duty-cycle comparison signal. Additionally, the system includes a threshold generator configured to receive the duty-cycle comparison signal and generate a threshold signal corresponding to a second period of the modulation signal, the second period being after the first period, and a comparator component configured to receive the threshold signal and a first signal and to generate a first comparison signal. The first signal is associated with an input current for a power converter. Moreover, the system includes a pulse-width-modulation component configured to receive the first comparison signal and generate the modulation signal for adjusting the input current for the power converter based on at least information associated with the first comparison signal. The threshold signal is associated with a threshold magnitude corresponding to the second period of the modulation signal. If the first duty cycle is determined to be smaller than the threshold duty cycle, the threshold magnitude equals a first magnitude at the beginning of the second period and changes from the first magnitude to a second magnitude within the second period. If the first duty cycle is determined to be larger than the threshold duty cycle, the threshold magnitude equals a third magnitude at the beginning of the second period, and the third magnitude is larger than the first magnitude.
According to another embodiment, a method for protecting a power converter includes receiving a modulation signal, determining a first duty cycle corresponding to a first period of the modulation signal, processing information associated with the first duty cycle and a threshold duty cycle, and generating a duty-cycle comparison signal to indicate whether the first duty cycle is larger than the threshold duty cycle or whether the first duty cycle is smaller than the threshold duty cycle. Additionally, the method includes receiving the duty-cycle comparison signal, processing information associated with the duty-cycle comparison signal, and generating a threshold signal corresponding to a second period of the modulation signal. The second period is after the first period. Moreover, the method includes receiving the threshold signal and a first signal. The first signal is associated with an input current for a power converter. Also, the method includes generating a first comparison signal based on at least information associated with the threshold signal and the first signal, receiving the first comparison signal, processing information associated with the first comparison signal, and generating the modulation signal for adjusting the input current for the power converter based on at least information associated with the first comparison signal. The threshold signal is associated with a threshold magnitude corresponding to the second period of the modulation signal. If the first duty cycle is smaller than the threshold duty cycle, the threshold magnitude equals a first magnitude at the beginning of the second period and changes from the first magnitude to a second magnitude within the second period. If the first duty cycle is larger than the threshold duty cycle, the threshold magnitude equals the third magnitude at the beginning of the second period, and the third magnitude is larger than the first magnitude.
According to yet another embodiment, a system for protecting a power converter includes a duty-cycle detection component configured to receive a modulation signal, determine a first duty cycle corresponding to a first period of the modulation signal, compare the first duty cycle with a threshold duty cycle, and generate a duty-cycle comparison signal. Additionally, the system includes a threshold generator configured to generate a threshold signal, and a comparator configured to receive the threshold signal and a first signal and generate a first comparison signal. The first signal is associated with an input current for a power converter. Moreover, the system includes a duty-cycle limiting component configured to receive the duty-cycle comparison signal and generate a duty-cycle limiting signal based on at least information associated with the duty-cycle comparison signal, and a control and modulation component configured to receive the first comparison signal and the duty-cycle limiting signal and generate the modulation signal for a second period. The second period is after the first period. The modulation signal for the second period is associated with a second duty cycle, and the duty-cycle limiting signal is associated with a duty-cycle limiting value. If the first duty cycle is smaller than the threshold duty cycle; the second duty cycle cannot exceed the duty-cycle limiting value, and if the first duty cycle is larger than the threshold duty cycle, the second duty cycle can exceed the duty-cycle limiting value.
According to yet another embodiment, a method for protecting a power converter includes receiving a modulation signal, determining a first duty cycle corresponding to a first period of the modulation signal, processing information associated with the first duty cycle with a threshold duty cycle, and generating a duty-cycle comparison signal to indicate whether the first duty cycle is larger than the threshold duty cycle or whether the first duty cycle is smaller than the threshold duty cycle. Additionally, the method includes receiving the duty-cycle comparison signal, processing information associated with the duty-cycle comparison signal, generating a duty-cycle limiting signal based on at least information associated with the duty-cycle comparison signal, generating a threshold signal, and receiving the threshold signal and a first signal. The first signal is associated with an input current for a power converter. Moreover, the method includes generating a first comparison signal based on at least information associated with the threshold signal and the first signal, receiving the first comparison signal and the duty-cycle limiting signal, processing information associated with the first comparison signal and the duty-cycle limiting signal, and generating the modulation signal for a second period based on at least information associated with the first comparison signal and the duty-cycle limiting signal. The second period is after the first period. The modulation signal for the second period is associated with a second duty cycle, and the duty-cycle limiting signal is associated with a duty-cycle limiting value. If the first duty cycle is smaller than the threshold duty cycle, the second duty cycle cannot exceed the duty-cycle limiting value, and if the first duty cycle is larger than the threshold duty cycle, the second duty cycle can exceed the duty-cycle limiting value.
According to yet another embodiment, a system for protecting a power converter includes a duty-cycle detection component configured to receive a modulation signal, determine a first duty cycle corresponding to a first period of the modulation signal, compare the first duty cycle with a first threshold duty cycle, compare the first duty cycle with a second threshold duty cycle, and generate a first duty-cycle comparison signal and a second duty-cycle comparison signal. Additionally, the system includes a threshold generator configured to receive the first duty-cycle comparison signal and generate a threshold signal corresponding to a second period of the modulation signal, and a comparator component configured to receive the threshold signal and a first signal and generate a first comparison signal. The second period is after the first period, and the first signal is associated with an input current for a power converter. Moreover, the system includes a duty-cycle limiting component configured to receive the second duty-cycle comparison signal and generate a duty-cycle limiting signal based on at least information associated with the second duty-cycle comparison signal, and a control and modulation component configured to receive the first comparison signal and the duty-cycle limiting signal and generate the modulation signal for the second period. The threshold signal is associated with a threshold magnitude corresponding to the second period of the modulation signal. If the first duty cycle is determined to be smaller than the first threshold duty cycle, the threshold magnitude equals a first magnitude at the beginning of the second period and changes from the first magnitude to a second magnitude within the second period, and if the first duty cycle is determined to be larger than the first threshold duty cycle, the threshold magnitude equals a third magnitude at the beginning of the second period, the third magnitude being larger than the first magnitude. The modulation signal for the second period is associated with a second duty cycle, and the duty-cycle limiting signal is associated with a duty-cycle limiting value. If the first duty cycle is smaller than the second threshold duty cycle; the second duty cycle cannot exceed the duty-cycle limiting value, and if the first duty cycle is larger than the second threshold duty cycle, the second duty cycle can exceed the duty-cycle limiting value.
