SYSTEM AND METHOD TO DIVIDE LIPOSUCTION FAT INTO ALIQUOTS TO BE USE AND CRYOPRESERVED

Information

  • Patent Application
  • 20160192640
  • Publication Number
    20160192640
  • Date Filed
    August 01, 2014
    10 years ago
  • Date Published
    July 07, 2016
    8 years ago
Abstract
A system (1) to divide liposuction fat into aliquots for use and cryopreservation purposes, comprising: at least a transfer circuit (4, 10, 11) able to transfer sealed an adipose material removed by means of liposuction and comprising fat and an aqueous fluid, at least a taking container (12) which contains sealed the adipose material, syringe pumping means (2, 3), connected to the transfer circuit (4, 10, 11) and to the taking container (12), able to alternately take and contain sealed the adipose material from the taking container (12) and to transfer sealed the fat or said aqueous fluid within the circuit (4, 10, 11), at least a rejection receptacle (5) connected sealed to the circuit (4, 10, 11), downstream of the pumping means (2, 3), and able to receive the aqueous fluid, and a plurality of cryopreservation containers (6) to receive the fat in a sealing manner, connected to the circuit (4, 10, 11), downstream of the pumping means (2, 3), wherein the circuit (4, 10, 11) comprises first valve means (4) for allowing alternately the communication between the pumping means (2, 3) and the rejection receptacle (5) and between the pumping means and the cryopreservation container (6), wherein the syringe pumping means (2,3) comprise a pumping syringe (2) and second valve means (3) able to put in sealed communication, alternately, the syringe (2) with the taking container (12) or the syringe (2) with the first valve means (4), and where the first valve means comprise a ramp (4) of three-way cocks, each individually connected either to a rejection receptacle (5) or to a cryopreservation container (6).
Description
TECHNICAL FIELD

The present invention relates to a system and a method to divide liposuction fat into aliquots for use and cryopreservation purposes.


BACKGROUND ART

The fat removed by means of liposuction is known to be used in the ambit of surgical operations, e.g. for aesthetic and/or regenerative purposes.


Currently, in such operations, the fat is used as soon as removed through the liposuction operation, because there is no way of effectively storing the fat in order to use it when needed, in subsequent times.


This implies that only one part of the fat removed will be employed for the mentioned aesthetic/regenerative operations, while the rest remains unused, and is often disposed of, whereas regenerative operations are particularly effective if repeated over time, even at a distance of years.


It results that, so far, these aesthetic/regenerative operations can be repeated over time only at the price of performing as many liposuction operations, which is not only extremely inefficient, but it is somehow also traumatic and invasive for the person who undergoes them.


DESCRIPTION OF THE INVENTION

The main aim of the present invention is to provide a system and a method that enable to divide liposuction fat into aliquots, so it can be cryopreserved in order to use it over time for operations of aesthetic and regenerative type.


Within this aim, one object of the invention is to provide a system and a method to divide liposuction fat into aliquots, which process the fat in a bacteriologically isolated manner.


Another object of the present invention is to provide a system and a method to divide liposuction fat into aliquots which allow to overcome the mentioned drawbacks of the prior art in the ambit of a simple, rational, easy and effective to use as well as affordable solution.


The above mentioned objects are achieved by the present system for dividing liposuction fat into aliquots for use and cryopreservation purposes made in accordance with claim 1.


The above mentioned objects are achieved also by the present method to divide liposuction fat into aliquots for use and cryopreservation purposes implemented in accordance with claim 8.





BRIEF DESCRIPTION OF THE DRAWINGS

Other characteristics and advantages of the present invention will become better evident from the description of a preferred, but not exclusive embodiment of a system and a method to divide liposuction fat into aliquots, illustrated by way of an indicative, but not limitative example in the enclosed drawings, in which FIG. 1 is a schematic representation of the system according to the invention.





EMBODIMENTS OF THE INVENTION

With particular reference to such figures, globally indicated by reference numeral 1 is the system of the invention.


The adipose material containing subcutaneous fat, which remains at the end of an operation of liposuction, is made available in suitable containers, which will hereinafter be referred to as taking containers 12.


In the case of using the so-called “water jet” liposuction method, such material also comprises an aqueous fluid which is substantially formed by the water used in this method, in the form of a pressurized jet, to detach the fat from the surrounding tissues, preparing it for aspiration.


