The present description relates to a system and methods for selectively activating and deactivating cylinders of an engine to conserve fuel while meeting engine torque demands. The system and methods vary which cylinders of an engine fire from one engine cycle to the next engine cycle.
Some engines include a fixed group of cylinders that may be selectively activated and deactivated in response to vehicle conditions. For example, during light vehicle driver demand conditions, a fixed group of engine cylinders may be deactivated to conserve fuel. If vehicle driver demand increases, the same group of cylinders may be reactivated to meet the vehicle driver demand. Such engines may improve fuel efficiency over similar engines that operate with all cylinders active all of the time; however, cylinder reactivation delays may reduce engine responsiveness and deactivating the same cylinder all of the time may cause uneven degradation between engine cylinders.
Other engines have been developed that may deactivate or activate any engine cylinder at virtually any time depending on select vehicle operating conditions. Further, these engines may vary which cylinders are activated and deactivated so that wear between cylinders may be more even. Nevertheless, these engines may transmit vibrations related to the activation and deactivation of cylinders to the vehicle and its occupants. The engine vibrations may be mitigated so as to not disturb vehicle occupants by not allowing selected cylinder firing fractions and/or cylinder deactivation patterns during predetermined conditions. However, some vibrations may be still be noticeable to vehicle occupants during some engine operating conditions. Therefore, it may be desirable to seek to reduce the possibility of transmitting engine vibration to vehicle occupants during a broader range of engine operating conditions.
The inventors herein have recognized the above-mentioned issues and have developed an engine method, comprising: increasing an actual total number of engine cylinder modes that include active cylinders according to an engine cylinder mode region of an engine cylinder activation map via a controller in response to a change of engine speed or engine load, the cylinder mode region adjusted in response to a change in vehicle mass; and activating and deactivating engine cylinders in response to the change of engine speed or engine load.
By adjusting a range of an engine cylinder mode region of an engine cylinder activation map, it may be possible to provide the technical result of reducing the possibility of disturbing vehicle occupants when cylinder mode changes are made. In particular, an engine speed and load range where additional active engine cylinder modes and additional deactivated engine cylinder modes are provided may be increased or decreased in size so that cylinder modes that may influence vibrations felt by vehicle occupants may be avoided in response to changes in vehicle mass. The vehicle's mass and location of mass of the vehicle may affect transmission of vibrations related to modes where one or more engine cylinders are deactivated. As such, adjusting size of one or more engine cylinder mode regions may help avoid the possibility of disturbing vehicle occupants due to vibrations that may be related to cylinder modes where one or more engine cylinders may be deactivated.
The present description may provide several advantages. For example, the approach may improve vehicle drivability. Further, the approach provides adjustments to which cylinder modes are allowable responsive to location of vehicle mass. In addition, the approach may also compensate for vibrations when a trailer is towed by the vehicle.
The above advantages and other advantages, and features of the present description will be readily apparent from the following Detailed Description when taken alone or in connection with the accompanying drawings.
It should be understood that the summary above is provided to introduce in simplified form a selection of concepts that are further described in the detailed description. It is not meant to identify key or essential features of the claimed subject matter, the scope of which is defined uniquely by the claims that follow the detailed description. Furthermore, the claimed subject matter is not limited to implementations that solve any disadvantages noted above or in any part of this disclosure.
The advantages described herein will be more fully understood by reading an example of an embodiment, referred to herein as the Detailed Description, when taken alone or with reference to the drawings, where:
The present description is related to controlling activation and deactivation of engine cylinders responsive to vehicle mass, trailer tow mass, and distribution of vehicle weight. An engine and its related components are shown in
Referring to
Combustion chamber 30 is shown communicating with intake manifold 44 and exhaust manifold 48 via respective intake valve 52 and exhaust valve 54. Each intake and exhaust valve may be operated by a variable intake valve operator 51 and a variable exhaust valve operator 53, which may be actuated mechanically, electrically, hydraulically, or by a combination of the same. For example, the valve actuators may be of the type described in U.S. Patent Publication 2014/0303873 and U.S. Pat. Nos. 6,321,704; 6,273,039; and 7,458,345, which are hereby fully incorporated for all intents and purposes. Intake valve operator 51 and an exhaust valve operator may open intake 52 and exhaust 54 valves synchronously or asynchronously with crankshaft 40. The position of intake valve 52 may be determined by intake valve position sensor 55. The position of exhaust valve 54 may be determined by exhaust valve position sensor 57.