According to yet another embodiment, a method for protecting a power converter includes receiving a modulation signal, determining a first duty cycle corresponding to a first period of the modulation signal, processing information associated with the first duty cycle with a first threshold duty cycle and a second threshold duty cycle, generating a first duty-cycle comparison signal to indicate whether the first duty cycle is larger than the first threshold duty cycle or whether the first duty cycle is smaller than the first threshold duty cycle, and generating a second duty-cycle comparison signal to indicate whether the first duty cycle is larger than the second threshold duty cycle or whether the first duty cycle is smaller than the second threshold duty cycle. Additionally, the method includes receiving the first duty-cycle comparison signal, processing information associated with the first duty-cycle comparison signal, and generating a threshold signal corresponding to a second period of the modulation signal, and receiving the threshold signal and a first signal. The second period is after the first period, and the first signal is associated with an input current for a power converter. Moreover, the method includes generating a first comparison signal based on at least information associated with the threshold signal and the first signal, receiving the second duty-cycle comparison signal, processing information associated with the second duty-cycle comparison signal, and generating a duty-cycle limiting signal based on at least information associated with the second duty-cycle comparison signal. Also, the method includes receiving the first comparison signal and the duty-cycle limiting signal, processing information associated with the first comparison signal and the duty-cycle limiting signal, and generating the modulation signal for the second period based on at least information associated with the first comparison signal and the duty-cycle limiting signal. The threshold signal is associated with a threshold magnitude corresponding to the second period of the modulation signal. If the first duty cycle is determined to be smaller than the first threshold duty cycle, the threshold magnitude equals a first magnitude at the beginning of the second period and changes from the first magnitude to a second magnitude within the second period, and if the first duty cycle is determined to be larger than the first threshold duty cycle, the threshold magnitude equals a third magnitude at the beginning of the second period, the third magnitude being larger than the first magnitude. The modulation signal for the second period is associated with a second duty cycle, and the duty-cycle limiting signal is associated with a duty-cycle limiting value. If the first duty cycle is smaller than the second threshold duty cycle; the second duty cycle cannot exceed the duty-cycle limiting value, and if the first duty cycle is larger than the second threshold duty cycle, the second duty cycle can exceed the duty-cycle limiting value.
Depending upon embodiment, one or more benefits may be achieved. These benefits and various additional objects, features and advantages of the present invention can be fully appreciated with reference to the detailed description and accompanying drawings that follow.
The present invention is directed to integrated circuits. More particularly, the invention provides a control system and method for over-current protection and over-power protection. Merely by way of example, the invention has been applied to a power converter. But it would be recognized that the invention has a much broader range of applicability.
As shown in
Similarly, as shown in
Referring to
As shown in
As shown in
In region B, the duty cycle of the PWM signal is relatively large, and the off-time of the PWM signal is too short for sufficient demagnetization and effective transfer of energy to the output of the switch-mode converter 100. Subsequently, at the beginning of the next PWM period, the voltage value of the current sensing signal is higher than the corresponding voltage threshold value of Vth_0. Hence, in this PWM period, the power switch 140 is turned off soon after being turned on, causing the primary winding not being able to effectively store energy and effectively reducing the switching frequency by half. Consequently, the input power to the primary winding is also reduced by half, and the maximum power actually delivered by the switch-mode converter 100 in region B is significantly affected by the change in the line input voltage Vin.
Similarly, in region C, the duty cycle of the PWM signal reaches the maximum duty cycle that is set by the chip 180 for PWM control. For example, the maximum duty cycle is set to 80%. Consequently, the off-time of the PWM signal is too short for sufficient demagnetization and effective transfer of energy to the output of the switch-mode converter 100. Consequently, the maximum power actually delivered by the switch-mode converter 100 in region C is significantly reduced by the change in the line input voltage Vin.
As shown in
As discussed above, the reduction of the effective PWM switching frequency is an important reason for the reduction of the maximum power actually delivered by the switch-mode converter 100. Hence, to restore the actual maximum power to the predetermined maximum power, it is important to correct the combination of larger voltage pulse and smaller voltage pulse. According to one embodiment, a correction is made to the smaller voltage pulse so that the power switch has sufficient on-time in each PWM period to enable effective energy storage by the primary winding.
As shown in
In another example, such correction can modify the duty cycle of the PWM signal and prevent the power switch from being turned off soon after being turned on. In yet another example, such correction to the voltage pulse enables the primary winding of the switch-mode converter to effectively store and transfer energy. In yet another example, such correction to the voltage pulse can prevent the reduction of the effective switch frequency and the reduction of maximum power actually delivered by the switch-mode converter.
As shown in
According to another embodiment, the signal 3214 is received by the threshold determination component 3220, which generates an over-current threshold signal 3222. For example, if the signal 3214 does not indicate that the detected duty cycle of the signal period is larger than the duty-cycle threshold, the over-current threshold signal 3222 is ramped from a lower level (e.g., Vth_0) to a higher level (e.g., Vclamp) during the next signal period. In another example, if the signal 3214 indicates that the detected duty cycle of the signal period is larger than the duty-cycle threshold, the over-current threshold signal 3222 is set to another threshold level (e.g., Vth_a) that is different from the lower level (e.g., Vth_0) at the beginning of the next signal period. In one embodiment, the threshold level (e.g., Vth_a) is equal to the higher level (e.g., Vclamp), and the over-current threshold signal 3222 stays constant during the signal period. In another embodiment, the threshold level (e.g., Vth_a) is larger than the lower level (e.g., Vth_0) but smaller than the higher level (e.g., Vclamp), and the over-current threshold signal 3222 is ramped from the threshold level (e.g., Vth_a) to the higher level (e.g., Vclamp) during the signal period.
