The invention relates generally to x-ray tubes and, more particularly, to an apparatus for x-ray generation and a method of fabrication.
X-ray systems typically include an x-ray tube, a detector, and a bearing assembly to support the x-ray tube and the detector. In operation, an imaging table, on which an object is positioned, is located between the x-ray tube and the detector. The x-ray tube typically emits radiation, such as x-rays, toward the object. The radiation typically passes through the object on the imaging table and impinges on the detector. As radiation passes through the object, internal structures of the object cause spatial variances in the radiation received at the detector. The detector then emits data received, and the system translates the radiation variances into an image, which may be used to evaluate the internal structure of the object. One skilled in the art will recognize that the object may include, but is not limited to, a patient in a medical imaging procedure and an inanimate object as in, for instance, a package in an x-ray scanner or computed tomography (CT) package scanner.
X-ray tubes include a rotating anode structure for the purpose of distributing the heat generated at a focal spot. The anode is typically rotated by an induction motor having a cylindrical rotor built into a cantilevered axle that supports a disc-shaped anode target and an iron stator structure with copper windings that surrounds an elongated neck of the x-ray tube. The rotor of the rotating anode assembly is driven by the stator. An x-ray tube cathode provides a focused electron beam that is accelerated across a cathode-to-anode vacuum gap and produces x-rays upon impact with the anode. Because of the high temperatures generated when the electron beam strikes the target, the anode assembly may be rotated at a high rotational speed.
Between periods of x-ray production and periods of idle, the target material may experience a wide range of temperatures as it cools from operating temperature to room temperature. Within this wide range of temperatures, the target material may reach a temperature that represents the transition between a hot ductile state and a relatively cool brittle state, which may be referred to as a ductile-brittle transition temperature (DBTT). After a period of non-use, a warm-up scan may be used to preheat the target. A preheating scan allows the target to transition from the cooler brittle state to the warmer ductile state prior to high-power imaging protocols, thus reducing stress on the target material. However, due to operator error or scheduling requirements of the system, the preheating scan may be skipped, and the target material may drop below the DBTT, thus subjecting the target material to undesired stress and shortened target life.
Therefore, it would be desirable to have a method and apparatus to maintain an x-ray tube target within a desired temperature range and above the DBTT such that an imaging scanner may be used on demand without the need to perform a preheating scan.
The present invention provides a system and method to maintain a selected portion of an x-ray tube anode in a ductile state.
According to one aspect of the invention, an x-ray tube includes a frame, an anode for generating x-rays disposed within the frame, a cathode disposed within the frame, where the cathode is configured to selectively emit an electron beam toward the anode, and at least one heating element disposed within the frame and configured to heat a portion of the anode.
In accordance with another aspect of the invention, a method of fabricating an electromagnetic energy source includes positioning a cathode to emit a primary electron beam toward a target. The method further includes positioning a heater to apply heat to a portion of the target to maintain the portion of the target above a specified temperature when the cathode is not emitting the primary electron beam.
Yet another aspect of the invention includes an imaging system having a rotatable gantry, which has a detector and an x-ray tube mounted thereto. The x-ray tube includes a structure enclosing a cavity, a target positioned within the cavity, a cathode positioned within the cavity and configured to direct current from the cathode to the target, and a heat source located remotely from the cathode.
Various other features and advantages of the invention will be made apparent from the following detailed description and the drawings.
The drawings illustrate one preferred embodiment presently contemplated for carrying out the invention.
In the drawings:
As shown in
A processor 20 receives the signals from the detector 18 and generates an image corresponding to the object 16 being scanned. A computer 22 communicates with processor 20 to enable an operator, using operator console 24, to control the scanning parameters and to view the generated image. That is, operator console 24 includes some form of operator interface, such as a keyboard, mouse, voice activated controller, or any other suitable input apparatus that allows an operator to control the x-ray system 10 and view the reconstructed image or other data from computer 22 on a display unit 26. Additionally, console 24 allows an operator to store the generated image in a storage device 28 which may include hard drives, floppy discs, compact discs, etc. The operator may also use console 24 to provide commands and instructions to computer 22 for controlling a source controller 30 that provides power and timing signals to x-ray source 12.
Moreover, the invention will be described with respect to use in an x-ray tube. However, one skilled in the art will further appreciate that the invention is equally applicable for other systems that may benefit from reducing a number of heating cycles wherein a material transitions above and below a DBTT.