Fuel injector 66 is shown positioned to inject fuel directly into cylinder 30, which is known to those skilled in the art as direct injection. Alternatively, fuel may be injected to an intake port, which is known to those skilled in the art as port injection. Fuel injector 66 delivers liquid fuel in proportion to the pulse width of signal from controller 12. Fuel is delivered to fuel injector 66 by a fuel system 175. In addition, intake manifold 44 is shown communicating with optional electronic throttle 62 (e.g., a butterfly valve) which adjusts a position of throttle plate 64 to control air flow from air filter 43 and air intake 42 to intake manifold 44. Throttle 62 regulates air flow from air filter 43 in engine air intake 42 to intake manifold 44. In one example, a high pressure, dual stage, fuel system may be used to generate higher fuel pressures. In some examples, throttle 62 and throttle plate 64 may be positioned between intake valve 52 and intake manifold 44 such that throttle 62 is a port throttle.
Distributorless ignition system 88 provides an ignition spark to combustion chamber 30 via spark plug 92 in response to controller 12. Universal Exhaust Gas Oxygen (UEGO) sensor 126 is shown coupled to exhaust manifold 48 upstream of catalytic converter 70. Alternatively, a two-state exhaust gas oxygen sensor may be substituted for UEGO sensor 126.
Converter 70 can include multiple catalyst bricks, in one example. In another example, multiple emission control devices, each with multiple bricks, can be used. Converter 70 can be a three-way type catalyst in one example.
Controller 12 is shown in
In some examples, the engine may be coupled to an electric motor/battery system in a hybrid vehicle. Further, in some examples, other engine configurations may be employed, for example a diesel engine.
During operation, each cylinder within engine 10 typically undergoes a four stroke cycle: the cycle includes the intake stroke, compression stroke, expansion stroke, and exhaust stroke. During the intake stroke, generally, the exhaust valve 54 closes and intake valve 52 opens. Air is introduced into combustion chamber 30 via intake manifold 44, and piston 36 moves to the bottom of the cylinder so as to increase the volume within combustion chamber 30. The position at which piston 36 is near the bottom of the cylinder and at the end of its stroke (e.g. when combustion chamber 30 is at its largest volume) is typically referred to by those of skill in the art as bottom dead center (BDC). During the compression stroke, intake valve 52 and exhaust valve 54 are closed. Piston 36 moves toward the cylinder head so as to compress the air within combustion chamber 30. The point at which piston 36 is at the end of its stroke and closest to the cylinder head (e.g. when combustion chamber 30 is at its smallest volume) is typically referred to by those of skill in the art as top dead center (TDC). In a process hereinafter referred to as injection, fuel is introduced into the combustion chamber. In a process hereinafter referred to as ignition, the injected fuel is ignited by known ignition means such as spark plug 92, resulting in combustion. During the expansion stroke, the expanding gases push piston 36 back to BDC. Crankshaft 40 converts piston movement into a rotational torque of the rotary shaft. Finally, during the exhaust stroke, the exhaust valve 54 opens to release the combusted air-fuel mixture to exhaust manifold 48 and the piston returns to TDC. Note that the above is shown merely as an example, and that intake and exhaust valve opening and/or closing timings may vary, such as to provide positive or negative valve overlap, late intake valve closing, or various other examples.
Referring now to
Referring now to
Engine 10 includes a single cylinder bank 250, which includes four cylinders 1-4. Cylinders of the single bank may be active or deactivated during a cycle of the engine. Each cylinder includes variable intake valve operators 51 and variable exhaust valve operators 53. An engine cylinder may be deactivated by its variable intake valve operators 51 and variable exhaust valve operators holding intake and exhaust valves of the cylinder closed during a cycle of the cylinder. An engine cylinder may be activated by its variable intake valve operators 51 and variable exhaust valve operators 53 opening and closing intake and exhaust valves of the cylinder during a cycle of the cylinder.