The proposed system 1 comprises at least a transfer circuit 4, 10, 11 able to transfer sealed the adipose material, and also comprises syringe pumping means 2, 3, connected to said transfer circuit 4, 10, 11, and able to alternately take and contain sealed said adipose material from the taking container 12 and to transfer sealed said fat or said aqueous fluid within said circuit 4, 10, 11.


The pumping means 2, 3 are available so as to separate by gravity, the fat from the aqueous fluids composing the adipose material contained in them.


The system 1 also provides one or more rejection receptacles 5 connected sealed to the circuit 4, 10, 11, downstream of the pumping means 2, 3, and able to receive the aqueous fluid, which is a waste for the purposes of the present system 1 (as it will be better clarified hereinafter, when explaining its operation).


Furthermore, the invention provides at least a cryopreservation container 6 (but preferably a plurality) to receive the fat in a sealing manner, which cryopreservation container 6 is connected to the circuit 4, 10, 11 of the proposed system 1, downstream of the pumping means 2, 3.


This cryopreservation container 6 can be made of a material resistant to a cryoprotective substance (such as in particular dimethyl sulfoxide), for reasons that will be explained hereinafter.


Preferably, the connection between the cryopreservation container 6 and the circuit is of the releasable type.


The circuit also comprises first valve means 4 for allowing alternately the communication between the pumping means 2, 3 and the rejection receptacle 5 or between the pumping means and the cryopreservation container 6 (or containers).


The proposed system 1 may further comprise at least one access 7, 8 for the injection of the cryoprotective substance, which access is able to be put in communication with the inside of the cryopreservation container 6.


It should be noticed that the system 1 described above is bacteriologically isolated, since it is able to preserve and process the adipose material (or its components), without this coming into contact with the external environment, thus ensuring the highest level of sterility in particular to the fat that has to be used again for the aforementioned aesthetic and/or reconstructive operations.


Hereinafter, the operation of the invention is illustrated in detail, together with its preferred and not limiting aspects of construction.


As shown in FIG. 1, the aforementioned pumping means preferably comprise: a pumping syringe 2 and second valve means 3 (e.g. comprising one or more two- or three-way cocks) able to put in sealed communication, alternately, the syringe 2 with the taking container 12 or the syringe 2 with the first valve means 4.


In particular, the second valve means 3 may be connected sealed to an inlet channel 9 having, at the free end thereof, a needle for the introduction of said adipose material.


As said, the adipose material is made available in the taking containers and is preferably “enriched” with mesenchymal cells, especially if the aliquots of fat obtained with the proposed system 1 are to be used in operations of the regenerative type.


The presence of mesenchymal cells is the reason why the invention may provide for the use of the cryoprotective substance and, consequently, of components made of a material resistant to this substance.


In fact, the cryoprotective substance is used to prevent, when the aliquots of fat undergo a significant lowering of temperature, the mesenchymal cells from being damaged by the formation of crystals within the fat itself.


The second valve means 3 are operated so as to be arranged in the configuration wherein they enable the communication between the syringe 2 and the container of adipose material (with the possible interposition of the inlet channel 9).


At this point, the syringe 2 is operated to aspirate inside the adipose material.


Then, the adipose material is left within the syringe 2, which is preferably arranged vertical so that, by virtue of the difference in specific weight between fat and water, the latter deposits at the bottom of its containment barrel, at the so-called “beak”.


This operation to be completed can take from fifteen to thirty minutes.


As shown in FIG. 1, the above mentioned first valve means 4 preferably comprise a ramp of three-way cocks, each individually connected either to the rejection receptacle 5 or to at least a respective cryopreservation container 6 (in the example shown the cocks are five in number).


At this point, the first and second valve means 3, 4 are arranged in a respective configuration wherein they only allow communication between the syringe 2 and the rejection receptacle 5, where the water separated from the fat is transferred, as a result of the suitable operation of the syringe 2 itself.


It should be noticed that the rejection receptacle 5 can be connected sealed to the second valve means through a rejection channel 11, included in the circuit.


Once filled with the water to be disposed of, the rejection receptacle 5, which can also be a common drip bag, is removed and replaced.


