System and method to provide a unified video signal for diverse receiving platforms

Information

  • Patent Grant
  • 9338490
  • Patent Number
    9,338,490
  • Date Filed
    Friday, January 16, 2015
    10 years ago
  • Date Issued
    Tuesday, May 10, 2016
    8 years ago
Abstract
A method includes receiving a request for media content at a residential gateway from a device coupled to the residential gateway and sending a media content request to a server based on the request. The method includes receiving a video data stream of the media content at the residential gateway. Data packets of the video data stream enable generation of the media content at a first resolution. A first subset of the data packets include tags that enable identification of particular data packets usable to generate the media content at a second resolution that is lower than the first resolution. The method also includes determining a display characteristic of a display device coupled to the device and sending the particular data packets to the device when the display characteristic indicates that the device is to receive the media content at the second resolution.
Description
BACKGROUND

The public's desire to extend communication to mobile devices and to other display systems in their homes continues to grow. Internet service providers, telephone companies, cable TV companies, entertainment/media providers, satellite companies, and businesses generally continue to make additional video offerings available to consumers. These new video offerings typically have improved video quality. While high quality video may be truly appreciated on a high-end display device such as a sixty-inch plasma high definition television set, the impact of a high resolution, high quality data stream, may be lost on the small two square inch display of a cellular telephone. Unfortunately, certain techniques for transmitting video data and managing communications between various devices of a modern video network have several shortcomings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 presents a block diagram of a service provider network that can be utilized to provide communication to a subscriber location;



FIG. 2 shows a block diagram of possible components to process and transmit video signals; and



FIG. 3 presents a flow diagram in accordance with a method for providing a unified signal to diverse video devices.





DETAILED DESCRIPTION

Consumers continue to desire new and additional features for home entertainment services, and consumers continue to purchase electronic devices with a wide variety of displays. Accordingly, a system and method for supplying the consumer with a large variety of data transmissions in terms of resolutions and frame rates is provided herein. In one exemplary configuration, a communication system is configured to provide a single video data stream to a subscriber, wherein the single data stream can provide video data to multiple receiving devices with diverse video data input requirements. The communication system can include a digitizer that converts an analog video signal into a high-resolution digital video signal (HRDVS). The communication system can also include a signal processing engine that receives the HRDVS, compresses the HRDVS signal, creates video packets from the HRDVS, and identifies at least a portion of the video packets for distribution to different resolution devices.


A transmitter can be coupled to the signal-processing engine to transmit the video packets to a subscriber location such as a business or a residence. The communication system can also include a remote gateway or a set top box for receiving the transmitted video packets at the subscriber location. After receipt of the video packets, the remote gateway can distribute the video packets to a first video display device capable of displaying the high resolution content and distribute a portion of identified video packets to a second video display device capable of displaying a lower resolution version of the high resolution content.


In accordance with one configuration, the video packets in a high-resolution data stream can include multiple identifiers. For example, every third video packet may be identified for a medium quality picture while every ninth packet may be identified for a cellular telephone display. Thus, every ninth packet will receive a dual identity and be part of more than one “lower resolution” subset. In accordance with another configuration some video packets may be identified for a specific device type or display resolution while other video packets may be identified for a specific device, such as a Palm Pilot III® with a specific Internet protocol address.


Packets may also be identified for a display parameter, such as a display resolution (e.g., 750 pixels by 750 pixels) or a frame rate. For example, every tenth packet may be identified for a 750 pixel by 750-pixel display wherein every thirtieth packet may be identified for devices having a 200 pixel by 200-pixel display. The packets may also be tagged by sampling the data stream at predetermined intervals and tagging the sampled packet. Thus, packets can be tagged and eventually grouped by classifications based, for example, on display device resolution parameters and frame rates.


When a receiving device, such as a residential gateway, distributes the HRDVS, the entire HRDVS stream received by the residential gateway may be sent to high resolution display devices while packets in the HRDVS having a first identifier can be “split off” and transmitted to a second classification of video devices and packets having a second identifier can be split off and transmitted to a third classification of video display device. Thus, the original HRDVS stream can be filtered or pared down such that devices that do not require high data rates or high quality video can be provided with a signal that is commensurate with their display capabilities.


As indicated above, identifiers or tags may be used to signal which packets in a given high resolution video stream should be included in a lower resolution version of the video stream. In such an embodiment, if a high-resolution frame includes an identifier; the high-resolution frame or packet would be included in a low-resolution version of the video. If a high-resolution frame does not include an identifier, the high-resolution frame would not be included in a low-resolution version of the video.


While much of the following description focuses on systems that use identifiers to indicate which packets/frames should be included, identifiers could also be used to tag packets/frames that can be dropped from lower resolution video streams. In a “Tag/Drop” embodiment, a high-resolution packet/frame that includes a particular identifier would not be included in a low-resolution version of the video. A system designer may consider several factors when determining whether to implement a “Tag/Keep” model verse a “Tag/Drop” model. Moreover, the system designer may include different types of tags. One type of tag may be interpreted as a “Keep” tag while a different type of tag may be interpreted as a “Drop” tag. In some cases, a given Keep tag may “tell” a system component to include the following X number of frames. The tag may also suggest that all of the following packets/frames should be kept until the system sees a “Drop” tag. The type, number, and characteristics of identifiers may be modified to suit a given design goal.


