The invention pertains to the field of medical-based ultrasound, more particularly using ultrasound to visualize and/or measure internal organs.
Contractility of cardiac muscle fibers can be ascertained by determining the ejection fraction (EF) output from a heart. The ejection fraction is defined as the ratio between the stroke volume (SV) and the end diastolic volume (EDV) of the left ventricle (LV). The SV is defined to be the difference between the end diastolic volume and the end systolic volume of the left ventricle (LV) and corresponds the amount of blood pumped into the aorta during one beat. Determination of the ejection fraction provides a predictive measure of a cardiovascular disease conditions, such as congestive heart failure (CHF) and coronary heart disease (CHD). Left ventricle ejection fraction has proved useful in monitoring progression of congestive heart disease, risk assessment for sudden death, and monitoring of cardiotoxic effects of chemotherapy drugs, among other uses.
Ejection fraction determinations provide medical personnel with a tool to manage CHF. EF serves as an indicator used by physicians for prescribing heart drugs such as ACE inhibitors or beta-blockers. The measurement of ejection fraction has increased to approximately 81% of patients suffering a myocardial infarction (MI). Ejection fraction also has shown to predict the success of antitachycardia pacing for fast ventricular tachycardia
Currently accepted clinical method for determination of end-diastolic volume (EDV), end-systolic volume (ESV) and ejection fraction (EF) involves use of 2-D echocardiography, specifically the apical biplane disk method. Results of this method are highly dependant on operator skill and the validity of assumptions of ventricle symmetry. Further, existing machines for obtaining echocardiography (ECG)-based data are large, expensive, and inconvenient. Having a less expensive, and optionally portable device that is capable of accurately measuring EF would be more beneficial to a patient and medical staff.
Computer based analysis of medical images pertaining cardiac structures allows diagnosis of cardiovascular diseases. Identifying the heart chambers, the endocardium, epicardium, ventricular volumes, and wall thicknesses during various stages of the cardiac cycle provides the physician to access disease state and prescribe therapeutic regimens. There is a need to non-invasively and accurately derive information of the heart during its beating cycle between systole and diastole.
Preferred embodiments use three dimensional (3D) ultrasound to acquire at least one 3D image or data set of a heart in order to measure change in volume, preferably at the end-diastolic and end-systole time points as determined by ECG to calculate the ventricular ejection fraction.
The description of image acquisition and processing systems and methods to automatically detect the boundaries of shapes of structures within a region of interest of an image or series of images. The automatically segmented shapes are further image processed to determine thicknesses, areas, volumes, masses and changes thereof as the structure of interest experiences dynamic change.
One preferred embodiment includes a three dimensional (3D) ultrasound-based hand-held 3D ultrasound device to acquire at least one 3D data set of a heart in order to measure a change in left ventricle volume at end-diastolic and end-systole time points as determined by an accompanying ECG device. The difference of left ventricle volumes at end-diastolic and end-systole time points is an ultrasound-based ventricular ejection fraction measurement.
A hand-held 3D ultrasound device is used to image a heart. A user places the device over a chest cavity, and initially acquires a 2D image to locate a heart. Once located, a 3D scan is acquired of a heart, preferably at ECG determined time points. A user acquires one or more 3D image data sets as an array of 2D images based upon the signals of an ultrasound echoes reflected from exterior and interior cardiac surfaces for each of an ECG-determined time points. 3D image data sets are stored, preferably in a device and/or transferred to a host computer or network for algorithmic processing of echogenic signals collected by the ultrasound device.
The methods further include a plurality of automated processes optimized to accurately locate, delineate, and measure a change in left ventricle volume. Preferably, this is achieved in a cooperative manner by synchronizing a left ventricle measurements with an ECG device used to acquire and to identify an end-diastolic and end-systole time points in the cardiac cycle. Left ventricle volumes are reconstructed at end-diastole and end-systole time points in the cardiac cycle. A difference between a reconstructed end-diastole and end-systole time points represents a left ventricular ejection fraction. Preferably, an automated process uses a plurality of algorithms in a sequence that includes steps for image enhancement, segmentation, and polishing of ultrasound-based images taken at an ECG determined and identified time points.
A 3D ultrasound device is configured or configurable to acquire 3D image data sets in at least one form or format, but preferably in two or more forms or formats. A first format is a set or collection of one or more two-dimensional scanplanes, one or more, or preferably each, of such scanplanes being separated from another and representing a portion of a heart being scanned.
Registration of Data from Different Viewpoints
An alternate embodiment includes an ultrasound acquisition protocol that calls for data acquisition from one or more different locations, preferably from under the ribs and from between different intercostal spaces. Multiple views maximize the visibility of the left ventricle and enable viewing the heart from two or more different viewpoints. In one preferred embodiment, the system and method aligns and “fuses” the different views of the heart into one consistent view, thereby significantly increasing a signal to noise ratio and minimizing the edge dropouts that make boundary detection difficult.
In a preferred embodiment, image registration technology is used to align these different views of a heart, in some embodiments in a manner similar to how applicants have previously used image registration technology to generate composite fields of view for bladder and other non-cardiac images in applications referenced above. This registration can be performed independently for end-diastolic and end-systolic cones.
An initial transformation between two 3D scancones is conducted to provide an initial alignment of the each 3D scancone's reference system. Data utilized to achieve this initial alignment or transformation is obtained from on board accelerometers that reside in a transceiver 10 (not shown). This initial transformation launches an image-based registration process as described below. An image-based registration algorithm uses mutual information, preferably from one or more images, or another metric to maximize a correlation between different 3D scancones or scanplane arrays. In one embodiment, such registration algorithms are executed during a process of trying to determine a 3D rigid registration process (for example, at 3 rotations and 3 translations) between 3D scancones of data. In alternate embodiments, to account for breathing, a non-rigid transformation is algorithm is applied.
Preferably, once some or all of the data from some or all of the different viewpoints has been registered, and preferably fused, a boundary detection procedure, preferably automatic, is used to permit the visualization of the LV boundary, so as to facilitate calculating the LV volume. In some embodiments it is preferable for all the data to be gathered before boundary detection begins. In other embodiments, processing is done partly in parallel, whereby boundary detection can begin before registration and/or fusing is complete.
One or more of, or preferably each scanplane is formed from one-dimensional ultrasound A-lines within a 2D scanplane. 3D data sets are then represented, preferably as a 3D array of 2D scanplanes. A 3D array of 2D scanplanes is preferably an assembly of scanplanes, and may be assembled into any form of array, but preferably one or more or a combination or sub-combination of any the following: a translational array, a wedge array, or a rotational array.
Alternatively, a 3D ultrasound device is configured to acquire 3D image data sets from one-dimensional ultrasound A-lines distributed in 3D space of a heart to form a 3D scancone of 3D-distributed scanline. In this embodiment, a 3D scancone is not an assembly of 2D scanplanes. In other embodiments, a combination of both: (a) assembled 2D scanplanes; and (b) 3D image data sets from one-dimensional ultrasound A-lines distributed in 3D space of a heart to form a 3D scancone of 3D-distributed scanline is utilized.
A 3D image datasets, either as discrete scanplanes or 3D distributed scanlines, are subjected to image enhancement and analysis processes. The processes are either implemented on a device itself or implemented on a host computer. Alternatively, the processes can also be implemented on a server or other computer to which 3D ultrasound data sets are transferred.
In a preferred image enhancement process, one or more, or preferably each 2D image in a 3D dataset is first enhanced using non-linear filters by an image pre-filtering step. An image pre-filtering step includes an image-smoothing step to reduce image noise followed by an image-sharpening step to obtain maximum contrast between organ wall boundaries. In alternate embodiments, this step is omitted, or preceded by other steps.
A second process includes subjecting a resulting image of a first process to a location method to identify initial edge points between blood fluids and other cardiac structures. A location method preferably automatically determines the leading and trailing regions of wall locations along an A-mode one-dimensional scan line. In alternate embodiments, this step is omitted, or preceded by other steps.
A third process includes subjecting the image of a first process to an intensity-based segmentation process where dark pixels (representing fluid) are automatically separated from bright pixels (representing tissue and other structures). In alternate embodiments, this step is omitted, or preceded by other steps.
In a fourth process, the images resulting from a second and third step are combined to result in a single image representing likely cardiac fluid regions. In alternate embodiments, this step is omitted, or preceded by other steps.
In a fifth process, the combined image is cleaned to make the output image smooth and to remove extraneous structures. In alternate embodiments, this step is omitted, or preceded by other steps.
In a sixth process, boundary line contours are placed on one or more, but preferably each 2D image. Preferably thereafter, the method then calculates the total 3D volume of a left ventricle of a heart. In alternate embodiments, this step is omitted, or preceded by other steps.