The bearing assembly 58 includes a center shaft 66 attached to the rotor 62 at first end 68 and attached to the target 56 at second end 70. A front inner race 72 and a rear inner race 74 rollingly engage a plurality of front balls 76 and a plurality of rear balls 78, respectively. Bearing assembly 58 also includes a front outer race 80 and a rear outer race 82 configured to rollingly engage and position, respectively, the plurality of front balls 76 and the plurality of rear balls 78. Bearing assembly 58 includes a stem 83 which is supported by the x-ray tube 12. A stator (not shown) is positioned radially external to and drives the rotor 62, which rotationally drives target 56. While
Heat source 200 may also be an induction heater or a radiant heater, and the like, located at various positions within the x-ray tube 12, according to embodiments of the invention. As shown in
Although
According to embodiments of the invention, heat may be applied to the target 56 according to a technique 212 as illustrated in
Technique 212 begins at step 214 by determining whether power is being applied to the cathode 60. If power is being applied to cathode 60 of
If power is not being applied 222 to the cathode 60, as determined at step 214, technique 212 continues to step 224 and the temperature of, for instance, the target track 86 is determined. Such determination may be via known algorithms that calculate or estimate a temperature of a target based on recently applied power thereto. At step 226, if the temperature of the target track 86 is not above the DBTT 228, such as during a period where the x-ray system is not in use or prior to tube warm-up, power is applied to the heat source 200 at step 230. In this instance, technique 212 may serve as a tube warm-up protocol and a total amount of energy input is calculated, accordingly. Following the application of power at step 230, technique 212 may enter an optional step 232 after which technique 212 cycles back to step 214 to determine if power has been applied to cathode 60 in the time period since the temperature of the target track 86 was last determined. At steps 224 and 226, technique 212 again determines the temperature of the target track 86 and analyzes whether the temperature of the target track 86 is greater than the DBTT of the target track material to determine whether the applied heater power is sufficient. If the temperature of the target track 86 is below the DBTT 228, power remains, or alternately is again applied to the heater at step 230. Technique 212 continues to cycle between steps 224, 226, 230, through optional step 232, and back to step 214 until the temperature of the target track 86 is above the DBTT.
In an alternate path of technique 212, if at step 226 the temperature is determined to be above the DBTT 234, control moves to step 236 to determine whether the temperature is projected to fall below the DBTT. At step 236, technique 212 may take into consideration such factors as the temperature difference between the target track 86 and the DBTT, the temperature of the target 56, the ambient temperature, the estimated remaining idle time before power is to be applied to the cathode 60, the configuration of the x-ray tube 12, cooling time constants, and the like. If, at step 236, the temperature of the target track 86 is not projected to fall below the DBTT 238, technique 212 cycles back to step 214 to determine whether power has been applied to the cathode 60. Prior to returning to step 214, technique 212 may enter optional wait step 240, wherein technique 212 executes a time delay before determining whether power is applied to the cathode 60. If the temperature of the target track 86 is projected to fall below the DBTT 242, however, technique 212 again applies power to the heater at step 230. After applying power to the heater, technique 212 cycles back to step 214 to determine if power is applied to the cathode 60, and if not 222, the temperature of the target track 86 is determined anew at step 224.
The amount and timing of the power applied to the heat source 200 at step 230 may be controlled based on numerous input parameters, including the determined temperature of the target 56 or target track 86, ambient conditions, the configuration of the x-ray tube, the construction and material properties of the target 56, and the like. Thus, in embodiments of the invention, power may be applied in intermittent pulses, or may be continuously applied, while the algorithm operates and cycles until the temperature is above the DBTT.
As such, technique 212 may be applied to an x-ray tube as a tube-warming procedure or to maintain a selected portion of the x-ray tube at a desired temperature between scans of an imaging device. If the target temperature is below the DBTT 228, such as when starting imaging system 10 when cold, technique 212 will apply heater power 224 until the target temperature is above the DBTT 234. If the target temperature is above the DBTT 234 but between scans as an example, technique 212 may also apply power to the heater 224 if the temperature is projected to fall below the DBTT 242. And, if power is being applied via a cathode 216, technique 212 will refrain from applying heater power and cycle or delay until no cathode power is applied. Accordingly, technique 212 will heat and maintain a target above the DBTT, thus minimizing the number of thermal cycles therethrough.
Referring now to
According to one aspect of the invention, an x-ray tube includes a frame, an anode for generating x-rays disposed within the frame, a cathode disposed within the frame, where the cathode is configured to selectively emit an electron beam toward the anode, and at least one heating element disposed within the frame and configured to heat a portion of the anode.
In accordance with another aspect of the invention, a method of fabricating an electromagnetic energy source includes positioning a cathode to emit a primary electron beam toward a target. The method further includes positioning a heater to apply heat to a portion of the target to maintain the portion of the target above a specified temperature when the cathode is not emitting the primary electron beam.
Yet another aspect of the invention includes an imaging system having a rotatable gantry, which has a detector and an x-ray tube mounted thereto. The x-ray tube includes a structure enclosing a cavity, a target positioned within the cavity, a cathode positioned within the cavity and configured to direct current from the cathode to the target, and a heat source located remotely from the cathode.
The invention has been described in terms of the preferred embodiment, and it is recognized that equivalents, alternatives, and modifications, aside from those expressly stated, are possible and within the scope of the appending claims.
Number | Name | Date | Kind |
---|---|---|---|
3567939 | Schadler et al. | Mar 1971 | A |
3694685 | Houston | Sep 1972 | A |
4631742 | Oliver | Dec 1986 | A |
4853946 | Elliott et al. | Aug 1989 | A |
7120222 | Hoffman | Oct 2006 | B2 |
20060193438 | Radley et al. | Aug 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20100142680 A1 | Jun 2010 | US |