According to yet another embodiment, the over-current threshold signal 3222 is received by the comparator component 3230, which also receives a current-sensing signal 3232. For example, the comparator component 3230 compares the over-current threshold signal 3222 and the current-sensing signal 3232. In another example, the comparator component 3230 generates an over-current control signal 3234 that indicates whether the over-current threshold signal 3222 is larger than the current-sensing signal 3232 in magnitude.
Referring to
For example, the PWM controller component 3320 generates a PWM signal 3322, which is received by the gate driver 3330 and the flip-flop component 3440. In another example, the flip-flop component 3440 also receives a duty-cycle signal 3443, which is in sync with the PWM signal 3322 and has a duty cycle that is equal to a predetermined duty-cycle threshold, such as 60%. In yet another example, the flip-flop component 3440 generates a signal 3446, which is set to a NOT value of the signal 3443 at the falling edge of the PWM signal 3322.
As shown in
According to another embodiment, the signal 3312 is received by the comparator 3310, which also receives a current-sensing signal 3314 that is received from the terminal 3382. For example, the current-sensing signal is a voltage signal (e.g., Vcs) that represents the magnitude of the current flowing through the primary winding 3360. In another example, the comparator 3310 compares the signal 3312 and the current-sensing signal 3314, and generates a signal 3316. In yet another example, the signals 3316 and 3446 are received by the OR gate 3450, which in response outputs a signal 3452 to the AND gate 3460.
In one embodiment, the current-sensing signal 3314 is received by the comparator 3430, which also receives a threshold signal 3432 that represents a threshold voltage (e.g., Vth_a). For example, the comparator 3430 compares the signal 3432 and the signal 3314 and generates a signal 3434. In another example, both signals 3434 and 3452 are received by the AND gate 3460, which in response outputs an over-current signal 3318 to the PWM controller component 3320. In yet another example, if the over-current signal 3318 is at a logic high level, the PWM controller component 3320 uses the PWM signal 3322 to turn off the power switch 3340 and shut down the switch-mode power converter 3300.
In another embodiment, certain components of the switch-mode converter 3300 are used to implement the system 3200. For example, the signal 3212 is the PWM signal 3322. In another example, the signal 3232 is the current-sensing signal 3314. In yet another example, the signal 3234 is the over-current signal 3318.
Returning to
As shown in
According to one embodiment, if the duty cycle of the PWM signal 3322 (corresponding to the curve 3486) is larger than the duty-cycle threshold (as indicated by the curve 3484), the signal 3446 (corresponding to the curve 3488) is set to a logic high level at the falling edge of the PWM signal 3322, such as at time ta. According to another embodiment, if the duty cycle of the PWM signal 3322 (corresponding to the curve 3486) is smaller than the duty-cycle threshold (as indicated by the curve 3484), the signal 3446 (corresponding to the curve 3488) is set to a logic low level at the falling edge of the PWM signal 3322, such as at time tb.
As shown in
In one embodiment, whether the over-current signal 3318 is at the logic high level or the logic low level depends on the signal 3434, if the signal 3452 is at the logic high level such as from the time ta to the time tb. In another embodiment, the effective over-current threshold at the beginning of the next PWM period, such as at time tc, is set to the clamping voltage (e.g., Vclamp), if the duty cycle of the PWM signal 3322 (corresponding to the curve 3486) is larger than the duty-cycle threshold (as indicated by the curve 3484).
As shown in
As shown in
As shown in
According to another embodiment, the threshold determination component 3620 generates an over-current threshold signal 3622. For example, the over-current threshold signal 3622 ramps from a lower level (e.g., Vth_0) to a higher level (e.g., Vclamp) within each signal period of the signal 3612. In another example, the over-current threshold signal 3622 is received by the comparator component 3630, which also receives a current-sensing signal 3632. For example, the comparator component 3630 compares the over-current threshold signal 3622 and the current-sensing signal 3632. In another example, the comparator component 3630 generates an over-current comparison signal 3634 that indicates whether the over-current threshold signal 3622 is larger than the current-sensing signal 3632 in magnitude. In yet another example, the over-current comparison signal 3634 is received by the OCP controller component 3640.
As shown in
According to one embodiment, the OCP controller component 3640 receives the signals 3652 and 3634. For example, if the over-current comparison signal 3634 is at a logic high level, the OCP controller component 3640 uses the OCP control signal 3642 to shut down the switch-mode power converter. In another example, if the over-current control signal 3634 is at a logic low level and the duty-cycle limiting signal 3652 represents a maximum duty cycle for the next signal period, the OCP controller component 3640 generates the OCP control signal 3642 with a duty cycle that is smaller than or equal to the maximum duty cycle.
For example, the PWM controller component 3720 generates a PWM signal 3722, which is received by the gate driver 3730 and the flip-flop component 3840. In another example, the flip-flop component 3840 also receives a duty-cycle signal 3843, which is in sync with the PWM signal 3722 and has a duty cycle that corresponds to a predetermined duty-cycle threshold. In one embodiment, the predetermined duty-cycle threshold is 20%. In another embodiment, the duty cycle of the signal 3843 is equal to one minus the predetermined duty-cycle threshold. In yet another example, the flip-flop component 3840 generates a signal 3846, which is set to a NOT value of the signal 3843 at the falling edge of the PWM signal 3722 with a slight delay.
According to one embodiment, the signal 3846 is received by the OR gate 3850, which also receives a duty-cycle signal 3852. For example, the duty-cycle signal 3852 is in sync with the PWM signal 3722 and has a duty cycle that is equal to a predetermined duty-cycle limit, such as 60%. In another example, the OR gate 3850 generates a signal 3854 based on the signals 3846 and 3852.