The system of
Referring now to
A first cylinder mode region 300 is defined by points 310, 311, 312, and 314. Lines 302, 303, 304, and 305 indicate the extents of the first cylinder mode region 300. The first cylinder mode begins at a lower engine speed indicated at 324 and extends to a higher engine speed indicated at 326. The first cylinder mode region 300 begins at a lower engine load 320 and it extends to a higher engine load 322, except at lower engine speeds, the first cylinder mode region 300 extends to engine load 321.
The first cylinder mode region 300 may allow only selected cylinder firing patterns to be activated. For example, for an eight cylinder engine having a firing order of 1, 3, 7, 2, 6, 5, 4, 8, the first cylinder mode region may allow all eight cylinders to be active (e.g., combusting air and fuel during a cycle of the engine) in a first cylinder firing pattern during an engine cycle, allow only cylinders numbered 1, 7, 6, and 3 to be active in a second cylinder firing pattern during an engine cycle, allow only cylinders numbered 3, 2, 5, and 8 to be activated in a third cylinder firing pattern during an engine cycle, and allow only cylinders numbered 1 and 6 to be activated in a fourth cylinder firing pattern during an engine cycle. Other cylinder firing patterns may not be allowed. For example, a firing pattern of 1, 3, 7, 2 is not allowed in this example. In the area outside of first cylinder mode region 300 only a mode where all engine cylinders are active is permitted. Thus, within first cylinder mode region 300 the actual number of allowable active cylinder modes is increased and the actual number of allowable cylinder deactivation modes is increased.
The first cylinder mode region 300 may also allow only selected cylinder firing fractions over a predetermined number of engine cycles. A cylinder firing fraction may be defined as an actual total number of cylinder firing events divided by an actual total number of cylinder compression strokes over a predetermined actual total number of cylinder compression strokes. For example, if an engine fires (e.g., combusts an air-fuel mixture) three times while the engine rotates through ten compression strokes, the cylinder firing fraction is 0.333. Thus, as an example, cylinder mode region 300 may allow a cylinder firing fraction of 1 during a predetermined actual total number of engine cycles, allow a cylinder firing fraction of 0.5 during a cylinder during a predetermined actual total number of engine cycles, and allow a cylinder firing fraction of 0.666 during a predetermined actual total number of engine cycles. All other cylinder firing fractions are not allowed in this example. Thus, within first cylinder mode region 300 the actual number of allowable cylinder firing fractions is increased as compared to the area outside of region 300, which requires all cylinders to be active in this example.
The second cylinder mode region 300 may also allow different selected cylinder firing fractions over a predetermined number of engine cycles as compared to the first cylinder mode region. For example, second cylinder mode region 330 may allow a cylinder firing fraction of 1 during a predetermined actual total number of engine cycles, allow a cylinder firing fraction of 0.5 during a cylinder during a predetermined actual total number of engine cycles, allow a cylinder firing fraction of 0.666 during a predetermined actual total number of engine cycles, and allow a cylinder firing fraction of 0.33 during a predetermined actual total number of engine cycles. All other cylinder firing fractions are not allowed in this example.
The cylinder mode regions shown in
Referring now to
Points 310a, 312a, 314a, and 311a define the extents of the first cylinder mode region 300a when vehicle mass is increased from the base vehicle mass to maximum gross vehicle weight. The first cylinder mode region may be adjusted to a size between first cylinder mode region 300 and first cylinder mode region 300a via interpolating end point values. For example, a point defining the first cylinder mode region for when vehicle mass is greater than a base mass but less than a gross vehicle weight may be established via interpolating between points that define the first cylinder mode when vehicle mass is the base mass and points that define the first cylinder mode when vehicle mass is at a gross vehicle weight. Thus, for points 310 and 310a that define a low engine speed high engine load extent of the first cylinder mode region, a point lying along a straight line between point 310 and 310a may be determined via determining an equation of a straight line between point 310 and point 310a and finding a point along the line that corresponds to the vehicle mass between the base vehicle and a vehicle at gross vehicle weight.
