This application relates generally to medical devices and, more particularly, to systems, devices and methods for reducing device therapy pain.
Medical devices can be implanted to deliver electrical therapy to portions of the body to help alleviate certain medical conditions. Some medical conditions that may benefit from electrical therapy may include atrial tachyarrhythmia and/or ventricular tachyarrhythmia. For example, implantable electrodes can be coupled to a pulse generator. The electrode can be implanted in or near the heart and electrical therapy such as cardioversion or defibrillation shocks can be delivered from the pulse generator to the heart via the electrode.
However, these shocks can cause physiological stress, anxiety, and pain to the patient. The anticipation of the shock can cause anxiety and distress. As well, the shock itself can be painful. There is a need to reduce the pain of the device therapy.
One aspect includes sensing whether a shock to a heart is needed, and prior to delivering the shock, causing at least a partial contraction of a musculature in a chest, and delivering the shock while the musculature is at least partially contracted.
One aspect includes sensing whether a therapeutic shock to a heart is needed, and before delivering the therapeutic shock, applying subcutaneous electrical neural stimulation near a pectoris major muscle.
The following detailed description and accompanying drawings show specific embodiments in which the present invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention. Aspects of these embodiments can be combined and other embodiments may be utilized and structural changes may be made without departing from the scope of the present invention.
Pulse generator 110 includes controller circuitry 112 to control the functions of the pulse generator. Controller circuitry 112 can include hardware, software, and/or combinations of hardware and software programmed to deliver therapy shocks to heart 10, via one or more of electrodes 120, 130, and 140, such as atrial or ventricle defibrillation shocks or cardioversion shocks. In certain embodiments, pulse generator housing 111 can act as an electrode also.
In certain embodiments, pulse generator 110 is further adapted to deliver one or more pre-therapy conditioning electrical pulse or pulses to stimulate the chest musculature to reduce the startle effect from the muscle contraction from the shock in turn reducing the pain and/or anxiety caused by the therapy shock discussed above.
In certain embodiments, pulse generator 110 delivers one or more pre-therapy conditioning electrical pulses which can be directed so as to cause a preconditioning of the chest musculature similar to a fused tetanus condition of a musculature in a chest 30. A fused tetanus condition is when the chest musculature is at least partially contracted. Accordingly, the one or more pre-therapy conditioning electrical pulses cause at least a partial contraction of the musculature of the chest. The one or more pre-therapy conditioning electrical pulse or pulses are applied in such a manner that the chest musculature is still in the at least partially contracted state when the therapy shock is delivered. In certain embodiments, the one or more pre-therapy conditioning electrical pulse or pulses are applied recurrently or continually at least until the shock therapy is delivered. In certain embodiments, the pre-therapy conditioning electrical pulse or pulses can be applied recurrently or continually from a time prior to the therapy shock and continue so that the pulses partially or completely overlap with the therapy shock. This chest muscle contraction results in lessened pain once the therapy shock is delivered since the chest is pre-contracted. Thus, the patient is less surprised by the therapy shock and the muscles are not contracted as much by the therapy shock itself.
The one or more pre-therapy conditioning electrical pulses can be directed in different fashions. In certain embodiments, pre-therapy conditioning electrical pulses 150 are directed directly at the musculature of the chest from electrode 120 to pulse generator housing 111. In certain embodiments, pre-therapy conditioning electrical pulses 160 are directed at the musculature of the chest from electrode 130 to pulse generator housing 111. In certain embodiments, pre-therapy conditioning electrical pulses 170 are directed at the musculature of the chest from electrode 130 to electrode 120. The electrical pulses can be directed at musculature on the right side of the chest, the left side of the chest, or both sides.
In some embodiments, separate pulse generators are used to deliver therapy shocks and to apply pre-therapy conditioning pulses.
Electrode 235 can be positioned to deliver therapy to a somatic nerve located anywhere in the body. In various embodiments, for example, electrode 235 can be implanted near or directed to deliver therapy to one or more somatic nerves in the back of the neck (the C7 upper subscapular nerve 215, or the C8 nerve 216, for example), the first thoracic spinal nerve T1225 or the anterior thoracic nerve 205. Other embodiments can target other somatic nerve locations. Electrode 235 can include a tip electrode, a ring electrode, or a nerve cuff electrode, for example. In certain embodiments, an epidural nerve root stimulation lead can be used.
In some embodiments, separate pulse generators or electrodes are used to deliver therapy shocks and to apply pre-therapy conditioning pulses.
In one example, as discussed above in
The pre-therapy conditioning pulses directed at either the chest muscular, the somatic nerves, or both, are designed to at least partially contract the chest musculature in a fused tetanus condition. As discussed above, this pre-contraction of the chest muscles prepares the muscles for the therapy shock and helps reduce the startle reaction and/or the painful muscle contraction a patient feels when the therapy shock is delivered. The pre-therapy conditioning pulse or pulses are delivered at such a level and/or time that the chest muscles are still contracted when the therapy shock is delivered. Since the chest muscles are contracted right up until the shock therapy is delivered, the impact of the therapy shock on the musculature is reduced. In some examples, there can be up to about a 25 ms gap of time between the last of the one or more pre-therapy pulses and the beginning of the therapeutic shock since the muscle fibers will remain contracted.
In certain embodiments, sensing whether a shock is needed (302) includes sensing one or more electrical signals of a heart to determine if therapy is needed. For example, the pulse generator can include programming to recognize the need for atrial defibrillation or ventricle defibrillation, or any other shock therapy. When the pulse generator recognizes such a need, it then begins preparing to deliver the shock by charging a capacitor to deliver the shock therapy, which is typically between 1 J and 25 Joules, for example. The shock therapy can include cardioversion or defibrillation shocks for example.