As shown in
According to another embodiment, the signal 3712 is received by the comparator 3710, which also receives a current-sensing signal 3714 that is received from the terminal 3782. For example, the current-sensing signal is a voltage signal (e.g., Vcs) that represents the magnitude of the current flowing through the primary winding 3760. In another example, the comparator 3710 compares the signal 3712 and the current-sensing signal 3714, and generates a signal 3716.
In one embodiment, the current-sensing signal 3714 is also received by the comparator 4430, which also receives a threshold signal 4432 (e.g., Vclamp). For example, the comparator 4430 compares the signal 4432 and the signal 3714 and generates a signal 4434. In another example, both signals 4434 and 3716 are received by the AND gate 4460, which in response outputs an over-current signal 4318.
In another embodiment, the signal 4318 is received by the flip-flop component 3830 as a reset signal. As shown in
According to one embodiment, certain components of the switch-mode converter 3700 are used to implement the system 3600. For example, the OCP control signal 3642 is the signal 3718. In another example, the signal 3632 is the current-sensing signal 3714. In yet another example, the over-current comparison signal 3634 is the signal 4318, and the duty-cycle limiting signal 3652 is the signal 3854. In yet another example, the signal 3614 is the signal 3846, and the over-current threshold signal 3622 is the signal 3712. In yet another example, the OCP controller component 3640 includes the flip-flop component 3830, the NOT gate 3870 and the AND gate 3860.
As shown in
For example, the duty-cycle signal 3852 (corresponding to the curve 3884) has a duty cycle that is equal to a predetermined duty-cycle limit, such as 60%. In another example, the duty-cycle signal 3843 (corresponding to the curve 3886) has a duty cycle that corresponds to a predetermined duty-cycle threshold. In one embodiment, the predetermined duty-cycle threshold is 20%. In another embodiment, the duty cycle of the signal 3843 is equal to one minus the predetermined duty-cycle threshold. In another example, as shown by the curves 3882, 3884, 3886, and 3888, the clock signal 3832, the duty-cycle signal 3852, the duty-cycle signal 3843, and the signal 3718 are in sync with each other.
According to one embodiment, as shown by the curve 3888, the duty cycle for a pulse 3980 is smaller than the predetermined duty-cycle threshold, such as 20%. For example, the predetermined duty-cycle threshold is represented by the curve 3886, which has a duty cycle equal to one minus the predetermined duty-cycle threshold. In another example, as shown by the curve 3890, the signal 3846 changes from a logic high level to a logic low level at the falling edge of the pulse 3980 with a slight delay. In yet another example, if the signal 3846 (corresponding to the curve 3890) is at the logic low level, the signal 3854 (corresponding to the curve 3892) is the same as the signal 3852 (corresponding to the curve 3884). As shown by the curve 3888, the duty cycle for a pulse 3982 is limited to the duty cycle of the signal 3852 (corresponding to the curve 3884) through the signal 3854 (corresponding to the curve 3892). For example, the duty cycle for the pulse 3982 is limited to 60%. In another example, the demagnetization process for the signal period corresponding to the pulse 3982 is sufficiently implemented.
According to one embodiment, the duty-cycle detection component 3910 receives a signal 3912 and detects the duty cycle of a signal period of the signal 3912. For example, the signal 3912 is a PWM signal. In one embodiment, the duty-cycle detection component 3910 compares the detected duty cycle of the signal period with a predetermined lower duty-cycle threshold. For example, the lower duty-cycle threshold is 20%. In another example, if the detected duty cycle is determined to be smaller than the lower duty-cycle threshold, the duty-cycle detection component 3910 generates a signal 3914 that indicates that the detected duty cycle of the signal period is smaller than the lower duty-cycle threshold.
In another embodiment, the duty-cycle detection component 3910 compares the detected duty cycle of the signal period with a predetermined higher duty-cycle threshold. For example, the higher duty-cycle threshold is 60%. In another example, the duty-cycle detection component 3910 generates a signal 3915 that indicates whether the detected duty cycle of the signal period is larger than the higher duty-cycle threshold.
According to one embodiment, the signal 3915 is received by the threshold determination component 3920, which generates an over-current threshold signal 3922. For example, if the signal 3915 does not indicate that the detected duty cycle of the signal period is larger than the higher duty-cycle threshold, the over-current threshold signal 3922 is ramped from a lower level (e.g., Vth_0) to a higher level (e.g., Vclamp) during the next signal period. In another example, if the signal 3915 indicates that the detected duty cycle of the signal period is larger than the duty-cycle threshold, the over-current threshold signal 3922 is set to another threshold level (e.g., Vth_a) that is different from the lower level (e.g., Vth_0) at the beginning of the next signal period. In one embodiment, the threshold level (e.g., Vth_a) is equal to the higher level (e.g., Vclamp), and the over-current threshold signal 3922 stays constant during the signal period. In another embodiment, the threshold level (e.g., Vth_a) is larger than the lower level (e.g., Vth_0) but smaller than the higher level (e.g., Vclamp), and the over-current threshold signal 3922 is ramped from the threshold level (e.g., Vth_a) to the higher level (e.g., Vclamp) during the signal period.
According to another embodiment, the over-current threshold signal 3922 is received by the comparator 3930, which also receives a current-sensing signal 3932. For example, the comparator 3930 compares the over-current threshold signal 3922 and the current-sensing signal 3932. In another example, the comparator 3930 generates an over-current comparison signal 3934 that indicates whether the over-current threshold signal 3922 is larger than the current-sensing signal 3932 in magnitude. In yet another example, the over-current comparison signal 3934 is received by the OCP controller component 3940.
As shown in
In one embodiment, the OCP controller component 3940 receives the signal 3952 and/or the signal 3934, and generates an OCP control signal 3942. For example, if the over-current comparison signal 3934 is at a logic high level, the OCP controller component 3940 uses the OCP controller signal 3942 to shut down the switch-mode power converter. In another example, if the over-current control signal 3934 is at a logic low level and the duty-cycle limiting signal 3952 represents a maximum duty cycle for the next signal period, the OCP controller component 3940 generates the OCP control signal 3942 with a duty cycle that is smaller than or equal to the maximum duty cycle (e.g., 60%).