In cases in which a heart is either too large to fit in a single 3D array of 2D scanplanes or a single 3D scancone of 3D distributed scanlines, or is otherwise obscured by a view blocking rib, alternate embodiments of the invention allow for acquiring one or more, preferably at least two 3D data sets, and even more preferably four, one or more of, and preferably each 3D data set having at least a partial ultrasonic view of a heart, each partial view obtained from a different anatomical site of a patient.
In one embodiment a 3D array of 2D scanplanes is assembled such that a 3D array presents a composite image of a heart that displays left ventricle regions to provide a basis for calculation of cardiac ejection fractions. In a preferred alternate embodiment, a user acquires 3D data sets in one or more, or preferably multiple sections of the chest region when a patient is being ultrasonically probed. In this multiple section procedure, at least one, but preferably two cones of data are acquired near the midpoint (although other locations are possible) of one or more, but preferably each heart quadrant, preferably at substantially equally spaced (or alternately, uniform, non-uniform or predetermined or known or other) intervals between quadrant centers. Image processing as outlined above is conducted for each quadrant image, segmenting on the darker pixels or voxels associated with the blood fluids. Correcting algorithms are applied to compensate for any quadrant-to-quadrant image cone overlap by registering and fixing one quadrant's image to another. The result is a fixed 3D mosaic image of a heart and the cardiac ejection fractions or regions in a heart from the four separate image cones.
Similarly, in another preferred alternate embodiment, a user acquires one or more 3D image data sets of quarter sections of a heart when a patient is in a lateral position. In this multi-image cone lateral procedure, one or more, but preferably each image cone of data is acquired along a lateral line of substantially equally spaced (or alternately, uniform, or predetermined or known) intervals. One or more, or preferably, each image cone is subjected to the image processing as outlined above, preferably with emphasis given to segmenting on the darker pixels or voxels associated with blood fluid. Scanplanes showing common pixel or voxel overlaps are registered into a common coordinate system along the lateral line. Correcting algorithms are applied to compensate for any image cone overlap along the lateral line. The result is the ability to create and display a fixed 3D mosaic image of a heart and the cardiac ejection fractions or regions in a heart from the four separate image cones. In alternate embodiments fewer or more steps, or alternate sequences are utilized.
In yet other preferred embodiments, at least one, but preferably two 3D scancones of 3D distributed scanlines are acquired at different anatomical sites, image processed, registered and fused into a 3D mosaic image composite. Cardiac ejection fractions are then calculated.
The system and method further optionally and/or alternately provides an automatic method to detect and correct for any contribution non-cardiac obstructions provide to the cardiac ejection fraction. For example, ribs, tumors, growths, fat, or any other obstruction not intended to be measured as part of EF can be detected and corrected for.
A preferred portable embodiment of an ultrasound transceiver of a cardiac ejection fraction measuring system is shown in
A top button 16 selects for different acquisition volumes. A transceiver is controlled by a microprocessor and software associated with a microprocessor and a digital signal processor of a computer system. As used in this invention, the term “computer system” broadly comprises any microprocessor-based or other computer system capable of executing operating instructions and manipulating data, and is not limited to a traditional desktop or notebook computer. A display 24 presents alphanumeric or graphic data indicating a proper or optimal positioning of a transceiver 10 for initiating a series of scans. A transceiver 10 is configured to initiate a series of scans to obtain and present 3D images as either a 3D array of 2D scanplanes or as a single 3D scancone of 3D distributed scanlines. A suitable transceiver is a transceiver 10 referred to in the FIGURES. In alternate embodiments, a two- or three-dimensional image of a scan plane may be presented in a display 24.
Although a preferred ultrasound transceiver is described above, other transceivers may also be used. For example, a transceiver need not be battery-operated or otherwise portable, need not have a top-mounted display 24, and may include many other features or differences. A display 24 may be a liquid crystal display (LCD), a light emitting diode (LED), a cathode ray tube (CRT), or any suitable display capable of presenting alphanumeric data or graphic images.
Further
One or more, or preferably each, cardiac ejection fraction measuring systems includes a transceiver 10 for acquiring data from a patient. A transceiver 10 is placed in a cradle 42 to establish signal communication with a computer 52. Signal communication as illustrated by a wired connection from a cradle 42 to a computer 52. Signal communication between a transceiver 10 and a computer 52 may also be by wireless means, for example, infrared signals or radio frequency signals. A wireless means of signal communication may occur between a cradle 42 and a computer 52, a transceiver 10 and a computer 52, or a transceiver 10 and a cradle 42. In alternate embodiments fewer or more steps, or alternate sequences are utilized.
A preferred first embodiment of a cardiac ejection fraction measuring system includes one or more, or preferably each, transceiver 10 being separately used on a patient and sending signals proportionate to the received and acquired ultrasound echoes to a computer 52 for storage. Residing in one or more, or preferably each, computer 52 are imaging programs having instructions to prepare and analyze a plurality of one dimensional (1D) images from stored signals and transforms a plurality of 1D images into a plurality of 2D scanplanes. Imaging programs also present 3D renderings from a plurality of 2D scanplanes. Also residing in one or more, or preferably each, computer 52 are instructions to perform additional ultrasound image enhancement procedures, including instructions to implement image processing algorithms. In alternate embodiments fewer or more steps, or alternate sequences are utilized.
A preferred second embodiment of a cardiac ejection fraction measuring system is similar to a first embodiment, but imaging programs and instructions to perform additional ultrasound enhancement procedures are located on a server 56. One or more, or preferably each, computer 52 from one or more, or preferably each, cardiac ejection fraction measuring system receives acquired signals from a transceiver 10 via a cradle 42 and stores signals in memory of a computer 52. A computer 52 subsequently retrieves imaging programs and instructions to perform additional ultrasound enhancement procedures from a server 56. Thereafter, one or more, or preferably each, computer 52 prepares 1D images, 2D images, 3D renderings, and enhanced images from retrieved imaging and ultrasound enhancement procedures. Results from data analysis procedures are sent to a server 56 for storage. In alternate embodiments fewer or more steps, or alternate sequences are utilized.
A preferred third embodiment of a cardiac ejection fraction measuring system is similar to the first and second embodiment, but imaging programs and instructions to perform additional ultrasound enhancement procedures are located on a server 56 and executed on a server 56. One or more, or preferably each, computer 52 from one or more, or preferably each, cardiac ejection fraction measuring system receives acquired signals from a transceiver 10 and via a cradle 42 sends the acquired signals in the memory of a computer 52. A computer 52 subsequently sends a stored signal to a server 56. In a server 56, imaging programs and instructions to perform additional ultrasound enhancement procedures are executed to prepare the 1D images, 2D images, 3D renderings, and enhanced images from a server's 56 stored signals. Results from data analysis procedures are kept on a server 56, or alternatively, sent to a computer 52. In alternate embodiments fewer or more steps, or alternate sequences are utilized.
As scanlines are transmitted and received, the returning echoes are interpreted as analog electrical signals by a transducer, converted to digital signals by an analog-to-digital converter, and conveyed to the digital signal processor of a computer system for storage and analysis to determine the locations of the cardiac external and internal walls or septa. A computer system is representationally depicted in
Internal scanlines are represented by scanlines 312A-C. The number and location of internal scanlines emanating from a transceiver 10 is a number of internal scanlines needed to be distributed within a scancone 300, at different positional coordinates, to sufficiently visualize structures or images within a scancone 300. Internal scanlines are not peripheral scanlines. Peripheral scanlines are represented by scanlines 314A-F and occupy a conic periphery, thus representing the peripheral limits of a scancone 300.
Electromagnetic waves 390 having DTMF signals identifying the QRS-complex and the P-waves and T-wave components of an ECG signal is received by radio-receiver circuit 380 is located within a transceiver 10. The radio receiver circuit 380 receives the radio-transmitted waves 390 from the antenna 370D of an ECG 370 transmitted via antenna 380D wherein a signal is induced. The induced signal is demodulated in demodulator 380A and processed by microprocessor 380B. In alternate embodiments fewer or more steps, or alternate sequences are utilized.
An overview of the how a system is used is described as follows. One format for collecting data is to tilt a transducer through an arc to collect a plane of scan lines. A plane of data collection is then rotated through a small angle before a transducer is tilted to collect another plane of data. This process would continue until an entire 3-dimensional cone of data may be collected. Alternatively, a transducer may be moved in a manner such that individual scan lines are transmitted and received and reconstructed into a 3-dimensional cone volume without first generating a plane of data and then rotating a plane of data collection. In alternate embodiments fewer or more steps, or alternate sequences are utilized.