For example, if point 310 is located at (500, 0.5) and point 310a is located at (600, 0.3) the equation of the line is y=(0.5-0.3)/(500-600)x+b, where b=1.5 and m=(0.2/−100) according to an equation of a straight line (y=mx+b where m is the slope of the line and b is the offset of the line, y is the vertical axis value (load), and x is the horizontal axis value (speed)). The length of the straight line is determined by the Pythagorean theorem: D=√{square root over ((x2-x1)2+(y2-y1)2)}, where D is the distance of the line x1, x2, y1, and y2 are the end points of the line and the engine speed and load locations of the end points. A ratio of the change in vehicle mass to the length of the line is the basis for determining where on the line a vehicle mass (e.g., new vehicle mass) between the base vehicle mass and the vehicle at gross vehicle weight lies on the line. The new vehicle mass is then the basis for determining where the new point on the line representing the new vehicle mass lies. So for example, if this length of the line is 1 and the vehicle mass increases 500 Kg between the base vehicle mass and the gross vehicle mass a ratio of 500/1 is a basis for determining the location of where a 300 Kg increase in vehicle mass lies on the line. In particular, 300 is to 500 as 0.6 is to 1. Thus, the position on the line between point 310 and 310a corresponding to a 300 Kg increase in vehicle mass from the base vehicle mass is the point on the line between 310 and 310a where the distance from point 310 is 0.66 (e.g., the distance of the line for the 300 Kg vehicle mass increase) times the distance of the line between 310 and 310a (e.g., 1). The new point (x2, y2) for the 300 Kg vehicle mass increase is solved via solving the Pythagorean theorem for a distance of 0.6 and x1=500 and y1=0.5 for the line y=(0.2/−100)x+1.5. In a similar way, other points that define the first cylinder mode region (e.g., points between 311 and 311a, points between 314 and 314a, and points between 312 and 312a) may be determined for different vehicle masses.
In addition, the size of the first cylinder mode region may be adjusted for the way the vehicle weight is carried between the vehicle's front suspension and the vehicle weight carried by the vehicle's rear suspension. Further, the first cylinder mode region may be adjusted based on whether the vehicle mass includes mass of a trailer towed by the vehicle. For example, a location of a point that lies along a straight line between point 310 and 310a may be adjusted responsive to vehicle weight carried by the vehicle's front suspension and vehicle weight carried by the vehicle's rear suspension as well as for a portion of the total vehicle mass that is a trailer. In particular, a length of a line based on vehicle mass that corresponds to a position along the line between 310 and 310a is adjusted by an empirically determined factor for vehicle weight carried by the vehicle's front suspension and vehicle weight carried by the vehicle's rear suspension and an empirically determined factor for mass of a trailer being towed by the vehicle. In one example, the length of the line between a base cylinder mode region boundary (e.g., 310 of
It should be mentioned that the method described herein is only one non-limiting method for adjusting cylinder mode regions for changes in vehicle mass, trailer tow weight, and vehicle weight carried by the vehicle's front suspension and vehicle weight carried by the vehicle's rear suspension. However, other ways of adjusting the cylinder mode regions are also anticipated. For example, instead of interpolating between points that define a base vehicle cylinder mode region and a maximum gross vehicle weight cylinder mode region, a group of cylinder mode regions may be provided for each incremental increase in vehicle weight (e.g., for every 50 Kg increase in vehicle mass) and the cylinder mode region that is active corresponds to a cylinder mode region for the present vehicle mass plus or minus a predetermined amount of mass. The vehicle weight carried by the vehicle's front suspension and vehicle weight carried by the vehicle's rear suspension and the trailer mass may provide an offset value to the vehicle mass so that the selected cylinder mode region may be different than the cylinder mode region that corresponds to only the vehicle mass.
Thus, if vehicle mass increases or decreases, the cylinder mode regions may increase in size or decrease in size to reduce the possibility of transmitting vibrations to vehicle occupants that may be related to cylinder deactivation. Further, the cylinder mode regions may increase or decrease in size to reduce the possibility of transmitting vibrations to vehicle occupants that may be related to vehicle weight carried by the vehicle's front suspension and vehicle weight carried by the vehicle's rear suspension and/or trailer mass.
Referring now to
At 402, method 400 determines the vehicle's wheel base and gross vehicle weight. The vehicle's wheel based is a physical distance between the vehicle's front axle and the vehicle's rear axle. The vehicle's gross vehicle weight is the vehicle's maximum weight not including any trailer being towed by the vehicle. The vehicle's wheel base and gross vehicle weight may be determined via accessing values stored in controller memory. The values may be stored to memory at the time of vehicle manufacture. Method 400 proceeds to 404.