Providing video in a format that is compatible with device display parameters can greatly reduce the cost of equipment and infrastructure needed to provide service to multiple and diverse video receiving platforms. For example, a high definition television can receive an entire data stream, yet a personal digital assistant, a cellular telephone, or an older television may only receive a subset of the data. Because the lower resolution data is integrated with, and essentially a duplicate of portions of the HRDVS stream, only minimal processing effort and minimal additional transmission infrastructure is required to implement such a system.


The improvements in communication through digital technology can be utilized herein to provide enhanced video display quality. Likewise, more efficient compression and transmission algorithms can be utilized to compress video and multimedia content to create a wide range of different types of content for different viewing devices. For example, the high definition (HD) content or HDTV is one example of the type of content that is becoming more and more popular.


Video is no longer viewed on just older analog television monitors. Today, HD monitors are becoming more affordable, and personal computers and laptops can be configured to display video. Wireless phones, PDAs, iPODs®, pocket video games and a variety of other devices with networking capabilities are also capable of receiving and displaying video content within the home. Thus, it is desirable that video data destined for older video display equipment and devices having small displays can be efficiently delivered to such devices.


In one configuration, a service provider can offer similar types of services to different viewing platforms such as television sets, PCs and laptops, PDAs, iPODs and other devices with reception and display capabilities. The illustrative embodiment offers a unified architecture that provides a high quality signal for each different type of viewing device without requiring transmission of many different types of signals having redundant data. The illustrative embodiment also provides reliable security and digital rights management for content protection by guarantying that only authorized or selected devices will receive data that is intended for the specific device.



FIG. 1 shows an exemplary high-level block diagram of an entertainment video distribution network. In one entertainment video distribution architecture, content is acquired by, or stored by a content service provider 102. The content service provider 102 can supply entertainment video to a subscriber location 112, for example, via a satellite transmitter 104, a satellite 106, and a satellite receiver 108. The satellite receiver 108 can supply video to off-air receiver at a super head end (SHE) 110. The SHE 110 can have a video on demand (VoD) server that receives control signals from a subscriber and responsive to the control signals provides requested content to the subscriber location 112. At the SHE 110, video can be compressed and distributed to a metropolitan video hub office (VHO) 124.


Additional content such as local content may be acquired from local providers or other providers at the VHO 124. Depending on the VoD architecture and the number of subscribers supported, VoD servers may also be located at the VHO 124. Local provider 126, such as a local television station, can provide video to the VHO 124. Locally acquired content at the VHO 124 can also be digitized and compressed at the VHO 124 and combined with the content received from the SHE 110.


The combined content can be directly distributed to subscribers as is illustrated by the connection to subscriber location 112. The content/combined content can also be distributed to additional local Video Serving Offices (VSOs) 128. Depending on the distribution and access architecture desired, the VSO 128 can distribute the content to a plurality of individual subscriber's homes 130, businesses or access points (not shown). In one configuration a very high speed digital subscriber line (VDSL) configuration is utilized between the subscriber location 112 and the VHO 124, however alternate configurations, such as fiber to the curb and other configurations, could be utilized.


In a cable Hybrid Fiber Coax (HFC) architecture (an implementation using fiber optic components and cable components), analog RF modulation, and digital quadrature amplitude modulation (QAM) techniques can be utilized to broadcast the content from the VHO to a residential gateway or a set top box (STB) 114. These techniques can also be utilized when analog service is provided directly to a standard television set 132 at the subscriber location 112. Additional configurations, such as fiber to the premise (FTTP), fiber to the curb (FTTC) and other access network technologies, could be utilized to provide a signal to the subscriber.


In one implementation, a switched digital video (SDV) architecture is utilized to multicast the video content to a particular point on the network (possibly a VHO) that is proximate to the end-users' location. In this configuration, channel requests and switching can be administrated at the VHO 124 eliminating the need for a sophisticated STB 114. However, in both configurations, the STB 114 may be used to communicate via control signals and digital video signals. In one configuration, the STB 114 decodes the authorized channel and displays the content on a high definition television (HDTV) monitor 116.


As is illustrated, many different types of receiving devices, such as an analog television 132, a cellular telephone 122, a personal digital assistant 120, and a personal computer 118, may be a receiver at a subscriber location 112. In one configuration, similar yet lower resolution content compared to that provided to HD TV 116 is provided to such devices. Depending upon implementation detail, if each display device were to be provided with high resolution (HR) content, the set top box 114 would be costly because it would be required to have significant data processing capacity. A system that provides HD or HR video to multiple devices could prove cost prohibitive for many consumers.


Thus, it would be desirable to provide a common signal or unified signal to set top boxes or gateways and allocate portions of the high-resolution signal to lower resolution devices. In this configuration, each device, such as mobile telephone 122, personal digital assistant 120 and personal computer 118, can receive an optimized version of the video signal based on a the display capacity or display resolution of the device. The selective distribution of video data in accordance with the present disclosure can be implemented utilizing HFC networks as well as switched digital video (SDV) networks.


In the exemplary embodiment, a single communication link is illustrated; however, hundreds and even thousands of links similar to the one shown can be supported by the teachings of the present disclosure. Although a household is shown in the illustrative embodiment as the subscriber location, the subscriber could be at any location having broadband access.



FIG. 2 provides an illustrative embodiment that depicts a block diagram for processing video signals and providing video signals to a subscriber. A receiver 201, possibly located at the SHE in FIG. 1, can receive video data from an entertainment provider (not shown). The receiver 201 can supply a digitizer 202 with analog content, and the digitizer 202 can digitize the analog content and supply digital data to a data compressor 204 where the data can be compressed. The data compressor 204 can also be referred to as a “compression CODEC” or “coder/decoder.” Data compressor 204 can remove spatial and temporal redundancies that are inherently present in images and moving sequences of video. Removal of these redundancies reduces the number of data packets that need to be transmitted and hence reduces the workload of transmitting and receiving devices and other data processing devices in the transmission configuration.