To scan a patient, the leads of the ECG are connected to the appropriate locations on the patient's body. The ECG transmitter is turned on such that it is communicating the ECG signal to the transceiver. In alternate embodiments fewer or more steps, or alternate sequences are utilized.
For a first set of data collection, a transceiver 10 is placed just below a patients ribs slightly to a patient's left of a patient's mid-line. A transceiver 10 is pressed firmly into an abdomen and angled towards a patient's head such that a heart is contained within an ultrasound data cone. After a user hears a heart beat from a transceiver 10, a user initiates data collection. In alternate embodiments fewer or more steps, or alternate sequences are utilized.
A top button 16 of a transceiver 10 is pressed to initiate data collection. Data collection continues until a sufficient amount of ultrasound and ECG signal are acquired to re-construct a volumetric data for a heart at an end-diastole and end-systole positions within the cardiac signal. A motion sensor (not shown) in a transceiver 10 detects whether or not a patient breaths and should therefore ignore the ultrasound data being collected at the time due to errors in registering the 3-dimensional scan lines with each other. A tone instructs a user that ultrasound data is complete. In alternate embodiments fewer or more steps, or alternate sequences are utilized.
After data is collected in this position, the device's display instructs a user to collect data from the intercostal spaces. A user moves the device such that it sits between the ribs and a user will re-initiate data collection by pressing the scan button. A motion sensor detects whether or not a patient is breathing and therefore whether or not data being collected is valid. Data collection continues until the 3-dimensional ultrasound volume can be reconstructed for the end-diastole and end-systole time points in the cardiac cycle. A tone instructs a user that ultrasound data collection is complete. In alternate embodiments fewer or more steps, or alternate sequences are utilized.
A user turns off an ECG device and disconnects one or more leads from a patient. A user would place a transceiver 10 in a cradle 42 that communicates both an ECG and ultrasound data to a computer 52 where data is analyzed and an ejection fraction calculated. Alternatively, data may be analyzed on a server 56 or other computers via the Internet 64. Methods for analyzing this data are described in detail in following sections. In alternate embodiments fewer or more steps, or alternate sequences are utilized.
A protocol for collection of ultrasound from a user's perspective has just been described. An implementation of the data collection from the hardware perspective can occur in two manners: using an ECG signal to gate data collection, and recording an ECG signal with ultrasound data and allow analysis software to re-construct the data volumes at an end-diastole and end-systole time points in a cardiac cycle.
Adjustments to the methods described above allow for data collection to be accomplished via an ECG-gated data acquisition mode, and an ECG-Annotated data acquisition with reconstruction mode. In the ECG-gated data acquisition, a given subject's cardiac cycle is determined in advance and an end-systole and end-diastole time points are predicted before a collection of scanplane data. An ECG-gated method has the benefit of limiting a subject's exposure to ultrasound energy to a minimum in that An ECG-gated method only requires a minimum set of ultrasound data because an end-systole and end-diastole time points are determined in advance of making acquiring ultrasound measures. In the ECG-Annotated data acquisition with reconstruction mode, phase lock loop (PLL) predictor software is not employed and there is no analysis for lock, error (epsilon), and state for ascertaining the end-systole and end-diastole ultrasound measurement time points. Instead, an ECG-annotated method requires collecting continuous ultrasound readings to then reconstruct after taking the ultrasound measurements when an end-systole and end-diastole time points are likely to have occurred.
Method 1: ECG Gated Data Acquisition
If the ultrasound data collection is to be gated by an ECG signal, software in a transceiver 10 monitors an ECG signal and predicts appropriate time points for collecting planes of data, such as end-systole and end-diastole time points.
A DTMF signal transmitted by an ECG transmitter is received by an antenna in a transceiver 10. A signal is demodulated and enters a software-based phase lock loop (PLL) predictor that analyzes an ECG signal. An analyzed signal has three outputs: lock, error (epsilon), and state.
A transceiver 10 collects a plane of ultrasound at a time indicated by a predictor. Preferred time points indicated by the predictor are end-systole and end-diastole time points. If an error signal for that plane of data is too large, then a plane is ignored. A predictor updates timing for data collection and a plane collected in the next cardiac cycle.
Once data has been successfully collected for a plane at end-diastole and end-systole time points, a plane of data collection is rotated and a next plane of data may be collected in a similar manner.
A benefit of gated data acquisition is that a minimal set of ultrasound data needs to be collected, limiting a patient to exposure to ultrasound energy. End-systolic and end-diastolic volumes would not need to be re-constructed from a large data set.
A cardiac cycle can vary from beat to beat due to a number of factors. A gated acquisition may take considerable time to complete particularly if a patient is unable to hold their breath.
In alternate embodiments, the above steps and/or subsets may be omitted, or preceded by other steps.
Method 2: ECG Annotated Data Acquisition with Reconstruction
In an alternate method for data collection, ultrasound data collection would be continuous, as would collection of an ECG signal. Collection would occur for up to 1 minute or longer as needed such that a sufficient amount of data is available for re-constructing the volumetric data at end-diastolic and end-systolic time points in the cardiac cycle.
This implementation does not require software PLL to predict a cardiac cycle and control ultrasound data collection, although it does require a larger amount of data.
Both ECG-gated and ECG-annotated methods described above can be made with multiple 3D scancone measurements to insure a sufficiently completed image of a heart is obtained.
Algorithms expressed in 2D terms are used during a targeting phase where the operator trans-abdominally positions and repositions a transceiver 10 to obtain real-time feedback about a left ventricular area in one or more, or preferably each, scanplane. Algorithms expressed in 3D terms are used to obtain a total cardiac ejection fraction computed from voxels contained within calculated left ventricular regions in a 3D conic array 240.
The enhancement, segmentation and polishing algorithms depicted in
Other preferred embodiments of the enhancement, segmentation and polishing algorithms depicted in
Enhancement, segmentation and calculation algorithms depicted in
Once Intensity-Based myocardium detection 422 and Edge-Based Segmentation 438 for blood region detection is completed, both segmentation methods use a combining step that combines the results of intensity-based segmentation 422 step and an edge-based segmentation 438 step using an AND Operator of Images 442 in order to delineate chambers of a heart, in particular a left ventricle. An AND Operator of Images 442 is achieved by a pixel-wise Boolean AND operator 442 for left ventricle delineation step to produce a segmented image by computing the pixel intersection of two images. A Boolean AND operation 442 represents pixels as binary numbers and a corresponding assignment of an assigned intersection value as a binary number 1 or 0 by the combination of any two pixels. For example, consider any two pixels, say pixelA and pixelB, which can have a 1 or 0 as assigned values. If pixelA's value is 1, and pixelB's value is 1, the assigned intersection value of pixelA and pixelB is 1. If the binary value of pixelA and pixelB are both 0, or if either pixelA or pixelB is 0, then the assigned intersection value of pixelA and pixelB is 0. The Boolean AND operation 442 for left ventricle delineation takes a binary number of any two digital images as input, and outputs a third image with pixel values made equivalent to an intersection of the two input images.
After contours on all images have been delineated, a volume of the segmented structure is computed. Two specific techniques for doing so are disclosed in detail in U.S. Pat. No. 5,235,985 to McMorrow et al, herein incorporated by reference. This patent provides detailed explanations for non-invasively transmitting, receiving and processing ultrasound for calculating volumes of anatomical structures.
In alternate embodiments, the above steps and/or subsets may be omitted, or preceded by other steps.
Automated Boundary Detection
Once 3D left-ventricular data is available, the next step to calculate an ejection fraction is a detection of left ventricular boundaries on one or more, or preferably each, image to enable a calculation of an end-diastolic LV volume and an end-systolic LV volume.
Particular embodiments for ultrasound image segmentation include adaptations of the bladder segmentation method and the amniotic fluid segmentation methods are so applied for ventricular segmentation and determination of the cardiac ejection fraction are herein incorporated by references in aforementioned references cited in the priority claim.
A first step is to apply image enhancement using heat and shock filter technology. This step ensures that a noise and a speckle are reduced in an image while the salient edges are still preserved.
A next step is to determine the points representing the edges between blood and myocardial regions since blood is relatively anechoic compared to the myocardium. An image edge detector such as a first or a second spatial derivative method is used.
In parallel, image pixels corresponding to the cardiac blood region on an image are identified. These regions are typically darker than pixels corresponding to tissue regions on an image and also these regions have very a very different texture compared to a tissue region. Both echogenicity and texture information is used to find blood regions using an automatic thresholding or a clustering approach.
After determining all low level features, edges and region pixels, as above, a next step in a segmentation algorithm might be to combine this low level information along with any manual input to delineate left ventricular boundaries in 3D. Manual seed point at process 440 in some cases may be necessary to ensure that an algorithm detects a left ventricle instead of any other chambers of a heart. This manual input might be in the form of a single seed point inside a left ventricle specified by a user.
