Oil and gas wells may be completed by drilling a borehole in the earth and subsequently lining the borehole with a steel casing. In many applications, one or more sections of casing and one or more liners are used to complete the well. After the well has been drilled to a first depth, for example, a first section of casing may be lowered into the wellbore and hung from the surface. Cement is then injected into the annulus between the outer surface of the casing and the borehole. After drilling the well to a second designated depth, a liner is run into the well. The liner may then be fixed to the casing by using a liner hanger.
In general, the present disclosure provides a system and methodology for joining sections of tubing. For example, an expandable tubular member may be coupled with an external tubing, e.g. casing. The expandable tubular member is deployed into the external tubing to a desired position. An expandable portion of the expandable tubular member may then be plastically deformed in a radially outward direction and into engagement with the external tubing. A sensor system may be combined with the expandable tubular member to, for example, monitor a characteristic of the expandable tubular member.
Certain embodiments will hereafter be described with reference to the accompanying drawings, wherein like reference numerals denote like elements. It should be understood, however, that the accompanying figures illustrate various implementations described herein and are not meant to limit the scope of various technologies described herein, and:
In the following description, numerous details are set forth to provide an understanding of some illustrative embodiments of the present disclosure. However, it will be understood by those of ordinary skill in the art that the system and/or methodology may be practiced without these details and that numerous variations or modifications from the described embodiments may be possible.
The disclosure herein generally relates to a system and methodology for a joining sections of tubing. For example, an expandable tubular member, e.g. an expandable tubing hanger, may be coupled with an external tubing, e.g. a casing. The expandable tubular member may be deployed into the external tubing to a desired position. Then, an expandable portion of the expandable tubular member may be plastically deformed in a radially outward direction and into engagement with the external tubing. In some embodiments, the expandable portion is expanded into a metal-to-metal sealing engagement with an inside surface of the surrounding external tubing.
A sensor system may be combined with the expandable tubular member to, for example, monitor a characteristic of the expandable tubular member. For example, the sensor system may be used to provide instrumentation for an expandable liner hanger. In this manner, the installation and lifecycle of the expandable liner hanger may be monitored. In some applications, a characteristic such as strain of the metal-to-metal seal may be monitored by the sensor system to ensure the seal is maintained.
According to an embodiment, the system for joining tubulars enables forming a metal-to-metal seal between an expandable tubular member and a casing in a borehole, e.g. a wellbore. An expansion tool is used in combination with the expandable tubular member to deliver a high-pressure fluid to a sealed region between the expansion tool and the expandable tubular member. The high-pressure fluid causes expansion of at least a portion of the expandable tubular member into engagement with the surrounding tubing, e.g. casing, to thus form a coupling with the surrounding tubing, e.g. a metal-to-metal seal with an interior surface of the surrounding tubing.
With respect to another aspect of this embodiment, a monitoring system may be provided for the expandable tubular member. By way of example, the monitoring system may work in cooperation with the portion of the expandable tubular member which is expanded by high-pressure fluid. The monitoring system may comprise a sensor system, e.g. at least one gauge, disposed proximate the expandable tubular element for assaying a characteristic or characteristics of the expanded tubular element. The sensor system, e.g. gauges, may be used in cooperation with various monitoring system components to obtain data and to provide the data at a surface location. According to a methodology, a monitoring device may be deployed downhole proximate the gauges or other sensor system for collecting data on the characteristic or characteristics of the expanded tubular member. The collected data is then provided to, for example, a processing system to enable analysis of the data for determining health of the expanded tubular, e.g. the integrity of the coupling.
Referring generally to
The expandable tubular member 22, e.g. expandable liner hanger 26, may be releasably coupled with an expansion tool 32 via a latch or other releasable coupler. The expansion tool 32 is able to move the expandable tubular member 22 into the surrounding tubing 24. The expansion tool 32 may then be operated to actuate the expandable tubular member 22 into engagement with the surrounding tubing 24. In the example illustrated, the expansion tool 32 has a longitudinal, internal passage or bore 34 which may be used to deliver fluid along an interior of the expansion tool 32.