Many types of compression technology could be utilized in cooperation with the present disclosure to reduce the transmission workload/payload of network components. Depending on the compression technology, the data compressor 204 can transform the image/video data into a set of compressed data that contains different types of parameters. Most existing video compression standards use discrete cosine transform (DCT) to remove spatial redundancies in the video data. Likewise, a variety of motion estimation techniques can be utilized to reduce temporal redundancies.


A large number of different filtering and pixel manipulation techniques can also be utilized to reduce compression artifacts and produce good quality video while minimizing the volume of the transmissions. A typical compression technique generates a number of DCT coefficients, motion vectors, and other parameters that are then encoded into the data stream using a variety of encoding techniques. Many different compression techniques could be utilized to complement the present disclosure without parting from the scope of its teachings.


In accordance with the teachings herein, some subscriber display devices may operate satisfactorily with a low-resolution signal, others a medium-resolution signal, while others a high resolution or high-definition signal. Further, other devices may effectively utilize a signal having a resolution somewhere between the above resolutions.


A data tagger 206 can receive the compressed signal and tag packets in the data transmission that can be utilized by lower resolution devices to provide a satisfactory video. Tagging can be performed on a timing basis (i.e., every millisecond), based on a packet count or with any other reliable sampling process. Portions of the transmission may be identified or tagged for specific devices or specific device types that can function on less data capacity than a high definition transmission. Tagging packets in a video data stream avoids transmission of duplicate packets or duplicate signals and reduces the workload of system components. In one configuration, the data tagger 206 may tag a high-resolution or high definition video packet stream with multiple types of tags to provide multiple levels of lower resolutions. The packets may also be tagged based on various device types and display parameters. The high resolution/definition data (as tagged) can then be forwarded to and transmitted by transmitter 208.


Although illustrated as separate modules data compressor 204, the data tagger 206 and the transmitter 208 can be considered as a data processing engine 218. The data processing engine 218 can use trans-coding equipment located in the distribution network or at the customer premise to provide different versions of the content for different types of viewing devices at the customer or subscriber premise.


Thus, a single transmission having tagged data can be sent from the data processing engine 218 to the receiver-filter 210 and this transmission can be filtered to provide different display resolutions to devices having different display data requirements. The receiver-filter 210 can be locate within a set top box, such as the set top box in FIG. 1


The receiver 210 can retransmit or deliver all the data packets to a high-resolution device, such as a HDTV 212, and parse, filter, split, or multiplex data packets from the high definition data stream to deliver a first subset of the packets (i.e., packets tagged with a first identifier) to PDA 214 and deliver a second subset of the packets (i.e., packets tagged with a second identifier) to mobile phone 216. The receiver 210 can also provide security from eavesdropping by implementing digital rights management procedures such that the appropriate signal is transmitted to and received by the appropriate device.


In one configuration, reliable security and/or digital rights management capabilities can also be utilized to safeguard the content of the transmission. All viewing end-points or video devices 212-216 may initially register with the receiver-filter 210 (e.g., the set top box or the residential gateway). The receiver-filter 210 can provide encryption keys, and the communications from the receiver-filter 210 to the display device 212-216 can be encrypted or scrambled such that only the registered subscriber video devices can decode and display the video transmitted by the receiver-filter 210. Digital rights management can be particularly useful in wireless communications. The receiving devices 212-216 may also execute a routine to identify their characteristics, such as a screen size or an optimal and minimal display resolution, such that the receiver-filter 210 can optimize the filtering process for each device. Specific display devices can be provided with an optimal subset of compressed data based on the identified operational device parameters.


Referring to FIG. 3 a method for providing a unified video stream usable by diverse receiving platforms is provided. At 302, video data is received or acquired possibly at a SHE or a VHO. If the video data is received in an analog format, it can be converted to a digital video signal, at 304. The video data may be encoded or digitized into a high-resolution format or a format that is designed as the highest viewing quality available (i.e., currently for HD consumer television sets).


At 306, the digitized video can be compressed and, at 308, the digitized compressed high-resolution video can be tagged such that portions of the compressed video can be identified and “copied out” to form duplicate data that forms a subset of the high-resolution video. Each subset being useable by lower resolution displays.


In one configuration, the data can be tagged with different types of tags such that each subset has a specific tag and can therefore be identified for distribution to a specific device type, resolution frame rate, viewing specification or screen size. The identification can occur such that each identified portion of the compressed data is optimized or has a high enough data rate to provide quality viewing but does not provide data in excess of that necessary to provide the quality video to each device.


The entire video data stream (the high resolution signal with the embedded tags) can be transmitted over a communication network, at 310. The video can be received, at 312, by a receiving device such as a set top box or a residential gateway. Many receivers and receiving methodologies could be utilized. For example, a SDV network, a VDSL network, or a master STB for an HFC network could be utilized to transport and switch the video data. At 314, the tagged portions of the video data can be copied and buffered and then transmitted to the appropriate devices while the high-resolution data, the “highest quality data” or the entire data stream can be sent intact to the high resolution/definition video devices, at 316. Different tags, tagging schemes and different tagging time intervals can be applied to the data for different devices or different display areas in accordance with the scope of the present disclosure.