From the seed point specified by a user, a 3D level-set-based region-growing algorithm or a 3D snake algorithm may be used to delineate a left ventricle such that boundaries of this region are delimited by edges found in a second step and pixels contained inside a region consist of pixels determined as blood pixels found in a third step.
Another method for 3D LV delineation could be based on an edge linking approach. Here edges found in a second step are linked together via a dynamic programming method which finds a minimum cost path between two points. A cost of a boundary can be defined based on its distance from edge points and also whether a boundary encloses blood regions determined in a third step.
In alternate embodiments, the above steps and/or subsets may be omitted, or preceded by other steps
Multiple Image Cone Acquisition and Image Processing Procedures:
In some embodiments, multiple cones of data acquired at multiple anatomical sampling sites may be advantageous. For example, in some instances, a heart may be too large to completely fit in one cone of data or a transceiver 10 has to be repositioned between the subject's ribs to see a region of a heart more clearly. Thus, under some circumstances, a transceiver 10 is moved to different anatomical locations of a patient to obtain different 3D views of a heart from one or more, or preferably each, measurement or transceiver location.
Obtaining multiple 3D views may be especially needed when a heart is otherwise obscured. In such cases, multiple data cones can be sampled from different anatomical sites at known intervals and then combined into a composite image mosaic to present a large heart in one, continuous image. In order to make a composite image mosaic that is anatomically accurate without duplicating anatomical regions mutually viewed by adjacent data cones, ordinarily it is advantageous to obtain images from adjacent data cones and then register and subsequently fuse them together. In a preferred embodiment, to acquire and process multiple 3D data sets or images cones, at least two 3D image cones are generally preferred, with one image cone defined as fixed, and another image cone defined as moving.
3D image cones obtained from one or more, or preferably each, anatomical site may be in the form of 3D arrays of 2D scanplanes, similar to a 3D conic array 240. Furthermore, a 3D image cone may be in the form of a wedge or a translational array of 2D scanplanes. Alternatively, a 3D image cone obtained from one or more, or preferably each, anatomical site may be a 3D scancone of 3D-distributed scanlines, similar to a scancone 300.
The term “registration” with reference to digital images means a determination of a geometrical transformation or mapping that aligns viewpoint pixels or voxels from one data cone sample of the object (in this embodiment, a heart) with viewpoint pixels or voxels from another data cone sampled at a different location from the object. That is, registration involves mathematically determining and converting the coordinates of common regions of an object from one viewpoint to coordinates of another viewpoint. After registration of at least two data cones to a common coordinate system, registered data cone images are then fused together by combining two registered data images by producing a reoriented version from a view of one of the registered data cones. That is, for example, a second data cone's view is merged into a first data cone's view by translating and rotating pixels of a second data cone's pixels that are common with pixels of a first data cone. Knowing how much to translate and rotate a second data cone's common pixels or voxels allows pixels or voxels in common between both data cones to be superimposed into approximately the same x, y, z, spatial coordinates so as to accurately portray an object being imaged. The more precise and accurate a pixel or voxel rotation and translation, the more precise and accurate is a common pixel or voxel superimposition or overlap between adjacent image cones. A precise and accurate overlap between the images assures a construction of an anatomically correct composite image mosaic substantially devoid of duplicated anatomical regions.
To obtain a precise and accurate overlap of common pixels or voxels between adjacent data cones, it is advantageous to utilize a geometrical transformation that substantially preserves most or all distances regarding line straightness, surface planarity, and angles between lines as defined by image pixels or voxels. That is, a preferred geometrical transformation that fosters obtaining an anatomically accurate mosaic image is a rigid transformation that doesn't permit the distortion or deforming of geometrical parameters or coordinates between pixels or voxels common to both image cones.
A rigid transformation first converts polar coordinate scanplanes from adjacent image cones into in x, y, z Cartesian axes. After converting scanplanes into the Cartesian system, a rigid transformation, T, is determined from scanplanes of adjacent image cones having pixels in common. A transformation T is a combination of a three-dimensional translation vector expressed in Cartesian as t=(Tx, Ty, Tz), and a three-dimensional rotation R matrix expressed as a function of Euler angles θx, θy, θz, around an x, y, and z-axes. A transformation represents a shift and rotation conversion factor that aligns and overlaps common pixels from scanplanes of adjacent image cones.
In a preferred embodiment of the present invention, the common pixels used for purposes of establishing registration of three-dimensional images are boundaries of the cardiac surface regions as determined by a segmentation algorithm described above.
An image mosaic involves obtaining at least two image cones where a transceiver 10 is placed such that at least a portion of a heart is ultrasonically viewable at one or more, or preferably each, measurement site. A first measurement site is originally defined as fixed, and a second site is defined as moving and placed at a first known inter-site distance relative to a first site. A second site images are registered and fused to first site images. After fusing a second site images to first site images, other sites may be similarly processed. For example, if a third measurement site is selected, then this site is defined as moving and placed at a second known inter-site distance relative to the fused second site now defined as fixed. Third site images are registered and fused to second site images. Similarly, after fusing third site images to second site images, a fourth measurement site, if needed, is defined as moving and placed at a third known inter-site distance relative to a fused third site now defined as fixed. Fourth site images are registered and fused to third site images.
As described above, four measurement sites may be along a line or in an array. The array may include rectangles, squares, diamond patterns, or other shapes. Preferably, a patient is positioned and stabilized and a 3D scancone images are obtained between the subjects breathing, so that there is not a significant displacement of the art while a scancone image is obtained.
An interval or distance between one or more, or preferably each, measurement site is approximately equal, or may be unequal. An interval distance between measurement sites may be varied as long as there are mutually viewable regions of portions of a heart between adjacent measurement sites. A geometrical relationship between one or more, or preferably each, image cone is ascertained so that overlapping regions can be identified between any two image cones to permit a combining of adjacent neighboring cones so that a single 3D mosaic composite image is obtained.
Translational and rotational adjustments of one or more, or preferably each, moving cone to conform with voxels common to a stationary image cone is guided by an inputted initial transform that has expected translational and rotational values. A distance separating a transceiver 10 between image cone acquisitions predicts the expected translational and rotational values. For example, expected translational and rotational values are proportionally defined and estimated in Cartesian and Euler angle terms and associated with voxel values of one or more, or preferably each, scancone image.
A block diagram algorithm overview of
In alternate embodiments, the above steps and/or subsets may be omitted, or preceded by other steps
Volume and Ejection Fraction Calculation
After a left ventricular boundaries have been determined, we need to calculate the volume of a left ventricle.
If a segmented region is available in Cartesian coordinates in an image format, calculating the volume is straightforward and simply involves adding a number of voxels contained inside a segmented region multiplied by a volume of each voxel.
If a segmented region is available as set of polygons on set of Cartesian coordinate images, then we first need to interpolate between polygons and create a triangulated surface. A volume contained inside the triangulated surface can be then calculated using standard computer-graphics algorithms.
If a segmented region is available in a form of polygons or regions on polar coordinate images, then we can apply formulas as described in our Bladder Volume Patent to calculate the volume.
Once an end-diastolic volume (EDV) and end-systolic volumes (ESV) are calculated, an ejection fraction (EF) can be calculated as:
EF=100*(EDV−ESV)/EDV
In alternate embodiments, the above steps and/or subsets may be omitted, or preceded by other steps.
While the preferred embodiment of the invention has been illustrated and described, as noted above, many changes can be made without departing from the spirit and scope of the invention. For example, other uses of the invention include determining the areas and volumes of the prostate, heart, bladder, and other organs and body regions of clinical interest. Accordingly, the scope of the invention is not limited by the disclosure of the preferred embodiment.
In general, systems and/or methods of image processing are described for automatically segmenting, i.e. automatically detecting the boundaries of shapes within a region of interest (ROI) of a single or series of images undergoing dynamic change. Particular and alternate embodiments provide for the subsequent measurement of areas and/or volumes of the automatically segmentated shapes within the image ROI of a singular image multiple images of an image series undergoing dynamic change.
Methods include creating an image database having manually segmented shapes within the ROI of the images stored in the database, training computer readable image processing algorithms to duplicate or substantially reproduce the appearance of the manually segmented shapes, acquiring a non-database image, and segmenting shapes within the ROI of the non-database image by using the database-trained image processing algorithms.
In particular, as applied to sonographic systems, ultrasound systems and/or methods employing the acquisition of 3D transthoracic echocardiograms (TTE) are described to non-invasively measure heart chamber volumes and/or wall thicknesses between heart chambers during and/or between systole and/or diastole from 3D data sets acquired at systole and/or diastole. The measurements are obtained by using computer readable media employing image processing algorithms applied to the 3D data sets.