At 404, method 400 judges if a trailer is coupled to the vehicle. In one example, method 440 may judge that a trailer is coupled to a vehicle in response to a state of a trailer hitch electrical plug. If method 400 judges that a trailer is coupled to the vehicle, the answer is yes and method 400 proceeds to 420. Otherwise, the answer is no and method 400 proceeds to 406.
At 406, method 400 estimates the vehicle's mass. In one example, vehicle's mass may be estimated via a vehicle ride height sensor. In particular, output of the vehicle ride height sensor is used to index a table of empirically determined vehicle mass estimates that are based on output of the ride height sensor. In other examples, vehicle mass may be estimated from the following equations while the vehicle is accelerating:
F=m*a
Tw/RR=F
Tw=m*a*RR=RR*m*g*sin(θ)
where F is the force to accelerate the vehicle, m is vehicle mass estimate, Tw is torque at the vehicle's wheel, RR is the vehicle wheel rolling radius, g is the gravitational constant, and e is the road angle. The road angle may be determined via an inclinometer or accelerometer and the values of g and RR may be stored in controller memory. Method 400 proceeds to 408 after estimating vehicle mass.
At 408, method 400 estimates vehicle carried by the vehicle's front suspension and the weight carried by the vehicle's rear suspension. In one example, vehicle weight carried by the vehicle's front suspension and vehicle weight carried by the vehicle's rear suspension is estimated via output of vehicle ride height sensors (e.g. front suspension vehicle ride height sensor and rear suspension vehicle ride height sensor. Output of the ride height sensors is input to a function of empirically determined values that outputs an estimate of vehicle weight carried by the vehicle's front suspension and vehicle weight carried by the vehicle's rear suspension. Method 400 proceeds to 410.
At 410, method 400 adjusts cylinder activation maps responsive to vehicle mass and vehicle weight carried by the vehicle's front suspension and vehicle weight carried by the vehicle's rear suspension. In one example, the vehicle includes base cylinder activation maps that correspond to the vehicle's wheel base and the vehicle's gross vehicle weight and different versions of the same model of vehicle may have different gross vehicle weights and different wheel bases. For example, a first vehicle (e.g., truck) has a first wheel base for a short truck bed and a first gross vehicle weight, a second vehicle has a second wheel base for a long truck bed and a second gross vehicle weight, the first wheel base shorter than the second wheel based, the first gross vehicle weight less than the second gross vehicle weight, the first vehicle a same model vehicle as the second vehicle. Thus, the first vehicle and the second vehicle may have different cylinder activation maps even though the first and second vehicles are a same model of vehicle (e.g., both vehicles are Ford® F-150 trucks). A first cylinder activation map may be stored in controller memory of the first vehicle while a second cylinder activation map may be stored in controller memory of the second vehicle. Alternatively, a vehicle may include several cylinder activation maps stored in memory and cylinder activation maps that correspond to the vehicle's wheel base and gross vehicle weight are activated based on the vehicle's determined wheel base and gross vehicle weight to provide a basis for adjusting cylinder firing fraction and cylinder firing patterns during varying vehicle operating conditions.
For example, a base cylinder activation map similar to the one shown in
Engine cylinders are activated and deactivated in response to engine speed and engine load. Further, engine cylinders are activated and deactivated in response to the cylinder mode regions that have been adjusted for vehicle mass and vehicle mass supported via the vehicle's front suspension and vehicle mass supported via the vehicle's rear suspension. Method 400 proceeds to exit after adjusting the engine cylinders to activate and deactivate.
At 420, method 400 estimates the vehicle's total mass as described at 406. The vehicle's total mass includes mass of the vehicle and mass of the trailer that is coupled to the vehicle. Method 400 proceeds to 422 after estimating vehicle mass.
At 422, method 400 estimates vehicle mass carried by the vehicle's front suspension and the mass carried by the vehicle's rear suspension as described at 408. Further, method 400 subtracts a mass from the mass the vehicle's rear suspension is determined to be carrying based on the difference in mass of the total vehicle and mass of the vehicle supported via the vehicle's front and rear suspensions. For example, if the vehicle's total mass is estimated to be 3200 Kg including the trailer coupled to the vehicle, and the vehicle's front suspension is estimated to be carrying 1430 Kg and the vehicle's rear suspension is estimated to be carrying 770 Kg, the trailer's initial mass is estimated to be 1000 Kg. However, since the vehicle may carry weight from the trailer (e.g., trailer tongue mass), a fraction of the mass carried by the vehicle's rear suspension may be subtracted from the mass carried by the vehicle's rear suspension and added to the trailer. In one example, an empirically estimated amount of mass may be subtracted from the mass carried by the vehicle's rear suspension and added to the trailer mass. The empirically amount of mass may be a function of the estimate of the trailer's mass before the tongue mass is added into the trailer mass. Method 400 proceeds to 424.