The above-disclosed subject matter is to be considered illustrative, and not restrictive, and the appended claims are intended to cover all such modifications, enhancements, and other embodiments that fall within the true scope of the present disclosure. Thus, to the maximum extent allowed by law, the scope of the present disclosure is to be determined by the broadest permissible interpretation of the following claims and their equivalents, and shall not be restricted or limited by the foregoing detailed description.

Claims
  • 1. A method comprising: receiving a request for media content at a residential gateway from a device associated with the residential gateway;sending a media content request from the residential gateway to a server based on the request;receiving a video data stream of the media content at the residential gateway responsive to the media content request, wherein data packets of the video data stream enable generation of the media content at a first resolution, and wherein a first subset of the data packets include tags that enable identification of particular data packets usable to generate the media content at a second resolution that is lower than the first resolution;determining, at the residential gateway, a display characteristic of a display device coupled to the device; andsending the particular data packets from the residential gateway to the device when the display characteristic indicates that the device is to receive the media content at the second resolution.
  • 2. The method of claim 1, wherein the particular data packets include the tags.
  • 3. The method of claim 1, wherein the particular data packets do not include the tags.
  • 4. The method of claim 1, further comprising sending all of the data packets to the device when the display characteristic indicates that the device is to receive the media content at the first resolution.
  • 5. The method of claim 1, wherein sending the particular data packets includes: encrypting the particular data packets to generate encrypted data packets; andsending the encrypted data packets to the device.
  • 6. The method of claim 1, wherein the media content includes media-on-demand content.
  • 7. The method of claim 1, wherein the particular data packets of the data packets include second tags, and wherein the tags and the second tags enable the residential gateway to provide the media content to the device at a third resolution that is lower than the second resolution when the display characteristic indicates that the device is to receive media content at the third resolution.
  • 8. The method of claim 7, wherein the first resolution corresponds to a high definition resolution, wherein the second resolution corresponds to a standard definition resolution, and wherein the third resolution corresponds to a resolution for a portable communication device.
  • 9. The method of claim 8, wherein the portable communication device includes a mobile communications device, a personal digital assistant, or a video game device.
  • 10. A computer-readable storage device comprising instructions executable by a processor of a residential gateway to perform operations including: receiving a request for media content from a device associated with the residential gateway;sending a media content request to a server based on the request;receiving a video data stream of the media content responsive to the media content request, wherein data packets of the video data stream enable generation of the media content at a first resolution, and wherein a first subset of the data packets include tags that enable identification of particular data packets usable to generate the media content at a second resolution that is lower than the first resolution;determining a display characteristic of a display device coupled to the device; andsending the particular data packets to the device when the display characteristic indicates that the device is to receive the media content at the second resolution.
  • 11. The computer-readable storage device of claim 10, wherein the particular data packets include the tags.
  • 12. The computer-readable storage device of claim 10, wherein the particular data packets do not include the tag.
  • 13. The computer-readable storage device of claim 10, wherein the operations further include: receiving a registration request from the device; andsending an encryption key to the device.
  • 14. The computer-readable storage device of claim 13, wherein sending the particular data packets includes: encrypting the particular data packets to generate encrypted data packets; andsending the encrypted data packets to the device, wherein the encryption key enables the device to decode the encrypted data packets.
  • 15. The computer-readable storage device of claim 10, wherein determining the display characteristic of the display device includes receiving information from the device, wherein the information include a screen size, a minimum display resolution, a preferred display resolution, or a combination thereof.
  • 16. A media device comprising: a processor;a memory coupled to the processor, the memory including instructions executable by the processor to perform operations including: receiving a request for media content from a device coupled to the media device;sending a media content request to a server based on the request;receiving a video data stream of the media content responsive to the media content request, wherein data packets of the video data stream enable generation of the media content at a first resolution, and wherein a first subset of the data packets include tags that enable identification of particular data packets usable to generate the media content at a second resolution that is lower than the first resolution;determining a display characteristic of a display device coupled to the device; andsending the particular data packets to the device when the display characteristic indicates that the device is to receive the media content at the second resolution.
  • 17. The media device of claim 16, wherein the device is wirelessly coupled to the media device.
  • 18. The media device of claim 16, wherein the media device comprises a set-top box device.
  • 19. The media device of claim 16, wherein the particular data packets include the tags.
  • 20. The media device of claim 16, wherein the particular data packets do not include the tags.
PRIORITY CLAIM

The present application is a continuation of, and claims priority to, U.S. patent application Ser. No. 13/021,914, filed Feb. 7, 2011, which is a continuation of U.S. patent application Ser. No. 11/158,892, filed Jun. 22, 2005 (now U.S. Pat. No. 7,908,627), each of which is incorporated by reference herein in its entirety.