Moreover, these ultrasound systems and/or methods are further described to non-invasively measure heart chamber volumes, for example the left and/or right ventricle, and/or wall thicknesses and/or masses between heart chambers during and/or between systole and/or diastole from 3D data sets acquired at systole and/or diastole through the use of computer readable media having microprocessor executable image processing algorithms applied to the 3D data sets. The image processing algorithm utilizes trainable segmentation sub-algorithms. The changes in cardiac or heart chamber volumes may be expressed as a quotient of the difference between a given cardiac chamber volume occurring at systole and/or diastole and/or the volume of the given cardiac chamber at diastole. When the given cardiac chamber is the left ventricle, the changes in the left ventricle volumes may be expressed as an ejection fraction defined to be the quotient of the difference between the left ventricle volume occurring at systole and/or diastole and/or the volume of the left ventricle chamber at diastole.
The systems for cardiac imaging includes an ultrasound transceiver configured to sense the mitral valve of a heart by Doppler ultrasound, an electrocardiograph connected with a patient and synchronized with the transceiver to acquire ultrasound-based 3D data sets during systole and/or diastole at a transceiver location determined by Doppler ultrasound affected by the mitral valve, and a computer readable medium configurable to process ultrasound imaging information from the 3D data sets communicated from the transceiver and being synchronized with transceiver so that electrocardiograph connected with a patient that is configurable to determine an optimal location to acquire ultrasound echo 3D data sets of the heart during systole and/or diastole; utilize ultrasound transducers equipped with a microphone to computer readable mediums in signal communication with an electrocardiograph.
The image processing algorithms delineate the outer and/or inner walls of the heart chambers within the heart and/or determine the actual surface area, S, of a given chamber using a modification of the level set algorithms, as described below, and utilized from the VTK Library maintained by Kitware, Inc. (Clifton Park, N.Y., USA), incorporated by reference herein. The selected heart chamber, the thickness t of wall between the selected heart chamber and adjacent chamber, is then calculated as the distance between the outer and the inner surfaces of selected and adjacent chambers. Finally, as shown in equation E1, the inter-chamber wall mass (ICWM) is estimated as the product of the surface area, the interchamber wall thickness (ICWT) and cardiac muscle specific gravity, ρ:
ICWM=S×ICWTρ E1
One benefit of the embodiments of the present invention is that it produces more accurate and consistent estimates of selected heart chamber volumes and/or inter-chamber wall masses. The reasons for higher accuracy and consistency include:
Additional benefits conferred by the embodiments also include its non-invasiveness and its ease of use in that ICWT is measured over a range of chamber volumes, thereby eliminating the need to invasively probe a patient.
The plurality of scan planes 42 are oriented about an axis 11 extending through the transceivers 10A. One or more, or alternately each of the scan planes 42 are positioned about the axis 11, which may be positioned at a predetermined angular position θ. The scan planes 42 are mutually spaced apart by angles θ1 and θ2 whose angular value may vary. That is, although the angles θ1 and θ2 to θn are depicted as approximately equal, the θ angles may have different values. Other scan cone configurations are possible. For example, a wedge-shaped scan cone, or other similar shapes may be generated by the transceiver 10A.
As described above, the angular movement of the transducer may be mechanically effected and/or it may be electronically or otherwise generated. In either case, the number of lines 48 and/or the length of the lines may vary, so that the tilt angle φ (
The locations of the internal and/or peripheral scan lines may be further defined by an angular spacing from the center scan line 34B and between internal and/or peripheral scan lines. The angular spacing between scan line 34B and peripheral or internal scan lines are designated by angle Φ and angular spacings between internal or peripheral scan lines are designated by angle Ø. The angles Φ1, Φ2, and Φ3 respectively define the angular spacings from scan line 34B to scan lines 34A, 34C, and 31D. Similarly, angles Ø1, Ø2, and Ø3 respectively define the angular spacing between scan line 31B and 31C, 31C and 34A, and 31D and 31E.
With continued reference to
When the ultrasound scanning device is in an aiming mode, the transducer is fixed at the broadside scan line position. The ultrasound scanning device repeats transmitting and receiving sound waves alternatively with the pulse repetition frequency, prf. The transmitting wave is narrow band signal which has large number of pulses. The receiving depth is gated between 8 cm and 15 cm to avoid the ultrasound scanning device's wall detecting of the motion artifacts from hands or organ (heartbeat).
The CW (Continuous Wave-independent) Doppler as shown in
In aiming, some range is desirable but detailed depth information is not required. Furthermore the transducer is used for imaging and the Doppler aiming, therefore, the range gated CW Doppler technique is appropriate.
The relationship between the Doppler frequency, fd, and the object velocity, v0, is according to equation E2:
where, f0 is the transmit frequency and c is the speed of sound.
An average maximum velocity of the mitral valve is about 10 cm/s. If the transmit frequency, f0, is 3.7 MHz and the speed of sound is 1540 m/s, the Doppler frequency, fd, created by the mitral valve is about 240 Hz.
m(t)=cos(2π(f0+fd)·cos(2πf0t) E3
Using the trigonometric Identity,
y)], m(t) can be rewritten as equation E4:
m(t)=cos(2π(f0+2fd)t)+cos(2πfdt) E4
The frequency components of m(t) are (f0+2fd) and fd, which are a high frequency component and a low frequency component. Therefore using low pass filter whose cutoff frequency is higher than the Doppler frequency, fd, but lower than the fundamental frequency, f0, only the Doppler frequency, fd, is remained, according to E5:
LPF{m(t)}=cos(2πfdt) E5
The ultrasound scanning device's loud speaker produces the Doppler sound, when it is in the aiming mode. When the Doppler sound of the mitral valve is audible, the 3D acquisition may be performed.
The transceiver 10A-D has circuitry that converts the informational content of the scan cones 40/30, translational array 70, or fan array 60 to wireless signal 25C-1 that may be in the form of visible light, invisible light (such as infrared light) or sound-based signals. As depicted, the data is wirelessly uploaded to the personal computer 52 during initial targeting of the heart or other cavity-containing ROI. In a particular embodiment of the transceiver 10A-D, a focused 3.7 MHz single element transducer is used that is steered mechanically to acquire a 120-degree scan cone 42. On a display screen 54 coupled to the computer 52, a scan cone image 40A displays an off-centered view of the heart 56A that is truncated.
Expanding on the protocol described above, and still referring to
Wireless signals 25C-1 include echo information that is conveyed to and processed by the image processing algorithm in the personal computer device 52. A scan cone 40 (
As shown in
Alternate embodiments of systems 70A and 70B allow for different signal sequence communication between the transceivers 10A-D, 10E, electrocardiograph 74 and computing device 52. That is, different signal sequences may be used in executing the timing of diastole and systole image acquisition. For example, the electrocardiograph 74 may signal the computing device 52 to trigger the transceivers 10A-D and 10E to initiate image acquisition at systole and diastole.
Alternately, a local computer network, or an independent standalone personal computer may also be used. In any case, image processing algorithms on the computer analyze pixels within a 2D portion of a 3D image or the voxels of the 3D image. The image processing algorithms then define which pixels or voxels occupy or otherwise constitute an inner or outer wall layer of a given wall chamber. Thereafter, wall areas of the inner and outer chamber layers, and thickness between them, is determined. Inter-chamber wall weight is determined as a product of wall layer area, thickness between the wall layers, and density of the wall.
Here u in the heat filter represents the image being processed. The image u is 2D, and is comprised of an array of pixels arranged in rows along the x-axis, and an array of pixels arranged in columns along the y-axis. The pixel intensity of each pixel in the image u has an initial input image pixel intensity (I) defined as u0=I. The value of I depends on the application, and commonly occurs within ranges consistent with the application. For example, I can be as low as 0 to 1, or occupy middle ranges between 0 to 127 or 0 to 512. Similarly, I may have values occupying higher ranges of 0 to 1024 and 0 to 4096, or greater. For the shock filter u represents the image being processed whose initial value is the input image pixel intensity (I): u0=I where the l(u) term is the Laplacian of the image u, F is a function of the Laplacian, and ∥∇u∥ is the 2D gradient magnitude of image intensity defined by equation E8:
Where u2x=the square of the partial derivative of the pixel intensity (u) along the x-axis, u2y=the square of the partial derivative of the pixel intensity (u) along the y-axis, the Laplacian l(u) of the image, u, is expressed in equation E9:
l(u)=uxxux2+2uxyuxuy+uyyuy2 E9
Equation E9 relates to equation E6 as follows:
ux is the first partial derivative ∂u/∂x of u along the x-axis,
uxuy is the first partial derivative ∂u/∂y of u along the y-axis,
uxux2 is the square of the first partial derivative ∂u/∂x of u along the x-axis,
uxuy2 is the square of the first partial derivative ∂u/∂y of u along the y-axis,
uxuxx is the second partial derivative ∂2u/∂x2 of u along the x-axis,
uxuyy is the second partial derivative ∂2u/∂y2 of u along the y-axis,
uxy is cross multiple first partial derivative ∂u/∂xdy of u along the x and y axes, and
uxy the sign of the function F modifies the Laplacian by the image gradient values selected to avoid placing spurious edges at points with small gradient values:
where t is a threshold on the pixel gradient value ∥∇u∥.