At 424, method 400 estimates the mass of the trailer towed by the vehicle. In particular, the mass carried by the front vehicle suspension and the mass carried by the rear vehicle suspension determined at 422 is subtracted from the total vehicle mass estimated at 420 to provide the estimate of mass of the trailer towed by the vehicle. Method 400 proceeds to 426.
At 426, method 400 adjusts cylinder activation maps responsive to vehicle mass (not including trailer), vehicle mass carried by the vehicle's front suspension and vehicle mass carried by the vehicle's rear suspension, and trailer mass. In one example, the vehicle includes base cylinder activation maps that correspond to the vehicle's wheel base and the vehicle's gross vehicle weight and different versions of the same model of vehicle may have different gross vehicle weights and different wheel bases as described at 410.
A base cylinder activation map similar to the one shown in
The engine's cylinders are activated and deactivated in response to engine speed and engine load. Further, engine cylinders are activated and deactivated in response to the cylinder mode regions that have been adjusted for vehicle mass, vehicle weight supported via the vehicle's front suspension and vehicle weight supported via the vehicle's rear suspension, and trailer mass. Method 400 proceeds to exit after adjusting the engine cylinders to activate and deactivate.
Thus, the method of
In some examples, the method further comprises increasing an actual total number of engine cylinder modes that include deactivated cylinders according to the engine cylinder mode region of the engine cylinder activation map via the controller in response to the change of engine speed or engine load. The method includes where adjusting the cylinder mode region in response to a change in vehicle mass includes decreasing a range of engine speeds where the actual total number of engine cylinder modes is increased in response to an increase in vehicle mass. The method also includes where adjusting the cylinder mode region in response to a change in vehicle mass includes decreasing a range of engine loads where the actual total number of engine cylinder modes is increased in response to an increase in vehicle mass. The method includes where adjusting the cylinder mode region in response to a change in vehicle mass includes increasing a range of vehicle speeds where the actual total number of engine cylinder modes is increased in response to a decrease in vehicle mass.
The method of
In some examples, the method further comprises further adjusting the engine cylinder mode region via the controller in response to a vehicle towing a trailer. The method includes where the engine cylinder mode region identifies active cylinder modes and active cylinder patterns. The method further comprises bounding the cylinder mode region based on engine speed and engine load. The method further comprises adjusting boundaries of a plurality of cylinder mode regions in response to mass of a vehicle.
Turning now to
Referring now to
Note that the example control and estimation routines included herein can be used with various engine and/or vehicle system configurations. The control methods and routines disclosed herein may be stored as executable instructions in non-transitory memory and may be carried out by the control system including the controller in combination with the various sensors, actuators, and other engine hardware. The specific routines described herein may represent one or more of any number of processing strategies such as event-driven, interrupt-driven, multi-tasking, multi-threading, and the like. As such, various actions, operations, and/or functions illustrated may be performed in the sequence illustrated, in parallel, or in some cases omitted. Likewise, the order of processing is not necessarily required to achieve the features and advantages of the example embodiments described herein, but is provided for ease of illustration and description. One or more of the illustrated actions, operations and/or functions may be repeatedly performed depending on the particular strategy being used. Further, at least a portion of the described actions, operations and/or functions may graphically represent code to be programmed into non-transitory memory of the computer readable storage medium in the control system. The control actions may also transform the operating state of one or more sensors or actuators in the physical world when the described actions are carried out by executing the instructions in a system including the various engine hardware components in combination with one or more controllers.
This concludes the description. The reading of it by those skilled in the art would bring to mind many alterations and modifications without departing from the spirit and the scope of the description. For example, I3, I4, I5, V6, V8, V10, and V12 engines operating in natural gas, gasoline, diesel, or alternative fuel configurations could use the present description to advantage.