US Referenced Citations (421)
Number Name Date Kind
4243147 Twitchell et al. Jan 1981 A
4356509 Skerlos et al. Oct 1982 A
4768926 Gilbert, Jr. Sep 1988 A
4888819 Oda et al. Dec 1989 A
4907079 Turner et al. Mar 1990 A
5126731 Cromer, Jr. Jun 1992 A
5163340 Bender Nov 1992 A
5475835 Hickey Dec 1995 A
5532748 Naimpally Jul 1996 A
5541917 Farris Jul 1996 A
5583561 Baker et al. Dec 1996 A
5589892 Knee et al. Dec 1996 A
5592477 Farris et al. Jan 1997 A
5600364 Hendricks et al. Feb 1997 A
5610916 Kostreski et al. Mar 1997 A
5613012 Hoffman et al. Mar 1997 A
5650831 Farwell Jul 1997 A
5651332 Moore et al. Jul 1997 A
5656898 Kalina Aug 1997 A
5675390 Schindler et al. Oct 1997 A
5708961 Hylton et al. Jan 1998 A
5722041 Freadman Feb 1998 A
5724106 Autry et al. Mar 1998 A
5729825 Kostreski et al. Mar 1998 A
5734853 Hendricks et al. Mar 1998 A
5774357 Hoffberg et al. Jun 1998 A
5793438 Bedard Aug 1998 A
5805719 Pare, Jr. et al. Sep 1998 A
5812929 Tsutsui et al. Sep 1998 A
5818438 Howe et al. Oct 1998 A
5838384 Schindler et al. Nov 1998 A
5838812 Pare, Jr. et al. Nov 1998 A
5864757 Parker Jan 1999 A
5867223 Schindler et al. Feb 1999 A
5892508 Howe et al. Apr 1999 A
5900867 Schindler et al. May 1999 A
5910970 Lu Jun 1999 A
5933498 Schneck et al. Aug 1999 A
5953318 Nattkemper et al. Sep 1999 A
5956024 Strickland et al. Sep 1999 A
5956716 Kenner et al. Sep 1999 A
5970088 Chen Oct 1999 A
5987061 Chen Nov 1999 A
5990927 Hendricks et al. Nov 1999 A
5995155 Schindler et al. Nov 1999 A
5999518 Nattkemper et al. Dec 1999 A
5999563 Polley et al. Dec 1999 A
6002722 Wu Dec 1999 A
6014184 Knee et al. Jan 2000 A
6021158 Schurr et al. Feb 2000 A
6021167 Wu Feb 2000 A
6026164 Sakamoto et al. Feb 2000 A
6028600 Rosin et al. Feb 2000 A
6029045 Picco et al. Feb 2000 A
6038251 Chen Mar 2000 A
6044107 Gatherer et al. Mar 2000 A
6052120 Nahi et al. Apr 2000 A
6055268 Timm et al. Apr 2000 A
6072483 Rosin et al. Jun 2000 A
6084584 Nahi et al. Jul 2000 A
6111582 Jenkins Aug 2000 A
6118498 Reitmeier Sep 2000 A
6122660 Baransky et al. Sep 2000 A
6124799 Parker Sep 2000 A
6133910 Stinebruner Oct 2000 A
6137839 Mannering et al. Oct 2000 A
6166734 Nahi et al. Dec 2000 A
6181335 Hendricks et al. Jan 2001 B1
6192282 Smith et al. Feb 2001 B1
6195692 Hsu Feb 2001 B1
6215483 Zigmond Apr 2001 B1
6222308 Ozawa et al. Apr 2001 B1
6237022 Bruck et al. May 2001 B1
6243366 Bradley et al. Jun 2001 B1
6252588 Dawson Jun 2001 B1
6252989 Geisler et al. Jun 2001 B1
6260192 Rosin et al. Jul 2001 B1
6269394 Kenner et al. Jul 2001 B1
6275268 Ellis et al. Aug 2001 B1
6275989 Broadwin et al. Aug 2001 B1
6281813 Vierthaler et al. Aug 2001 B1
6286142 Ehreth Sep 2001 B1
6295057 Rosin et al. Sep 2001 B1
6300962 Wishoff et al. Oct 2001 B1
6311214 Rhoads Oct 2001 B1
6314409 Schneck et al. Nov 2001 B2
6317884 Eames et al. Nov 2001 B1
6333917 Lyon et al. Dec 2001 B1
6344882 Shim et al. Feb 2002 B1
6357043 Ellis et al. Mar 2002 B1
6359636 Schindler et al. Mar 2002 B1
6363149 Candelore Mar 2002 B1
6385693 Gerszberg et al. May 2002 B1
6396480 Schindler et al. May 2002 B1
6396531 Gerszberg et al. May 2002 B1
6396544 Schindler et al. May 2002 B1
6397387 Rosin et al. May 2002 B1
6400407 Zigmond et al. Jun 2002 B1
6411307 Rosin et al. Jun 2002 B1
6442285 Rhoads et al. Aug 2002 B2
6442549 Schneider Aug 2002 B1
6449601 Friedland et al. Sep 2002 B1
6450407 Freeman et al. Sep 2002 B1
6460075 Krueger et al. Oct 2002 B2
6463585 Hendricks et al. Oct 2002 B1
6470378 Tracton et al. Oct 2002 B1
6481011 Lemmons Nov 2002 B1
6486892 Stern Nov 2002 B1
6492913 Vierthaler et al. Dec 2002 B2
6496983 Schindler et al. Dec 2002 B1
6502242 Howe et al. Dec 2002 B1
6505348 Knowles et al. Jan 2003 B1
6510519 Wasilewski et al. Jan 2003 B2
6515680 Hendricks et al. Feb 2003 B1
6516467 Schindler et al. Feb 2003 B1
6519011 Shendar Feb 2003 B1
6522769 Rhoads et al. Feb 2003 B1
6526577 Knudson et al. Feb 2003 B1