The combination of heat filtering and shock filtering produces an enhanced image ready to undergo the intensity-based and edge-based segmentation algorithms as discussed below. The enhanced 3D data sets are then subjected to a parallel process of intensity-based segmentation at process block 210 and edge-based segmentation at process block 212. The intensity-based segmentation step uses a “k-means” intensity clustering technique where the enhanced image is subjected to a categorizing “k-means” clustering algorithm. The “k-means” algorithm categorizes pixel intensities into white, gray, and black pixel groups. Given the number of desired clusters or groups of intensities (k), the k-means algorithm is an iterative algorithm comprising four steps: Initially determine or categorize cluster boundaries by defining a minimum and a maximum pixel intensity value for every white, gray, or black pixels into groups or k-clusters that are equally spaced in the entire intensity range. Assign each pixel to one of the white, gray or black k-clusters based on the currently set cluster boundaries. Calculate a mean intensity for each pixel intensity k-cluster or group based on the current assignment of pixels into the different k-clusters. The calculated mean intensity is defined as a cluster center. Thereafter, new cluster boundaries are determined as mid points between cluster centers. The fourth and final step of intensity-based segmentation determines if the cluster boundaries significantly change locations from their previous values. Should the cluster boundaries change significantly from their previous values, iterate back to step 2, until the cluster centers do not change significantly between iterations. Visually, the clustering process is manifest by the segmented image and repeated iterations continue until the segmented image does not change between the iterations.
The pixels in the cluster having the lowest intensity value—the darkest cluster—are defined as pixels associated with internal regions of cardiac chambers, for example the left or right ventricles of the left and/or right atriums. For the 2D algorithm, each image is clustered independently of the neighboring images. For the 3D algorithm, the entire volume is clustered together. To make this step faster, pixels are sampled at 2 or any multiple sampling rate factors before determining the cluster boundaries. The cluster boundaries determined from the down-sampled data are then applied to the entire data.
The edge-based segmentation process block 212 uses a sequence of four sub-algorithms. The sequence includes a spatial gradients algorithm, a hysteresis threshold algorithm, a Region-of-Interest (ROI) algorithm, and a matching edges filter algorithm. The spatial gradient algorithm computes the x-directional and y-directional spatial gradients of the enhanced image. The hysteresis threshold algorithm detects salient edges. Once the edges are detected, the regions defined by the edges are selected by a user employing the ROI algorithm to select regions-of-interest deemed relevant for analysis.
Since the enhanced image has very sharp transitions, the edge points can be easily determined by taking x- and y-derivatives using backward differences along x- and y-directions. The pixel gradient magnitude ∥∇I∥ is then computed from the x- and y-derivative image in equation E10 as:
∥∇I∥=√{square root over (Ix2+Iy2)} E10
Where I2x=the square of x-derivative of intensity and I2y=the square of y-derivative of intensity along the y-axis.
Significant edge points are then determined by thresholding the gradient magnitudes using a hysteresis thresholding operation. Other thresholding methods could also be used. In hysteresis thresholding 530, two threshold values, a lower threshold and a higher threshold, are used. First, the image is thresholded at the lower threshold value and a connected component labeling is carried out on the resulting image. Next, each connected edge component is preserved which has at least one edge pixel having a gradient magnitude greater than the upper threshold. This kind of thresholding scheme is good at retaining long connected edges that have one or more high gradient points.
In the preferred embodiment, the two thresholds are automatically estimated. The upper gradient threshold is estimated at a value such that at most 97% of the image pixels are marked as non-edges. The lower threshold is set at 50% of the value of the upper threshold. These percentages could be different in different implementations. Next, edge points that lie within a desired region-of-interest are selected. This region of interest algorithm excludes points lying at the image boundaries and points lying too close to or too far from the transceivers 10A-D. Finally, the matching edge filter is applied to remove outlier edge points and fill in the area between the matching edge points.
The edge-matching algorithm is applied to establish valid boundary edges and remove spurious edges while filling the regions between boundary edges. Edge points on an image have a directional component indicating the direction of the gradient. Pixels in scanlines crossing a boundary edge location can exhibit two gradient transitions depending on the pixel intensity directionality. Each gradient transition is given a positive or negative value depending on the pixel intensity directionality. For example, if the scanline approaches an echo reflective bright wall from a darker region, then an ascending transition is established as the pixel intensity gradient increases to a maximum value, i.e., as the transition ascends from a dark region to a bright region. The ascending transition is given a positive numerical value. Similarly, as the scanline recedes from the echo reflective wall, a descending transition is established as the pixel intensity gradient decreases to or approaches a minimum value. The descending transition is given a negative numerical value.
Valid boundary edges are those that exhibit ascending and descending pixel intensity gradients, or equivalently, exhibit paired or matched positive and negative numerical values. The valid boundary edges are retained in the image. Spurious or invalid boundary edges do not exhibit paired ascending-descending pixel intensity gradients, i.e., do not exhibit paired or matched positive and negative numerical values. The spurious boundary edges are removed from the image.
For cardiac chamber volumes, most edge points for blood fluid surround a dark, closed region, with directions pointing inwards towards the center of the region. Thus, for a convex-shaped region, the direction of a gradient for any edge point, the edge point having a gradient direction approximately opposite to the current point represents the matching edge point. Those edge points exhibiting an assigned positive and negative value are kept as valid edge points on the image because the negative value is paired with its positive value counterpart. Similarly, those edge point candidates having unmatched values, i.e., those edge point candidates not having a negative-positive value pair, are deemed not to be true or valid edge points and are discarded from the image.
The matching edge point algorithm delineates edge points not lying on the boundary for removal from the desired dark regions. Thereafter, the region between any two matching edge points is filled in with non-zero pixels to establish edge-based segmentation. In a preferred embodiment of the invention, only edge points whose directions are primarily oriented co-linearly with the scanline are sought to permit the detection of matching front wall and back wall pairs of a cardiac chamber, for example the left or right ventricle.
Referring again to
After combining the segmentation results, the combined pixel information in the 3D data sets In a fifth process is cleaned at process block 216 to make the output image smooth and to remove extraneous structures not relevant to cardiac chambers or inter-chamber walls. Cleanup 216 includes filling gaps with pixels and removing pixel groups unlikely to be related to the ROI undergoing study, for example pixel groups unrelated to cardiac structures. Segmented and clean structures are then outputted to process block 262 of
The estimate shadow regions 234 looks for structures hidden in dark or shadow regions of scan planes within 3D data sets that would complicate the segmentation of heart chambers (for example, the segmentation of the left ventricle boundary) were they not known and segmentation artifacts or noise accordingly compensated before determining ejection fractions (See
The spatial gradient 240 computes the x-directional and y-directional spatial gradients of the enhanced image. The hysteresis threshold 242 algorithm detects significant edge points of salient edges. The edge points are determined by thresholding the gradient magnitudes using a hysteresis thresholding operation. Other thresholding methods could also be used. In the hysteresis thresholding 242 block, two threshold values, a lower threshold and a higher threshold, are used. First, the image is thresholded at the lower threshold value and a connected component labeling is carried out on the resulting image. Next, each connected edge component is preserved which has at least one edge pixel having a gradient magnitude greater than the upper threshold. This kind of thresholding scheme is good at retaining long connected edges that have one or more high gradient points. Once the edges are detected, the regions defined by the edges are selected by employing the sonographer's expertise in selecting a given ROI deemed relevant by the sonographer for further processing and analysis.
Referring still to
There are many advantages of geometric deformable models among them the Level Set Methods are increasingly used for image processing in a variety of applications. Front evolving geometric models of active contours are based on the theory of curve evolution, implemented via level set algorithms. The automatically handle changes in topology when numerically implemented using level sets. Hence, without resorting to dedicated contour tracking, unknown numbers of multiple objects can be detected simultaneously. Evolving the curve C in normal direction with speed F amounts to solve the differential equation according to equation E11:
A geodesic model has been proposed. This is a problem of geodesic computation in a Riemannian space, according to a metric induced by the image. Solving the minimization problem consists in finding the path of minimal new length in that metric according to equation E13:
where the minimizer C can be obtained when $g(|\nabla u—0 (C(s))|)$ vanishes, i.e., when the curve is on the boundary of the object. The geodesic active contour model also has a level set formulation as following, according to equation E14:
The geodesic active contour model is based on the relation between active contours and the computation of geodesics or minimal distance curves. The minimal distance curve lies in a Riemannian space whose metric is defined by the image content. This geodesic approach for object segmentation allows connecting classical “snakes” based on energy minimization and geometric active contours based on the theory of curve evolution. Models of geometric active contours are used, allowing stable boundary detection when their gradients suffer from large variations.