Then, the second valve means 3 change again their configuration to enable the communication between the syringe 2 and the ramp 4 of three-way cocks, the latter being in turn in a configuration that allows the communication between the cock of the second valve means 3 and the cryopreservation containers 6, while it prevents communication with the rejection receptacle 5.


At this point, the fat contained in the syringe 2, and separated from water, is transferred within the cryopreservation containers 6, to define as many aliquots of fat, usable for the already mentioned operations.


To explain the next operation stage, it is convenient first to describe two devices of the invention which are not necessarily alternative to one another.


According to a first embodiment, the mentioned access for the injection of the cryoprotective substance can be obtained at the outer periphery of each cryopreservation container 6, in which case it is substantially an inlet 8 which can be perforated by the needle of a syringe for injecting the cryoprotective substance, which preferably comprises, or consists of, dimethyl sulfoxide (DMSO).


In the present description, by the term “cryopreservation container” is meant the container in its entirety, and not only the walls that define the inner containment volume (and therefore are included access tangs, ports, etc . . . ).


In addition or as an alternative to this embodiment, an inlet 7 which may be perforated for the injection of dimethyl sulfoxide (or other substance) can be arranged at a further free end of said inlet channel 9, which therefore has a forked configuration as in the representation of FIG. 1, and in practice the second valve means 3 are connected to an access 7 (which may or may not be single) and are configured so as to also allow the sealed communication between the access 7 and the first valve means 4.


In the latter case, not only the channel 9, but also the entire circuit 4, 10, 11 and the pumping means 2, 3 are made of a dimethyl sulfoxide-resistant material.


Therefore, in practice, in the first embodiment, the DMSO is injected into each container 6, so as to come into contact with the relative aliquot of fat, in order to protect it when the container itself will be stored in a refrigerator (and this is why, as mentioned in a previous paragraph, each container 6 is made of a DMSO-resistant material).


If instead there is a single inlet 7, or any way said inlet 7 is provided at the end of the inlet channel 9, then the user will inject in such inlet 7 the DMSO, which, through the circuit 4, 10, 11 made in the DMSO-resistant material, will reach every single container 6, in order to identify the respective aliquot of fat, able to be refrigerated without damage.


In this manner, instead, each cryopreservation container 6 has internally, completely protected, an aliquot of fat which can be stored in the refrigerator, to define a sort of liposuction fat bank, from which each aliquot can be taken and used when needed, thus overcoming all the drawbacks of prior art.


Preferably, each of these containers 6 is connected to the respective cock of the ramp 4 through a relative outlet channel 10, included in the circuit of the invention.


With the purpose of insulating the aliquot of fat contained in the respective container 6 and separating the latter from the rest of the system 1, this outlet channel 10 is sealed by the user at a given point of its length and then cut according to procedures widely known to the skilled person.


In this way, each container 6 is made individually and can be put into the refrigerator.


According to a possible aspect of the embodiment, each cryopreservation container 6 has, at one of its peripheral walls, a breakable port, in communication with its interior, which can be substantially a closed tang that, following its breaking, allows the outflow of the aliquot of fat for the execution of the operation.


In an alternative embodiment, not shown in the illustrations, the container 6 may be the type of a syringe device connected in a releasable manner to the first valve means 4 and able, alternately, to contain sealed or to inject fat for the infiltrations. More particularly, this syringe device comprises a receptacle (such as a drip bag) connected in a sealing manner with an infiltration syringe (e.g. through a channel and a single-acting valve incorporated to the syringe itself), to define, as a result of their filling with fat, a portable unit to contain (in isolation), and to inject an aliquot of fat.


After the taking container 12 has been emptied, it is separated from the aforementioned inlet channel 9, at the branch of the aforementioned bifurcation, e.g. through the common practice of sealing and cutting off.


The proposed system 1 is devised to implement the method of the invention, which comprises the stages listed below:


providing a taking container 12 that contains adipose material removed by means of liposuction (and to which a predefined quantity of mesenchymal cells is preferably added);


taking a quantity of material from the container, keeping such material isolated from the external environment;


separating the fat from the aqueous fluids (which as said are substantially made of water) composing the adipose material of the taken quantity; and


transferring in a sealing manner the separated fat into one or more cryopreservation containers 6, to define as many isolated aliquots of fat.