According to one embodiment, the system 4000 includes the comparators 3310 and 3430, the unit-gain buffers 3410 and 3420, the flip-flop components 3440, 3830 and 3840, the resistors 3444 and 3442, the OR gates 3450 and 3850, the AND gates 3460 and 3860, and the NOT gate 3870. According to another embodiment, the system 4000 is used to implement the system 3900. For example, the system 3900 is a combination of the systems 3200 and 3600. In another example, the system 4000 is a combination of certain components of the systems 3300 and 3700.
According to one embodiment, a system for protecting a power converter includes a duty-cycle detection component configured to receive a modulation signal, determine a first duty cycle corresponding to a first period of the modulation signal, compare the first duty cycle with a threshold duty cycle, and generate a duty-cycle comparison signal. Additionally, the system includes a threshold generator configured to receive the duty-cycle comparison signal and generate a threshold signal corresponding to a second period of the modulation signal, the second period being after the first period, and a comparator component configured to receive the threshold signal and a first signal and to generate a first comparison signal. The first signal is associated with an input current for a power converter. Moreover, the system includes a pulse-width-modulation component configured to receive the first comparison signal and generate the modulation signal for adjusting the input current for the power converter based on at least information associated with the first comparison signal. The threshold signal is associated with a threshold magnitude corresponding to the second period of the modulation signal. If the first duty cycle is determined to be smaller than the threshold duty cycle, the threshold magnitude equals a first magnitude at the beginning of the second period and changes from the first magnitude to a second magnitude within the second period. If the first duty cycle is determined to be larger than the threshold duty cycle, the threshold magnitude equals a third magnitude at the beginning of the second period, and the third magnitude is larger than the first magnitude. For example, the system is implemented according to
According to another embodiment, a method for protecting a power converter includes receiving a modulation signal, determining a first duty cycle corresponding to a first period of the modulation signal, processing information associated with the first duty cycle and a threshold duty cycle, and generating a duty-cycle comparison signal to indicate whether the first duty cycle is larger than the threshold duty cycle or whether the first duty cycle is smaller than the threshold duty cycle. Additionally, the method includes receiving the duty-cycle comparison signal, processing information associated with the duty-cycle comparison signal, and generating a threshold signal corresponding to a second period of the modulation signal. The second period is after the first period. Moreover, the method includes receiving the threshold signal and a first signal. The first signal is associated with an input current for a power converter. Also, the method includes generating a first comparison signal based on at least information associated with the threshold signal and the first signal, receiving the first comparison signal, processing information associated with the first comparison signal, and generating the modulation signal for adjusting the input current for the power converter based on at least information associated with the first comparison signal. The threshold signal is associated with a threshold magnitude corresponding to the second period of the modulation signal. If the first duty cycle is smaller than the threshold duty cycle, the threshold magnitude equals a first magnitude at the beginning of the second period and changes from the first magnitude to a second magnitude within the second period. If the first duty cycle is larger than the threshold duty cycle, the threshold magnitude equals the third magnitude at the beginning of the second period, and the third magnitude is larger than the first magnitude. For example, the method is implemented according to
According to yet another embodiment, a system for protecting a power converter includes a duty-cycle detection component configured to receive a modulation signal, determine a first duty cycle corresponding to a first period of the modulation signal, compare the first duty cycle with a threshold duty cycle, and generate a duty-cycle comparison signal. Additionally, the system includes a threshold generator configured to generate a threshold signal, and a comparator configured to receive the threshold signal and a first signal and generate a first comparison signal. The first signal is associated with an input current for a power converter. Moreover, the system includes a duty-cycle limiting component configured to receive the duty-cycle comparison signal and generate a duty-cycle limiting signal based on at least information associated with the duty-cycle comparison signal, and a control and modulation component configured to receive the first comparison signal and the duty-cycle limiting signal and generate the modulation signal for a second period. The second period is after the first period. The modulation signal for the second period is associated with a second duty cycle, and the duty-cycle limiting signal is associated with a duty-cycle limiting value. If the first duty cycle is smaller than the threshold duty cycle; the second duty cycle cannot exceed the duty-cycle limiting value, and if the first duty cycle is larger than the threshold duty cycle, the second duty cycle can exceed the duty-cycle limiting value. For example, the system is implemented according to