In practice, the discrete gradients are bounded and then the stopping function is not zero on the edges, and the curve may pass through the boundary. If the image is very noisy, the isotropic smoothing Gaussian has to be strong, which can smooth the edges too. This region based active contour method is a different active contour model, without a stopping edge-function, i.e. a model which is not based on the gradient of the image for the stopping process. A kind of stopping term is based on Mumford-Shah segmentation techniques. In this way, the model can detect contours either with or without gradient, for instance objects with very smooth boundaries or even with discontinuous boundaries. In addition, the model has a level set formulation, interior contours are automatically detected, and the initial curve can be anywhere in the image. The original Mumford-Shah functional (D. Mumford and J. Shah, “Optimal approximations by piecewise smooth functions and associated variational problems”, Comm. Pure App. Math., vol. 42, pp. 577-685, 1989) is defined by equation E15:
F
MS(u,C)=μLength(C)+λ∫Ω|u0(x,y)−u(x,y)|2dxdy+λ∫Ω\C∇u(x,y)|2dxdy E15
The smaller the Mumford-Shah F, the segmentation improves as u0 approximates original image u, u0 does not vary too much on each segmented region Ri, and the boundary C is as short as possible. Under these conditions u0 it becomes a new image of the original image u drawn with sharp edges. The objects are drawn smoothly without texture. These new images are perceived correctly as representing the same scene as a simplification of the scene containing most of its features.
The level set functions are defined by equations E16-E19:
The functional may be solved using following equation, E18:
And, according to equation E19:
Image segmentation using shape prior missing or diffuse boundaries is a very challenging problem for medical image processing, which may be due to patient movements, low SNR of the acquisition apparatus or being blended with similar surrounding tissues. Under such conditions, without a prior model to constrain the segmentation, most algorithms (including intensity- and curve-based techniques) fail-mostly due to the under-determined nature of the segmentation process. Similar problems arise in other imaging applications as well and they also hinder the segmentation of the image. These image segmentation problems demand the incorporation of as much prior information as possible to help the segmentation algorithms extract the tissue of interest.
A number of model-based image segmentation algorithms are used to correct boundaries in medical images that are smeared or missing. Alternate embodiments of the segmentation algorithms employ parametric point distribution models for describing segmentation curves. The alternate embodiments include using linear combinations of appearance derived eigenvectors that incorporate variations from the mean shape to correct missing or smeared boundaries, including those that arise from variations in transducer angular viewing or alterations of subject pose parameters. These aforementioned point distribution models are determined to match the points to those having significant image gradients. A particular embodiment employs a statistical point model for the segmenting curves by applying principal component analysis (PCA) in a maximum a-posteriori Bayesian framework that capture the statistical variations of the covariance matrices associated with landmark points within a region of interest. Edge-detection and boundary point correspondence within the image gradients are determined within the framework of the region of interest to calculate segmentation curves under varying poses and shape parameters. The incorporated shape information as a prior model restricts the flow of geodesic active contours so that prior parametric shape models are derived by performing PCA on a collection of signed distance maps of the training shape. The segmenting curve then evolves according to the gradient force of the image and the force exerted by the estimated shape. An “average shape” serves as the shape prior term in their geometric active contour model.
Implicit representation of the segmenting curve has been proposed in and calculated the parameters of the implicit model to minimize the region-based energy based on Mumford-Shah functional for image segmentation. The proposed method gives a new and efficient frame work for segmenting image contaminated by heavy noise and delineating structures complicated by missing or diffuse boundaries.
The shape model training phase of
The strategy to compute the pose parameters for n binary images is to use gradient descent method to minimize the special designed energy functional Ealign for each binary image corresponding to the fixed one, say the first binary image B1 and the energy is defined as the following equation, according to equation E21:
where Ω denotes the image domain, {tilde over (B)}j denotes the transformed image of Bj based on the pose parameters p. Minimizing this energy is equivalent to minimizing the difference between current binary image and the fixed image in the training database. The normalization term in the denominator is employed to prevent the images from shrinking to alter the cost function. Hill climbing or Rprop method could be applied for the gradient descent.
One approach to represent shapes is via point models where a set of marker points is used to describe the boundaries of the shape. This approach suffers from problems such as numerical instability, inability to accurately capture high curvature locations, difficulty in handling topological changes, and the need for point correspondences. In order to overcome these problems, an Eulerian approach to shape representation based on the level set methods could be utilized.
The signed distance function is chosen as the representation for shape. In particular, the boundaries of each of the aligned shapes are embedded as the zero level set of separate signed distance functions {Ψ1, Ψ2, . . . , Ψn} with negative distances assigned to the inside and positive distances assigned to the outside of the object. The mean level set function describing the shape value parameters Φ defined in process block 272 of
To extract the shape variabilities,
Specifically, n column vectors are created, {tilde over (ψ)}i, from each {tilde over (Ψ)}i. A natural strategy is to utilize the N1×N2 rectangular grid of the training images to generate N=N1×N2 lexicographically ordered samples (where the columns of the image grid are sequentially stacked on top of one other to form one large column). Next, define the shape-variability matrix S as: S={{tilde over (ψ)}1, {tilde over (ψ)}2, . . . , {tilde over (ψ)}n}.
Here U is a matrix whose columns represent the orthogonal modes of variation in the shape Σ is a diagonal matrix whose diagonal elements represent the corresponding nonzero eigenvalues. The N elements of the ith column of U, denoted by Ui, are arranged back into the structure of the N1×N2 rectangular image grid (by undoing the earlier lexicographical concatenation of the grid columns) to yield Φi, the ith principal mode or eigenshape. Based on this approach, a maximum of n different eigenshapes {Φ1, Φ2, . . . , Φn} are generated. In most cases, the dimension of the matrix 1/nSST is large so the calculation of the eigenvectors and eigenvalues of this matrix is computationally expensive. In practice, the eigenvectors and eigenvalues of 1/nSST can be efficiently computed from a much smaller n×n matrix W given by 1/nSTS. It is straightforward to show that if d is an eigenvector of W with corresponding eigenvalue λ, then 1/nSST is an eigenvector of n with eigenvalue λ.
For segmentation, it is not necessary to use all the shape variabilities after the above procedure. Let k≦n, which is selected prior to segmentation, be the number of modes to consider. k may be chosen large enough to be able to capture the main shape variations present in the training set.
The corresponding eigenvalues for the 12-panel training images from
From these shapes and values the shape knowledge for segmentation is able to be determined via a new level set function defined in equation E24:
Here w={w1, w2, . . . , wk} are the weights for the k eigenshapes with the variances of these weights {σ12, σ22, . . . , σk2} given by the eigenvalues calculated earlier. Now we can use this newly constructed level set function Φ as the implicit representation of shape as shape values. Specifically, the zero level set of Φ describes the shape with the shape's variability directly linked to the variability of the level set function. Therefore, by varying w, Φ can be changed which indirectly varies the shape. However, the shape variability allowed in this representation is restricted to the variability given by the eigenshapes.
The segmentation shape modeling of
As a segmentation using shape knowledge, the task is to calculate the w and pose parameters p. The strategy for this calculation is quite similar as the image alignment for training. The only difference is the special defined energy function for minimization. The energy minimization is based on Chan and Vese's active model (T. F. Chan and L. A. Vese. Active contours without edges. IEEE Transactions on Image Processing, 10: 266-277, 2001) as defined by following equations E26-E35:
The definition of the energy could be modified for specific situation. In a particular embodiment, the design of the energy includes the following factors in addition to the average intensity, the standard deviation of the intensity inside the region.
Once the 3D volume image data could be reconstructed, a 3D shape model could also be defined in other particular embodiments having modifications of the 3D signed distance, the Degrees of Freedom (DOFs) (for example the DOF could be changed to nine, including transition in x, y, z, rotation α, β, θ, scaling factor sx, sy, sz), and modifications of the principle component analysis (PCA) to generate other decomposition matrixes in 3D space. One particular embodiment for determining the heart chamber ejection fractions is also to access how the 3D space could be affected by 2D measurements obtained over time for the same real 3D volume.