In a particular embodiment, the method includes the stage of adding a cryoprotective substance to each aliquot of fat, especially in the event of mesenchymal cells being added to the adipose material, for the reasons already explained when describing the system 1.


In this case, the cryopreservation containers 6 are made of a material resistant to a cryoprotective substance (preferably the aforementioned DMSO).


In a further stage of the method, each of said cryopreservation containers 6, which substantially identify respective aliquots of portable fat, is placed in a refrigerator, where the fat is also kept for years without any deterioration.


In practice it has been found how the described invention achieves the intended objects by making available aliquots of liposuction fat, which can be cryopreserved and obtained through the use of a bacteriologically isolated system.

Claims
  • 1) System (1) to divide liposuction fat into aliquots for use and cryopreservation purposes, wherein it comprises: at least a transfer circuit (4, 10, 11) able to transfer sealed an adipose material removed by means of liposuction and comprising fat and an aqueous fluid;at least a taking container (12) which contains sealed said adipose material;syringe pumping means (2, 3), connected to said transfer circuit (4, 10, 11) and to said taking container (12), able to alternately take and contain sealed said adipose material from said taking container (12) and to transfer sealed said fat or said aqueous fluid within said circuit (4, 10, 11); said pumping means (2, 3) being available so as to separate, by gravity, the fat from the aqueous fluids composing the adipose material contained in them;at least a rejection receptacle (5) connected sealed to said circuit (4, 10, 11), downstream of said pumping means (2, 3), and able to receive said aqueous fluid; anda plurality of cryopreservation containers (6) to receive said fat in a sealing manner, connected to said circuit (4, 10, 11), downstream of said pumping means (2, 3);wherein said circuit (4, 10, 11) comprises first valve means (4) for allowing alternately the communication between said pumping means (2, 3) and said rejection receptacle (5) and between said pumping means and said cryopreservation container (6),wherein said syringe pumping means (2, 3) comprise a pumping syringe (2) and second valve means (3) able to put in sealed communication, alternately, said syringe (2) with said taking container (12) or said syringe (2) with said first valve means (4),and where said first valve means comprise a ramp (4) of three-way cocks, each individually connected either to a rejection receptacle (5) or to a cryopreservation container (6).
  • 2) A system (1) according to claim 1, wherein it comprises at least an access (7, 8) for the injection of a cryoprotective substance able to be put in communication with the inside of said cryopreservation container (6), the latter being made of a material resistant to a cryoprotective substance.
  • 3) A system (1) according to claim 2, wherein said circuit (4, 10, 11) and said pumping means (2, 3) are made of a material resistant to a cryoprotective substance and in that said first valve means (4) are connected to said access (7) and are configured so as to also allow the sealed communication between said access (7) and said cryopreservation container (6).
  • 4) A system (1) according to claim 3, wherein said cryoprotective substance comprises dimethyl sulfoxide and said material is resistant to dimethyl sulfoxide.
  • 5) A system (1) according to claim 2, wherein said access (8) is obtained at the outer periphery of said cryopreservation container (6).
  • 6) A method to divide liposuction fat into aliquots for use and cryopreservation purposes, wherein it comprises the following stages: providing a taking container (12) that contains adipose material removed by means of liposuction;taking a quantity of said material from said taking container (12), keeping it isolated from the external environment;separating the fat from the aqueous fluids composing the adipose material of said taken quantity; andtransferring in a sealing manner said separated fat into one or more cryopreservation containers (6), to define as many isolated aliquots of fat.
  • 7) A method according to claim 6, wherein a predefined quantity of mesenchymal cells is added to said adipose material.
  • 8) A. method according to claim 6, wherein said cryopreservation container/s (6) is/are made of a material resistant to a cryoprotective substance, and in that it comprises the stage of adding said cryoprotective substance to each of said aliquots of fat.
  • 9) A method according to claim 8, wherein said cryoprotective substance comprises dimethyl sulfoxide, and that said material is resistant to dimethyl sulfoxide.
  • 10) A method according to claim 6, wherein each cryopreservation container (6) is put in a refrigerator so that the respective aliquot of fat is preserved therein.
Priority Claims (1)
Number Date Country Kind
MO2013A000228 Aug 2013 IT national
PCT Information
Filing Document Filing Date Country Kind
PCT/IB2014/063632 8/1/2014 WO 00