According to yet another embodiment, a method for protecting a power converter includes receiving a modulation signal, determining a first duty cycle corresponding to a first period of the modulation signal, processing information associated with the first duty cycle with a threshold duty cycle, and generating a duty-cycle comparison signal to indicate whether the first duty cycle is larger than the threshold duty cycle or whether the first duty cycle is smaller than the threshold duty cycle. Additionally, the method includes receiving the duty-cycle comparison signal, processing information associated with the duty-cycle comparison signal, generating a duty-cycle limiting signal based on at least information associated with the duty-cycle comparison signal, generating a threshold signal, and receiving the threshold signal and a first signal. The first signal is associated with an input current for a power converter. Moreover, the method includes generating a first comparison signal based on at least information associated with the threshold signal and the first signal, receiving the first comparison signal and the duty-cycle limiting signal, processing information associated with the first comparison signal and the duty-cycle limiting signal, and generating the modulation signal for a second period based on at least information associated with the first comparison signal and the duty-cycle limiting signal. The second period is after the first period. The modulation signal for the second period is associated with a second duty cycle, and the duty-cycle limiting signal is associated with a duty-cycle limiting value. If the first duty cycle is smaller than the threshold duty cycle, the second duty cycle cannot exceed the duty-cycle limiting value, and if the first duty cycle is larger than the threshold duty cycle, the second duty cycle can exceed the duty-cycle limiting value. For example, the method is implemented according to
According to yet another embodiment, a system for protecting a power converter includes a duty-cycle detection component configured to receive a modulation signal, determine a first duty cycle corresponding to a first period of the modulation signal, compare the first duty cycle with a first threshold duty cycle, compare the first duty cycle with a second threshold duty cycle, and generate a first duty-cycle comparison signal and a second duty-cycle comparison signal. Additionally, the system includes a threshold generator configured to receive the first duty-cycle comparison signal and generate a threshold signal corresponding to a second period of the modulation signal, and a comparator component configured to receive the threshold signal and a first signal and generate a first comparison signal. The second period is after the first period, and the first signal is associated with an input current for a power converter. Moreover, the system includes a duty-cycle limiting component configured to receive the second duty-cycle comparison signal and generate a duty-cycle limiting signal based on at least information associated with the second duty-cycle comparison signal, and a control and modulation component configured to receive the first comparison signal and the duty-cycle limiting signal and generate the modulation signal for the second period. The threshold signal is associated with a threshold magnitude corresponding to the second period of the modulation signal. If the first duty cycle is determined to be smaller than the first threshold duty cycle, the threshold magnitude equals a first magnitude at the beginning of the second period and changes from the first magnitude to a second magnitude within the second period, and if the first duty cycle is determined to be larger than the first threshold duty cycle, the threshold magnitude equals a third magnitude at the beginning of the second period, the third magnitude being larger than the first magnitude. The modulation signal for the second period is associated with a second duty cycle, and the duty-cycle limiting signal is associated with a duty-cycle limiting value. If the first duty cycle is smaller than the second threshold duty cycle; the second duty cycle cannot exceed the duty-cycle limiting value, and if the first duty cycle is larger than the second threshold duty cycle, the second duty cycle can exceed the duty-cycle limiting value. For example, the system is implemented according to
According to yet another embodiment, a method for protecting a power converter includes receiving a modulation signal, determining a first duty cycle corresponding to a first period of the modulation signal, processing information associated with the first duty cycle with a first threshold duty cycle and a second threshold duty cycle, generating a first duty-cycle comparison signal to indicate whether the first duty cycle is larger than the first threshold duty cycle or whether the first duty cycle is smaller than the first threshold duty cycle, and generating a second duty-cycle comparison signal to indicate whether the first duty cycle is larger than the second threshold duty cycle or whether the first duty cycle is smaller than the second threshold duty cycle. Additionally, the method includes receiving the first duty-cycle comparison signal, processing information associated with the first duty-cycle comparison signal, and generating a threshold signal corresponding to a second period of the modulation signal, and receiving the threshold signal and a first signal. The second period is after the first period, and the first signal is associated with an input current for a power converter. Moreover, the method includes generating a first comparison signal based on at least information associated with the threshold signal and the first signal, receiving the second duty-cycle comparison signal, processing information associated with the second duty-cycle comparison signal, and generating a duty-cycle limiting signal based on at least information associated with the second duty-cycle comparison signal. Also, the method includes receiving the first comparison