6529949 Getsin et al. Mar 2003 B1
6535590 Tidwell et al. Mar 2003 B2
6535717 Matsushima et al. Mar 2003 B1
6538704 Grabb et al. Mar 2003 B1
6542740 Olgaard et al. Apr 2003 B1
6557030 Hoang Apr 2003 B1
6567982 Howe et al. May 2003 B1
6587873 Nobakht et al. Jul 2003 B1
6598231 Basawapatna et al. Jul 2003 B1
6599199 Hapshie Jul 2003 B1
6607136 Atsmon et al. Aug 2003 B1
6609253 Swix et al. Aug 2003 B1
6611537 Edens et al. Aug 2003 B1
6614987 Ismail et al. Sep 2003 B1
6622148 Noble et al. Sep 2003 B1
6622307 Ho Sep 2003 B1
6622308 Raiser Sep 2003 B1
6631523 Matthews, III et al. Oct 2003 B1
6640239 Gidwani Oct 2003 B1
6643495 Gallery et al. Nov 2003 B1
6643684 Malkin et al. Nov 2003 B1
6650761 Rodriguez et al. Nov 2003 B1
6658568 Ginter et al. Dec 2003 B1
6662231 Drosset et al. Dec 2003 B1
6671732 Weiner Dec 2003 B1
6678215 Treyz et al. Jan 2004 B1
6678733 Brown et al. Jan 2004 B1
6690392 Wugoski Feb 2004 B1
6693236 Gould et al. Feb 2004 B1
6701523 Hancock et al. Mar 2004 B1
6704931 Schaffer et al. Mar 2004 B1
6714264 Kempisty Mar 2004 B1
6725281 Zintel et al. Apr 2004 B1
6731393 Currans et al. May 2004 B1
6732179 Brown et al. May 2004 B1
6738421 Ueno May 2004 B1
6745223 Nobakht et al. Jun 2004 B1
6745392 Basawapatna et al. Jun 2004 B1
6754206 Nattkemper et al. Jun 2004 B1
6756997 Ward, III et al. Jun 2004 B1
6760918 Rodriguez et al. Jul 2004 B2
6763226 McZeal, Jr. Jul 2004 B1
6765557 Segal et al. Jul 2004 B1
6766305 Fucarile et al. Jul 2004 B1
6769128 Knee et al. Jul 2004 B1
6771317 Ellis et al. Aug 2004 B2
6773344 Gabai et al. Aug 2004 B1
6778559 Hyakutake Aug 2004 B2
6779004 Zintel Aug 2004 B1
6781518 Hayes et al. Aug 2004 B1
6784804 Hayes et al. Aug 2004 B1
6785716 Nobakht Aug 2004 B1
6788709 Hyakutake Sep 2004 B1
6804824 Potrebic et al. Oct 2004 B1
6826775 Howe et al. Nov 2004 B1
6826776 Takano et al. Nov 2004 B1
6828993 Hendricks et al. Dec 2004 B1
6864896 Perego Mar 2005 B2
6898800 Son et al. May 2005 B2
6900815 Yoshioka May 2005 B2
6909384 Baldwin et al. Jun 2005 B2
6909874 Holtz et al. Jun 2005 B2
6938021 Shear et al. Aug 2005 B2
7003791 Mitzutani Feb 2006 B2
7028323 Franken et al. Apr 2006 B2
7054774 Batterberry et al. May 2006 B2
7069573 Brooks et al. Jun 2006 B1
7106461 Kakigi et al. Sep 2006 B2
7185355 Ellis et al. Feb 2007 B1
7197070 Zhang et al. Mar 2007 B1
7207055 Hendricks et al. Apr 2007 B1
7260824 Du et al. Aug 2007 B2
7265797 Bae Sep 2007 B2
7363305 Gabbert et al. Apr 2008 B2
7363646 White et al. Apr 2008 B2
7596799 Chen Sep 2009 B2
7908627 Ansari et al. Mar 2011 B2
20010011261 Mullen-Schultz Aug 2001 A1
20010016945 Inoue Aug 2001 A1
20010016946 Inoue Aug 2001 A1
20010034664 Brunson Oct 2001 A1
20010044794 Nasr et al. Nov 2001 A1
20010047517 Christopoulos et al. Nov 2001 A1
20010048677 Boys Dec 2001 A1
20010049826 Wilf Dec 2001 A1
20010054008 Miller et al. Dec 2001 A1
20010054009 Miller et al. Dec 2001 A1
20010054067 Miller et al. Dec 2001 A1
20010056350 Calderone et al. Dec 2001 A1
20020001303 Boys Jan 2002 A1
20020001310 Mai et al. Jan 2002 A1
20020002496 Miller et al. Jan 2002 A1
20020003166 Miller et al. Jan 2002 A1
20020007307 Miller et al. Jan 2002 A1
20020007313 Mai et al. Jan 2002 A1
20020007485 Rodriguez et al. Jan 2002 A1
20020010639 Howey et al. Jan 2002 A1
20020010745 Schneider Jan 2002 A1
20020010935 Sitnik Jan 2002 A1
20020016736 Cannon et al. Feb 2002 A1
20020022963 Miller et al. Feb 2002 A1
20020022970 Noll et al. Feb 2002 A1
20020022992 Miller et al. Feb 2002 A1
20020022993 Miller et al. Feb 2002 A1
20020022994 Miller et al. Feb 2002 A1
20020022995 Miller et al. Feb 2002 A1
20020023959 Miller et al. Feb 2002 A1
20020026357 Miller et al. Feb 2002 A1
20020026358 Miller et al. Feb 2002 A1
20020026369 Miller et al. Feb 2002 A1
20020026475 Marmor Feb 2002 A1
20020029181 Miller et al. Mar 2002 A1
20020030105 Miller et al. Mar 2002 A1
20020032603 Yeiser Mar 2002 A1