In certain embodiments, the system can sense whether the therapy shock was successful. If the therapy was unsuccessful, then the system can repeat the procedure and provide the one or more pre-therapy condition pulses as many times as necessary.
In one embodiment, the pre-conditioning pulses of either embodiment discussed above can be in the about 20 to about 30 millisecond range, while the energy of the pulse will depend on the type of electrodes used. It is desired that the lowest energy be used to cause contraction. This can vary by person and electrodes used, since the voltage perception varies between patients (5V-50V, for example), and the pain perception varies as well (50V-200V, for example). Accordingly, in one embodiment, the device is programmable to deliver between about 5V to about 200V. In some embodiments, the pre-therapy conditioning can be programmed anywhere from about 10 Hz to about 100 Hz.
In certain embodiments, system 400 includes electrical mesh 420 implanted near or on the pectoris major muscles 405. In certain embodiments, applying subcutaneous electrical neural stimulation includes applying electrical pulses which stimulate pain nerve fibers 406 in the pectoris major muscles 405. In other embodiments, mesh 420 can be on the other side of the chest, or there can be an electrical mesh on both sides of the chest. By stimulating these nerve fibers, system 400 provides sedative therapy prior to and/or during and after the therapy shock. For example, the system can provide a pain signal conduction block, or can modulate pain signal transmission, and/or stimulate pain nerve fibers at a level so as to induce endogenous analgesics. This masks the pain and results in less pain from the subsequent therapy shock. This approach can help reduce pain, spasm and/or tetanus in the chest muscles.
In certain embodiments, system 500 includes electrode array 520 implanted near or on the pectoris major muscles 405. In certain embodiments, applying subcutaneous electrical neural stimulation includes applying electrical pulses which stimulate pain nerve fibers 406 in the pectoris major muscles 405. By stimulating these nerve fibers, the system provides a pain signal conduction block, modulates pain signal transmission, and/or stimulates pain nerve fibers at a level so as to induce endogenous analgesics. This results in less pain from the subsequent therapy shock.
Referring to both
delivering the therapeutic shock (606), and continuing to deliver the subcutaneous electrical neural stimulation after the therapeutic shock (608). Certain embodiments omit continuing to deliver the subcutaneous electrical neural stimulation after the therapeutic shock.
As discussed above, sensing whether a therapeutic shock is needed includes sensing electrical signals of a heart. For example, the pulse generator can include programming to recognize the need for atrial or ventricle defibrillation. When the pulse generator recognizes such a need, it then begins preparing to deliver the shock by charging a capacitor to deliver the shock therapy, which is typically between 1 J and 25 Joules, for example. The shock therapy can include cardioversion or defibrillation shocks for example.
As discussed above, subcutaneous electrical neural stimulation can be applied via an electrical mesh implanted near the pectoris major muscles, or by an electrode array, for example. In certain embodiments, applying subcutaneous electrical neural stimulation includes applying electrical pulses which stimulate pain nerve fibers in the pectoris major muscles. By stimulating these nerve fibers, the method provides a pain signal conduction block, or modulates pain signal transmission, and/or stimulates pain nerve fibers at a level so as to induce endogenous analgesics.
In other embodiments, the pulse generator controller circuitry discussed above can be within the pulse generator or be a separate system communicating wirelessly with the pulse generator. In some embodiments, the pulse generator can include a transceiver and associated circuitry for use to communicate with a programmer or another external or internal device. Various embodiments can include wireless communication capabilities. For example, some transceiver embodiments use a telemetry coil to wirelessly communicate with a programmer or another external or internal device. Certain embodiments can utilize far-field ICDs.
The above description is intended to be illustrative, and not restrictive. Many other embodiments will be apparent to those of skill in the art upon reviewing the above description. The scope of the invention should, therefore, be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled.
Number | Name | Date | Kind |
---|---|---|---|
4343301 | Indech | Aug 1982 | A |
4607639 | Tanagho et al. | Aug 1986 | A |
4703755 | Tanagho et al. | Nov 1987 | A |
4739764 | Lue et al. | Apr 1988 | A |
4771779 | Tanagho et al. | Sep 1988 | A |
4989605 | Rossen | Feb 1991 | A |
5052391 | Silberstone et al. | Oct 1991 | A |
5063929 | Bartelt et al. | Nov 1991 | A |
5147294 | Smith et al. | Sep 1992 | A |
5330515 | Rutecki et al. | Jul 1994 | A |
5350414 | Kolen | Sep 1994 | A |
5411547 | Causey, III | May 1995 | A |
5562718 | Palermo | Oct 1996 | A |
5792187 | Adams | Aug 1998 | A |
5817131 | Elsberry et al. | Oct 1998 | A |
6023642 | Shealy et al. | Feb 2000 | A |
6044303 | Agarwala et al. | Mar 2000 | A |
6091989 | Swerdlow et al. | Jul 2000 | A |
6351674 | Silverstone | Feb 2002 | B2 |
6393323 | Sawan et al. | May 2002 | B1 |
6438418 | Swerdlow et al. | Aug 2002 | B1 |
6701185 | Burnett et al. | Mar 2004 | B2 |
6941171 | Mann et al. | Sep 2005 | B2 |
6990376 | Tanagho et al. | Jan 2006 | B2 |
7130686 | Levine et al. | Oct 2006 | B1 |
7142927 | Benser et al. | Nov 2006 | B2 |
7522958 | Ideker et al. | Apr 2009 | B2 |
20040088015 | Casavant et al. | May 2004 | A1 |
Number | Date | Country |
---|---|---|
WO 2008027630 | Mar 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20080058877 A1 | Mar 2008 | US |