signal and the duty-cycle limiting signal, processing information associated with the first comparison signal and the duty-cycle limiting signal, and generating the modulation signal for the second period based on at least information associated with the first comparison signal and the duty-cycle limiting signal. The threshold signal is associated with a threshold magnitude corresponding to the second period of the modulation signal. If the first duty cycle is determined to be smaller than the first threshold duty cycle, the threshold magnitude equals a first magnitude at the beginning of the second period and changes from the first magnitude to a second magnitude within the second period, and if the first duty cycle is determined to be larger than the first threshold duty cycle, the threshold magnitude equals a third magnitude at the beginning of the second period, the third magnitude being larger than the first magnitude. The modulation signal for the second period is associated with a second duty cycle, and the duty-cycle limiting signal is associated with a duty-cycle limiting value. If the first duty cycle is smaller than the second threshold duty cycle; the second duty cycle cannot exceed the duty-cycle limiting value, and if the first duty cycle is larger than the second threshold duty cycle, the second duty cycle can exceed the duty-cycle limiting value. For example, the method is implemented according to
Although specific embodiments of the present invention have been described, it will be understood by those of skill in the art that there are other embodiments that are equivalent to the described embodiments. Accordingly, it is to be understood that the invention is not to be limited by the specific illustrated embodiments, but only by the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2010 1 0587658 | Dec 2010 | CN | national |
This application is a continuation of U.S. patent application Ser. No. 13/005,427, filed Jan. 12, 2011, which claims priority to Chinese Patent Application No. 201010587658.9, filed Dec. 8, 2010, both applications being commonly assigned and incorporated by reference herein for all purposes. Additionally, this application is related to U.S. patent application Ser. Nos. 11/213,657, 12/125,033, 11/752,926, and 12/690,808, commonly assigned, incorporated by reference herein for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
3913002 | Steigerwald et al. | Oct 1975 | A |
4356542 | Bruckner | Oct 1982 | A |
4952853 | Archer | Aug 1990 | A |
4975820 | Szepesi | Dec 1990 | A |
5416689 | Silverstein | May 1995 | A |
5550702 | Schmidt | Aug 1996 | A |
5578908 | Persson | Nov 1996 | A |
5796595 | Cross | Aug 1998 | A |
5867379 | Maksimovic et al. | Feb 1999 | A |
5917714 | Ogawa | Jun 1999 | A |
6084783 | Rascon Martinez et al. | Jul 2000 | A |
6292376 | Kato | Sep 2001 | B1 |
6469917 | Ben-Yaakov | Oct 2002 | B1 |
6515876 | Koike et al. | Feb 2003 | B2 |
6611439 | Yang et al. | Aug 2003 | B1 |
6714425 | Yamada et al. | Mar 2004 | B2 |
6839247 | Yang et al. | Jan 2005 | B1 |
6842350 | Yamada et al. | Jan 2005 | B2 |
6903536 | Yang | Jun 2005 | B2 |
6914789 | Kinoshita et al. | Jul 2005 | B2 |
6947298 | Uchida | Sep 2005 | B2 |
6954367 | Yang et al. | Oct 2005 | B2 |
7027313 | Amei | Apr 2006 | B2 |
7061225 | Yang et al. | Jun 2006 | B2 |
7099164 | Zhu et al. | Aug 2006 | B2 |
7149098 | Chen | Dec 2006 | B1 |
7362592 | Yang et al. | Apr 2008 | B2 |
7362593 | Yang et al. | Apr 2008 | B2 |
7391630 | Acatrinei | Jun 2008 | B2 |
7394634 | Fang et al. | Jul 2008 | B2 |
7679938 | Ye | Mar 2010 | B2 |
7684220 | Fang et al. | Mar 2010 | B2 |
7738227 | Fang et al. | Jun 2010 | B2 |
7746615 | Zhu et al. | Jun 2010 | B2 |
7759891 | Serizawa | Jul 2010 | B2 |
7778049 | Morota | Aug 2010 | B2 |
7791903 | Zhang et al. | Sep 2010 | B2 |
8004112 | Koga et al. | Aug 2011 | B2 |
8018745 | Fang | Sep 2011 | B2 |
8098502 | Mao et al. | Jan 2012 | B2 |
8102676 | Huyhn et al. | Jan 2012 | B2 |
8416596 | Huang | Apr 2013 | B2 |
8482946 | Fang et al. | Jul 2013 | B2 |
8488342 | Zhang et al. | Jul 2013 | B2 |
8559152 | Cao et al. | Oct 2013 | B2 |
8680884 | Chobot | Mar 2014 | B2 |
8824173 | Fang et al. | Sep 2014 | B2 |
8917527 | Fang et al. | Dec 2014 | B2 |
9088218 | Zhang et al. | Jul 2015 | B2 |
9401648 | Li | Jul 2016 | B2 |
20020131279 | Tang | Sep 2002 | A1 |
20030099119 | Yamada et al. | May 2003 | A1 |
20030156433 | Gong et al. | Aug 2003 | A1 |
20030174520 | Bimbaud | Sep 2003 | A1 |
20040201369 | Perrier et al. | Oct 2004 | A1 |
20040218405 | Yamada et al. | Nov 2004 | A1 |
20050036342 | Uchida | Feb 2005 | A1 |
20050099164 | Yang | May 2005 | A1 |
20060055433 | Yang et al. | Mar 2006 | A1 |
20060291258 | Zhu | Dec 2006 | A1 |
20080198638 | Reinberger et al. | Aug 2008 | A1 |
20080257397 | Glaser et al. | Oct 2008 | A1 |
20080298099 | Huang et al. | Dec 2008 | A1 |
20080309380 | Yang et al. | Dec 2008 | A1 |
20080316781 | Liu | Dec 2008 | A1 |
20090021233 | Hsu | Jan 2009 | A1 |
20090219070 | Zhang | Sep 2009 | A1 |
20100253250 | Marvelly et al. | Oct 2010 | A1 |
20110101953 | Cheng et al. | May 2011 | A1 |
20110110126 | Morrish | May 2011 | A1 |
20120008352 | Huang et al. | Jan 2012 | A1 |
20120075891 | Zhang et al. | Mar 2012 | A1 |
20120147630 | Cao et al. | Jun 2012 | A1 |
20120194227 | Lin et al. | Aug 2012 | A1 |
20120224397 | Yeh | Sep 2012 | A1 |
20120281438 | Fang et al. | Nov 2012 | A1 |
20130003421 | Fang | Jan 2013 | A1 |
20130100715 | Lin et al. | Apr 2013 | A1 |
20130135775 | Yao et al. | May 2013 | A1 |
20130258723 | Fang et al. | Oct 2013 | A1 |
20130294121 | Fang et al. | Nov 2013 | A1 |
20140016366 | Su | Jan 2014 | A1 |
20140029315 | Zhang et al. | Jan 2014 | A1 |
20150023069 | Zhu et al. | Jan 2015 | A1 |
20150180328 | Yao et al. | Jun 2015 | A1 |
20150303787 | Zhai et al. | Oct 2015 | A1 |
20150303898 | Zhai et al. | Oct 2015 | A1 |
20150340952 | Manohar et al. | Nov 2015 | A1 |
20150340957 | Fang et al. | Nov 2015 | A1 |
20150357912 | Perreault et al. | Dec 2015 | A1 |