20020035404 Ficco et al. Mar 2002 A1
20020040475 Yap et al. Apr 2002 A1
20020042915 Kubischta et al. Apr 2002 A1
20020046093 Miller et al. Apr 2002 A1
20020049635 Mai et al. Apr 2002 A1
20020054087 Noll et al. May 2002 A1
20020054750 Ficco et al. May 2002 A1
20020059163 Smith May 2002 A1
20020059425 Belfiore et al. May 2002 A1
20020059599 Schein et al. May 2002 A1
20020065717 Miller et al. May 2002 A1
20020067438 Baldock Jun 2002 A1
20020069220 Tran Jun 2002 A1
20020069282 Reisman Jun 2002 A1
20020069294 Herkersdorf et al. Jun 2002 A1
20020072970 Miller et al. Jun 2002 A1
20020078442 Reyes et al. Jun 2002 A1
20020097261 Gottfurcht et al. Jul 2002 A1
20020106119 Foran et al. Aug 2002 A1
20020112239 Goldman Aug 2002 A1
20020116392 McGrath et al. Aug 2002 A1
20020118315 Hong Aug 2002 A1
20020124055 Reisman Sep 2002 A1
20020128061 Blanco Sep 2002 A1
20020129094 Reisman Sep 2002 A1
20020133402 Faber et al. Sep 2002 A1
20020138840 Schein et al. Sep 2002 A1
20020152264 Yamasaki Oct 2002 A1
20020169611 Guerra et al. Nov 2002 A1
20020170063 Ansari et al. Nov 2002 A1
20020173344 Cupps et al. Nov 2002 A1
20020188955 Thompson et al. Dec 2002 A1
20020193997 Fitzpatrick et al. Dec 2002 A1
20020194601 Perkes et al. Dec 2002 A1
20020198780 Kawakami et al. Dec 2002 A1
20020198874 Nasr et al. Dec 2002 A1
20030005445 Schein et al. Jan 2003 A1
20030009771 Chang Jan 2003 A1
20030012365 Goodman Jan 2003 A1
20030014750 Kamen Jan 2003 A1
20030018975 Stone Jan 2003 A1
20030023435 Josephson Jan 2003 A1
20030023440 Chu Jan 2003 A1
20030028890 Swart et al. Feb 2003 A1
20030030665 Tillmanns Feb 2003 A1
20030033416 Schwartz Feb 2003 A1
20030043915 Costa et al. Mar 2003 A1
20030046091 Arneson et al. Mar 2003 A1
20030046689 Gaos Mar 2003 A1
20030056223 Costa et al. Mar 2003 A1
20030058277 Bowman-Amuah Mar 2003 A1
20030061611 Pendakur Mar 2003 A1
20030071792 Safadi Apr 2003 A1
20030093793 Gutta May 2003 A1
20030100340 Cupps et al. May 2003 A1
20030110161 Schneider Jun 2003 A1
20030110503 Perkes Jun 2003 A1
20030126136 Omoigui Jul 2003 A1
20030135771 Cupps et al. Jul 2003 A1
20030141987 Hayes Jul 2003 A1
20030145321 Bates et al. Jul 2003 A1
20030149989 Hunter et al. Aug 2003 A1
20030153353 Cupps et al. Aug 2003 A1
20030153354 Cupps et al. Aug 2003 A1
20030156218 Laksono Aug 2003 A1
20030159026 Cupps et al. Aug 2003 A1
20030160830 DeGross Aug 2003 A1
20030163601 Cupps et al. Aug 2003 A1
20030163666 Cupps et al. Aug 2003 A1
20030172380 Kikinis Sep 2003 A1
20030182237 Costa et al. Sep 2003 A1
20030182420 Jones et al. Sep 2003 A1
20030185232 Moore et al. Oct 2003 A1
20030187641 Moore et al. Oct 2003 A1
20030187646 Smyers et al. Oct 2003 A1
20030187800 Moore et al. Oct 2003 A1
20030189509 Hayes et al. Oct 2003 A1
20030189589 LeBlanc et al. Oct 2003 A1
20030189666 Dabell et al. Oct 2003 A1
20030194141 Kortum et al. Oct 2003 A1
20030194142 Kortum et al. Oct 2003 A1
20030208396 Miller et al. Nov 2003 A1
20030208758 Schein et al. Nov 2003 A1
20030215011 Wang et al. Nov 2003 A1
20030226044 Cupps et al. Dec 2003 A1
20030226145 Marsh Dec 2003 A1
20030229900 Reisman Dec 2003 A1
20040003041 Moore et al. Jan 2004 A1
20040003403 Marsh Jan 2004 A1
20040006769 Ansari et al. Jan 2004 A1
20040006772 Ansari et al. Jan 2004 A1
20040010602 Van Vleck et al. Jan 2004 A1
20040015997 Ansari et al. Jan 2004 A1
20040030750 Moore et al. Feb 2004 A1
20040031058 Reisman Feb 2004 A1
20040031856 Atsmon et al. Feb 2004 A1
20040034877 Nogues Feb 2004 A1
20040049728 Langford Mar 2004 A1
20040064351 Mikurak Apr 2004 A1
20040068740 Fukuda et al. Apr 2004 A1
20040070491 Huang et al. Apr 2004 A1
20040073918 Ferman et al. Apr 2004 A1
20040098571 Falcon May 2004 A1
20040107125 Guheen et al. Jun 2004 A1
20040107439 Hassell et al. Jun 2004 A1
20040111745 Schein et al. Jun 2004 A1
20040111756 Stuckman et al. Jun 2004 A1
20040117813 Karaoguz et al. Jun 2004 A1
20040117824 Karaoguz et al. Jun 2004 A1