A sensor system 36 may be positioned along the tubular member 22. By way of example, the sensor system 36 may comprise a sensor or a plurality of sensors 38, e.g. gauges. The sensors 38 may be positioned along the expandable tubular member 22, e.g. along an external surface of the expandable tubular member 22 for engagement with an interior surface of the surrounding tubing 24. However, the sensor system 36 may comprise additional sensors 38 and/or other sensors 38 located on the external surface, internal surface, or at other suitable locations along the expandable tubular member 22 according to the parameters of a given operation. The sensors 38 are positioned to enable monitoring of a desired characteristic or characteristics related to the expandable tubular member 22. For example, at least one of the sensors 38 may be used for monitoring engagement of the expandable liner hanger 26 with the surrounding well casing 28.
With additional reference to
Depending on the type of application in which expandable tubular member 22 is employed, the expansion tool 32 may be used to facilitate various downhole operations. In the embodiment illustrated in
Subsequently, a plug 56 may be used to block further flow of fluid through a bottom end 58 of expansion tool 32. By way of example, the plug 56 may be in the form of a pump down plug which is pumped down along internal passage 34 until being sealably captured in bottom end 56. As the plug 56 is pumped down along internal passage 34, the remaining cement slurry 52 is forced out of expansion tool 32.
Once plug 56 blocks further flow of fluid through the bottom of expansion tool 32, a pressurized actuating fluid may be delivered into internal passage 34 and then out to an exterior of expansion tool 32 so as to act against the expandable portion 48 of expandable liner hanger 26. The seals 44, 46 contain the pressurized actuating fluid within the annular region between the seals 44, 46 and between the exterior of expansion tool 32 and the interior of expandable portion 48. When sufficient pressure is applied, the expandable portion 48 is plastically deformed in a radially outward direction, as illustrated in
In various applications, the expandable portion 48 may be expanded against the interior of tubing 24, e.g. casing 28, to form a metal-to-metal seal 60 between the expandable liner hanger 26 and the surrounding tubing 24/casing 28 as illustrated in
According to an operational example, the radial expansion of expandable portion 48 is facilitated by sealing system 40, e.g. seals 44, 46, which provides a seal between the exterior of the expansion tool 32 and an interior of the expandable liner hanger 26. The actuating fluid may be introduced under high pressure down through internal passage 34 and into an annular volume 62 between expandable liner hanger 26 and expansion tool 32 bounded by seals 44, 46.
By way of example, the high pressure actuating fluid may be delivered from internal passage 34 to annular volume 62 via a suitable pressure crossover mechanism 63, e.g. a radial passage, valve, rupture disc, and/or other suitable mechanism to enable crossover of the pressurized actuating fluid from passage 34 to annular volume 62. The pressure on the actuating fluid is increased until the expandable portion 48 is forced to undergo plastic deformation between seals 44 and 46. As the expanded portion 48 is expanded in the radially outward direction, cement slurry 52 is displaced until the metal-to-metal seal 60 is formed between the exterior surface of expandable tubular member 22, e.g. liner hanger 26, and the interior surface of surrounding tubing 24, e.g. casing 28. In this embodiment, the sensors 38 of sensor system 40 are positioned proximate the metal-to-metal seal 60. It should be noted the sensor system 40 may be used with other types of expansion techniques, e.g. mechanical expansion techniques.
Referring generally to
Referring generally to
In some embodiments, the communication system 64 is part of an overall telemetry system 66 which enables a communication of data between the downhole communication system 64 and a processing system 68, e.g. a surface processing system. By way of example, the processing system 68 may be in the form of a computer-based system at one or more surface locations.