20160226239 | Yang et al. | Aug 2016 | A1 |
Number | Date | Country |
---|---|---|
2552047 | May 2003 | CN |
1430314 | Jul 2003 | CN |
2567850 | Aug 2003 | CN |
1448005 | Oct 2003 | CN |
1459903 | Dec 2003 | CN |
1497827 | May 2004 | CN |
1815838 | Aug 2006 | CN |
1917322 | Feb 2007 | CN |
101295872 | Oct 2008 | CN |
101340149 | Jan 2009 | CN |
101499713 | Aug 2009 | CN |
101552570 | Oct 2009 | CN |
100559678 | Nov 2009 | CN |
101662223 | Mar 2010 | CN |
101295872 | Apr 2010 | CN |
201477463 | May 2010 | CN |
101924536 | Dec 2010 | CN |
101964647 | Feb 2011 | CN |
101997412 | Mar 2011 | CN |
202009514 | Oct 2011 | CN |
102364990 | Feb 2012 | CN |
102412727 | Apr 2012 | CN |
102487246 | Jun 2012 | CN |
102545567 | Jul 2012 | CN |
102624237 | Aug 2012 | CN |
102638169 | Aug 2012 | CN |
102651613 | Aug 2012 | CN |
102761255 | Oct 2012 | CN |
102790531 | Nov 2012 | CN |
102801300 | Nov 2012 | CN |
103078489 | May 2013 | CN |
103166198 | Jun 2013 | CN |
103167665 | Jun 2013 | CN |
103401424 | Nov 2013 | CN |
103781256 | May 2014 | CN |
103781257 | May 2014 | CN |
203747681 | Jul 2014 | CN |
104853493 | Aug 2015 | CN |
104967328 | Oct 2015 | CN |
0871328 | Aug 2003 | EP |
1317052 | Oct 2006 | EP |
2003-333839 | Nov 2003 | JP |
2006-237519 | Sep 2006 | JP |
2006-237619 | Sep 2006 | JP |
4064296 | Mar 2008 | JP |
2009-36750 | Feb 2009 | JP |
200929824 | Jul 2009 | TW |
M400069 | Mar 2011 | TW |
201117670 | May 2011 | TW |
201218860 | May 2012 | TW |
201225495 | Jun 2012 | TW |
201241591 | Oct 2012 | TW |
201325304 | Jun 2013 | TW |
I403875 | Aug 2013 | TW |
I434500 | Apr 2014 | TW |
201429132 | Jul 2014 | TW |
I458232 | Oct 2014 | TW |
201541845 | Nov 2015 | TW |
WO 2012147453 | Nov 2012 | WO |
Entry |
---|
Chinese Patent Office, Office Action mailed Jan. 17, 2014, in Application No. 201310306106.X. |
Chinese Patent Office, Office Action mailed Jan. 3, 2014, in Application No. 201010587658.9. |
Taiwan Intellectual Property Office, Office Action mailed Mar. 13, 2014, in Application No. 100101960. |
Chinese Patent Office, Office Action mailed Aug. 1, 2014, in Application No. 201310015152.4. |
Taiwan Intellectual Property Office, Office Action mailed May 5, 2015, in Application No. 102131370. |
United Stated Patent and Trademark, Office Action mailed May 14, 2015, in U.S. Appl. No. 13/900,430. |
United Stated Patent and Trademark, Office Action mailed Jun. 17, 2015, in U.S. Appl. No. 13/749,516. |
Chinese Patent Office, Office Action mailed Jan. 25, 2016, in Application No. 201410157557.6. |
United Stated Patent and Trademark, Notice of Allowance mailed Mar. 16, 2016, in U.S. Appl. No. 13/749,516. |
United Stated Patent and Trademark, Notice of Allowance mailed Mar. 21, 2016, in U.S. Appl. No. 13/900,430. |
United Stated Patent and Trademark, Notice of Allowance mailed Feb. 23, 2016, in U.S. Appl. No. 14/334,553. |
Chinese Patent Office, Office Action mailed Nov. 26, 2015, in Application No. 201410134395.4. |
Chinese Patent Office, Office Action mailed Dec. 4, 2015, in Application No. 201410198140.4. |
United Stated Patent and Trademark, Notice of Allowance mailed Nov. 13, 2015, in U.S. Appl. No. 13/749,516. |
United Stated Patent and Trademark, Notice of Allowance mailed Nov. 6, 2015, in U.S. Appl. No. 13/900,430. |
United Stated Patent and Trademark, Notice of Allowance mailed Jan. 20, 2016, in U.S. Appl. No. 14/334,553. |
United Stated Patent and Trademark, Office Action mailed Oct. 30, 2015, in U.S. Appl. No. 13/969,281. |
United Stated Patent and Trademark, Office Action mailed Jan. 5, 2016, in U.S. Appl. No. 14/272,323. |
Taiwan Intellectual Property Office, Office Action mailed May 18, 2016, in Application No. 103121063. |
Taiwan Intellectual Property Office, Office Action mailed May 24, 2016, in Application No. 104110694. |
Taiwan Intellectual Property Office, Office Action mailed May 23, 2016, in Application No. 104132444. |
Taiwan Intellectual Property Office, Approval Report mailed May 26, 2016, in Application No. 104125785. |
Taiwan Intellectual Property Office, Office Action mailed Jul. 29, 2016, in Application No. 105106390. |
United Stated Patent and Trademark, Notice of Allowance mailed Jun. 24, 2016, in U.S. Appl. No. 13/749,516. |
United Stated Patent and Trademark, Notice of Allowance mailed Jul. 11, 2016, in U.S. Appl. No. 13/900,430. |
United Stated Patent and Trademark, Notice of Allowance mailed Jul. 14, 2016, in U.S. Appl. No. 14/272,323. |
United Stated Patent and Trademark, Notice of Allowance mailed Jul. 27, 2016, in U.S. Appl. No. 14/639,607. |
United Stated Patent and Trademark, Notice of Allowance mailed May 26, 2016, in U.S. Appl. No. 14/334,553. |
United Stated Patent and Trademark, Office Action mailed May 24, 2016, in U.S. Appl. No. 13/969,281. |
United Stated Patent and Trademark, Office Action mailed Jul. 12, 2016, in U.S. Appl. No. 14/753,079. |
Chinese Patent Office, Office Action mailed Aug. 17, 2016, in Application No. 201510053255.9. |
Chinese Patent Office, Office Action mailed Nov. 2, 2016, in Application No. 201510249026.4. |
United States Patent and Trademark, Notice of Allowance mailed Sep. 14, 2016, in U.S. Appl. No. 13/749,516. |
United States Patent and Trademark, Notice of Allowance mailed Sep. 28, 2016, in U.S. Appl. No. 13/900,430. |
United States Patent and Trademark, Notice of Allowance mailed Sep. 12, 2016, in U.S. Appl. No. 14/272,323. |
United States Patent and Trademark, Notice of Allowance mailed Sep. 29, 2016, in U.S. Appl. No. 14/639,607. |
United States Patent and Trademark, Notice of Allowance mailed Sep. 9, 2016, in U.S. Appl. No. 14/334,553. |
United States Patent and Trademark, Notice of Allowance mailed Oct. 12, 2016, in U.S. Appl. No. 14/817,081. |
United States Patent and Trademark, Notice of Allowance mailed Nov. 22, 2016, in U.S. Appl. No. 13/969,281. |
Number | Date | Country | |
---|---|---|---|
20130336029 A1 | Dec 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13005427 | Jan 2011 | US |
Child | 13967276 | US |