20040123327 Fai Ma et al. Jun 2004 A1
20040128342 Maes et al. Jul 2004 A1
20040139173 Karaoguz et al. Jul 2004 A1
20040143600 Musgrove et al. Jul 2004 A1
20040143652 Grannan et al. Jul 2004 A1
20040148408 Nadarajah Jul 2004 A1
20040150676 Gottfurcht et al. Aug 2004 A1
20040150748 Phillips et al. Aug 2004 A1
20040172658 Rakib et al. Sep 2004 A1
20040183839 Gottfurcht et al. Sep 2004 A1
20040194136 Finseth et al. Sep 2004 A1
20040198386 Dupray Oct 2004 A1
20040201600 Kakivaya et al. Oct 2004 A1
20040210633 Brown et al. Oct 2004 A1
20040210935 Schein et al. Oct 2004 A1
20040213271 Lovy et al. Oct 2004 A1
20040221302 Ansari et al. Nov 2004 A1
20040223485 Arellano et al. Nov 2004 A1
20040226035 Hauser, Jr. Nov 2004 A1
20040226045 Nadarajah Nov 2004 A1
20040239624 Ramian Dec 2004 A1
20040252119 Hunleth et al. Dec 2004 A1
20040252120 Hunleth et al. Dec 2004 A1
20040252769 Costa et al. Dec 2004 A1
20040252770 Costa et al. Dec 2004 A1
20040260407 Wimsatt Dec 2004 A1
20040261116 McKeown et al. Dec 2004 A1
20040267729 Swaminathan et al. Dec 2004 A1
20040268393 Hunleth et al. Dec 2004 A1
20050027851 McKeown et al. Feb 2005 A1
20050028208 Ellis et al. Feb 2005 A1
20050031031 Osorio Feb 2005 A1
20050038814 Iyengar et al. Feb 2005 A1
20050044280 Reisman Feb 2005 A1
20050097612 Pearson et al. May 2005 A1
20050132295 Noll et al. Jun 2005 A1
20050149988 Grannan Jul 2005 A1
20050195961 Pasquale et al. Sep 2005 A1
20050251827 Ellis et al. Nov 2005 A1
20060026663 Kortum et al. Feb 2006 A1
20060037043 Kortum et al. Feb 2006 A1
20060037083 Kortum et al. Feb 2006 A1
20060048178 Kortum et al. Mar 2006 A1
20060077921 Radpour Apr 2006 A1
20060114360 Kortum et al. Jun 2006 A1
20060114987 Roman Jun 2006 A1
20060117347 Steading Jun 2006 A1
20060117374 Kortum et al. Jun 2006 A1
20060123445 Sullivan et al. Jun 2006 A1
20060156372 Cansler, Jr. et al. Jul 2006 A1
20060158368 Walter et al. Jul 2006 A1
20060161953 Walter et al. Jul 2006 A1
20060168610 Noil Williams et al. Jul 2006 A1
20060170582 Kortum et al. Aug 2006 A1
20060174279 Sullivan et al. Aug 2006 A1
20060174309 Pearson Aug 2006 A1
20060179466 Pearson et al. Aug 2006 A1
20060179468 Pearson Aug 2006 A1
20060184991 Schlamp et al. Aug 2006 A1
20060184992 Kortum et al. Aug 2006 A1
20060190402 Patron et al. Aug 2006 A1
20060218590 White Sep 2006 A1
20060230421 Pierce et al. Oct 2006 A1
20060236343 Chang Oct 2006 A1
20060268917 Nadarajah Nov 2006 A1
20060282785 McCarthy et al. Dec 2006 A1
20060290814 Walter Dec 2006 A1
20060294553 Walter et al. Dec 2006 A1
20060294561 Grannan et al. Dec 2006 A1
20060294568 Walter Dec 2006 A1
20070011133 Chang Jan 2007 A1
20070011250 Kortum et al. Jan 2007 A1
20070021211 Walter Jan 2007 A1
20070025449 Van Vleck et al. Feb 2007 A1
20070039036 Sullivan et al. Feb 2007 A1
20070106941 Chen et al. May 2007 A1
20070118857 Chen et al. May 2007 A1
20070237219 Schoenblum Oct 2007 A1
20080104647 Hannuksela May 2008 A1
20110167442 Ansari et al. Jul 2011 A1
Foreign Referenced Citations (12)
Number Date Country
9963759 Dec 1999 WO
0028689 May 2000 WO
0160066 Aug 2001 WO
0217627 Feb 2002 WO
02058382 Jul 2002 WO
03003710 Jan 2003 WO
03025726 Mar 2003 WO
2004018060 Mar 2004 WO
2004032514 Apr 2004 WO
2004062279 Jul 2004 WO
2005045554 May 2005 WO
2006088577 Aug 2006 WO
Non-Patent Literature Citations (2)
Entry
International Search Report and Written Opinion issued on Mar. 9, 2007 for International Application No. PCT/US06/01114, 3 pages.
Kapinos, S., “Accenda Universal Remote Control Targets Needs of Elderly, Visually Impaired, Physically Challenged . . . and the Rest of Us,” Press Release, Dec. 15, 2002, Innotech Systems Inc., Port Jefferson, NY, 4 pages.
Related Publications (1)
Number Date Country
20150135210 A1 May 2015 US
Continuations (2)
Number Date Country
Parent 13021914 Feb 2011 US
Child 14598983 US
Parent 11158892 Jun 2005 US
Child 13021914 US