Validation data for determining volumes of heart chambers using the level-set algorithms is shown in the Table 1 for 33 data sets and compared with manual segmentation values. For each angle, there are 24 time-based that provide 864 2D-segmentations (=24×36).
The manual segmentation is stored in .txt file, in which the expert-identified landmarks are stored. The .txt file is with the name as following format: ****-XXX-outline.txt where **** is the data set number and XXX is the angle. Table 2 below details segmentation results by the level-set algorithms. When these landmarks are used for segmentation, linear interpolation may be used to generate closed contour.
Training the level-set algorithm's segmentation methods to recognize shape variation from different data sets having different phases and/or different viewing angles is achieved by processing data outline files. The outline files are classified into different groups. For each angle within the outline files, the corresponding outline files are combined into a single outline file. At the same time, another outline file is generated including all the outline files. Segmentation training also involves several schemes. The first scheme trains part of the segmentation for each data set (fixed angle). The second scheme trains via the segmentation for fixed angle from all the data sets. The third scheme trains via the segmentation for all the segmentation for all angles.
For a validation study 75-2D segmentation results were selected from 3D datasets collected for different angles from Table 1. The angles randomly selected are 1002 1003 1007 1016.
Validation methods include determining positioning, area errors, volume errors, and/or ejection fraction errors between the level-set computer readable medium-generated contours and the sonographer-determined segmentation results. Area errors of the 2D scan use the following definitions: A denotes the automatically-identified segmentation area, M the manually-identified segmentation area determined by the sonographer. Ratios of overlapping areas were assessed by applying the similarity Kappa index (KI) and the overlap index, which are defined as:
Volume error: (3D) After 3D reconstruction, the volume of the manual segmentation and automated segmentation are compared using the similar validation indices as the area error.
Ejection fraction (EF) error in 4D (2D+time) is computed using the 3D volumes at different heart phases. The EF from manual segmentation with the EF from auto segmentation are compared.
Results: The training is done using the first 12 images for the 4 different angles of data set 1003. Collected training sets for 4 different angles, 0, 30, 60 and 90 are created. The segmentation was done for the last 12 image for the 4 different angles of data set 1003. Subsequently, the segmentation for 4 different angles, 0, 30, 60 and 90 degrees was collected and are respectively presented in Tables 3-6 below.
Using the trained algorithms applied to the 3D data sets from the 3D transthoracic echocardiograms shows that these echocardiographic systems and methods provide powerful tools for diagnosing heart disease. The ejection fraction as determined by the trained level-set algorithms to the 3D datasets provides an effective, efficient and automatic measurement technique. Accurate computation of the ejection fractions by the applied level-set algorithms is associated with the segmentation of the left ventricle from these echocardiography results and compares favorably to the manually, laboriously determined segmentations.
The proposed shape based segmentation method makes use of the statistical information from the shape model in the training datasets. On one hand, by adjusting the weights for different eigenvectors, the method is able to match the object to be segmented with all different shape modes. On the other hand, the topology-preserving property can keep the segmentation from leakage which may be from the low quality echocardiography.
Left Ventricular Mass (LVM): LV hypertrophy, as defined by echocardiography, is a predictor of cardiovascular risk and higher mortality. Anatomically, LV hypertrophy is characterized by an increase in muscle mass or weight. LVM is mainly determined by two factors: chamber volume, and wall thickness. There are two main assumptions in the computation of LVM: 1) the interventricular septum is assumed to be part of the LV and 2) the volume, Vm, of the myocardium is equal to the total volume contained within the epicardial borders of the ventricle, Vt(epi), minus the chamber volume, Vc(endo); Vm is defined by equation E36 and LVM is obtained by multiplying Vm by the density of the muscle tissue (1.05 g/cm) according to E37:
V
m
=V
t(epi)−Vc(endo) E36
LVM=1.05×Vm E37
LVM is usually normalized to total body surface area or weight in order to facilitate interpatient comparisons. Normal values of LVM normalized to body weight are 2.4±0.3 g/kg [42].
Stroke Volume (SV): is defined as the volume ejected between the end of diastole and the end of systole as shown in E38:
SV=end_diastolic_volume(EDV)−end_systolic_volume(ESV) E38
Alternatively, SV can be computed from velocity-encoded MR images of the aortic arch by integrating the flow over a complete cardiac cycle [54]. Similar to LVM and LVV, SV can be normalized to total body surface. This corrected SV is known as SVI (Stroke volume index). Healthy subjects have a normal SVI of 45±8 ml/m [42].
Ejection Fraction (EF): is a global index of LV fiber shortening and is generally considered as one of the most meaningful measures of the LV pump function. It is defined as the ratio of the SV to the EDV according to E39:
Cardiac Output (CO): The role of the heart is to deliver an adequate quantity of oxygenated blood to the body. This blood flow is known as the cardiac output and is expressed in liters per minute. Since the magnitude of CO is proportional to body surface, one person may be compared to another by means of the CT, that is, the CO adjusted for body surface area. Lorenz et al. [42] reported normal CT values of 2.9±0.6 l/min/m and a range of 1.74-4.03 l/min/m.
CO was originally assessed using Fick's method or the indicator dilution technique [55]. It is also possible to estimate this parameter as the product of the volume of blood ejected within each heart beat (the SV) and the HR according to E40:
CO=SV×HR E40
In patients with mitral or aortic regurgitation, a portion of the blood ejected from the LV regurgitates into the left atrium or ventricle and does not enter the systemic circulation. In these patients, the CO computed with angiocardiography exceeds the forward output. In patients with extensive wall motion abnormalities or misshapen ventricles, the determination of SV from angiocardiographic views can be erroneous. Three-dimensional imaging techniques provide a potential solution to this problem since they allow accurate estimation of the irregular LV shape.
The application of the trained level set algorithms with the kernel shape model allows accurate 3D cardiac functioning assessment to be non-invasively and readily obtained for measuring changes in heart chambers. For example, the determination of atrial or ventricular stroke volumes defined by equation E37, ejection fractions defined by equation E38, and cardiac output defined by equation E39. Additionally, the inter-chamber wall volumes (ICWV), thicknesses (ICWT), masses (ICWM) and external cardiac wall volumes, thicknesses, and masses may be similarly determined from the segmentation results obtained by the level set algorithms. Similarly, these accurate, efficient and robust results may be obtained in 2D+time scenarios in situation in which the same scan plane or scan planes is/are sequentially measured in defined periods.
While the particular embodiments have been illustrated and described for determination of ICWT, ICWM, and left and right cardiac ventricular ejection fractions using trained algorithms applied to 3D data sets from 3D transthoracic echocardiograms (TTE), many changes can be made without departing from the spirit and scope of the invention. For example, applications of the disclosed embodiments may be acquired from other regions of interest having a dynamically repeatable cycle. For example, changes in lung movement. Accordingly, the scope of embodiments of the invention is not limited by the disclosure of the particular embodiments. Instead, embodiments of the invention should be determined entirely by reference to the claims that follow.
Number | Date | Country | Kind |
---|---|---|---|
10-2002-0083525 | Dec 2002 | KR | national |
The following applications are incorporated by reference as if fully set forth herein: U.S. application Ser. Nos. 11/132,076 filed May 17, 2005 and 11/460,182 filed Jul. 26, 2006.
Number | Date | Country | |
---|---|---|---|
60571797 | May 2004 | US | |
60571799 | May 2004 | US | |
60545576 | Feb 2004 | US | |
60566818 | Apr 2004 | US | |
60621349 | Oct 2004 | US | |
60423881 | Nov 2002 | US | |
60400624 | Aug 2002 | US | |
60609184 | Sep 2004 | US | |
60605391 | Aug 2004 | US | |
60608426 | Sep 2004 | US | |
60423881 | Nov 2002 | US | |
60423881 | Nov 2002 | US | |
60400624 | Aug 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11132076 | May 2005 | US |
Child | 11925896 | US | |
Parent | 10165556 | Jun 2002 | US |
Child | PCT/US03/14785 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11119355 | Apr 2005 | US |
Child | 11132076 | US | |
Parent | 10701955 | Nov 2003 | US |
Child | 11119355 | US | |
Parent | 10443126 | May 2003 | US |
Child | 11119355 | US | |
Parent | 11061867 | Feb 2005 | US |
Child | 11132076 | US | |
Parent | 10704966 | Nov 2003 | US |
Child | 11061867 | US | |
Parent | PCT/US03/24368 | Aug 2003 | US |
Child | 11061867 | US | |
Parent | PCT/US03/14785 | May 2003 | US |
Child | 11132076 | US | |
Parent | 10888735 | Jul 2004 | US |
Child | 10165556 | US | |
Parent | 10633186 | Jul 2003 | US |
Child | 10888735 | US | |
Parent | 10443126 | May 2003 | US |
Child | 11132076 | US |