The overall telemetry system 66 may be a wired system or a wireless system able to communicate data over a suitable communication line 70, e.g. a wired or wireless communication line. In some embodiments, the communication system 64 and the overall telemetry system 66 are in the form of a wireless system which communicates data collected from sensors 38 to an uphole location, e.g. surface based computer processing system 68. An example of a suitable wireless communication system 64 and overall telemetry system 66 is the commercially available MUZICâ„¢ system marketed by Schlumberger Corporation. Another example of a suitable wireless communication system 64 and overall telemetry system 66 is described in published International Application No.: PCT/US2015/063377.
As described above, the sensor system 36 may comprise a variety of types of sensors 38. In some embodiments, the sensors 38 are combined with corresponding electronics 72. The electronics 72 may include or be coupled with a suitable power source, e.g. batteries, for powering the sensors 38 and for communicating with communication system 64. Depending on the parameters of a given application, the electronics 72 may have suitable transmitters or transceivers for communicating wirelessly with communication system 64.
In some embodiments, the sensors 38 are in the form of gauges, e.g. strain gauges, and data 74 obtained by the sensors 38 is communicated to the downhole communication system 64. By way of example, the sensors 38 may be in the form of strain gauges which are pressed between the exterior of expandable portion 48 and the interior of the surrounding casing 28 (or other tubing) when expandable portion 48 is expanded to form the metal-to-metal seal 60. In this application, the sensors/strain gauges 38 are able to provide data 74, e.g. strain data, from proximate the metal-to-metal seal 60. By way of example, the data 74 may comprise strain data indicating the seal 60 has been properly strained and remains healthy or that the seal 60 has been compromised.
According to some embodiments, the communication system 64 is in the form of a wireless communication system used to collect and transmit data 74 related to installation of the expandable tubular member 22. By way of example, the sensors 38 may provide data 74 indicating the expandable tubular member 22 has been satisfactorily expanded and/or that the expansion tool is operating within or outside of operational parameters. For example, after expansion of expandable portion 48 (see
In some embodiments, strain gauges 38 may be placed along the outside diameter of the expandable tubular member 22 and at various other positions around the circumference and along the axial length of the expandable tubular member 22. By monitoring the output of these gauges 38, an operator may determine when the desired deformation of expandable portion 48 has occurred to establish the metal-to-metal seal (which may be referred to as an auto-frettaged joint). In a specific example, a material strain target, e.g. 0.2-X percent strain, is established as an indicator that the desired metal-to-metal seal at the joint has been established and that the expansion tool 32 may be released and retrieved.
Subsequently, a monitoring system 76 may be used to continue monitoring a characteristic or characteristics related to the metal-to-metal seal or other downhole components as illustrated in
If the sensor system 36 comprises strain gauges 38, the RFID receiver 78 may be used to query the strain gauges 38 to obtain residual strain data measured by the strain gauges 38. In some embodiments, the receiver 78 may be deployed via wireline to a region proximate sensors/strain gauges 38. Once the receiver 78 has captured the desired sensor data 74, the receiver 78 may be retrieved to the surface where the data may be downloaded and processed via, for example, surface processing system 68. The data 74 may be processed to obtain an indication of the system health, e.g. an indication of the integrity of metal-to-metal seal 60. In some operations, the receiver 78 may be constructed to remain downhole and to transmit data to the surface.
Referring generally to
In various applications, the expansion of expandable portion 48 is performed under sufficient force to form the metal-to-metal seal 60 between the tubular member 22 and the surrounding tubing 24. With the aid of sensor system 36, telemetry system 66, and monitoring system 76, the health of the tubular joining system 20, e.g. the health of the metal-to-metal seal 60, may be monitored during installation and/or as a separate operation following installation of the expandable tubular member 22, as indicated by block 88.
Depending on the parameters of a given operation, the components and configurations of the expandable tubular member 22 and the surrounding tubing 24 may vary. If the expandable tubular member 22 comprises expandable liner hanger 26, the size of the liner hanger, the types of liners coupled with the liner hanger, and other parameters of the liner hanger may be selected according to the specifics of a given operation and borehole environment. Similarly, the sensor system 36 may comprise different numbers of sensors and different types of sensors to facilitate monitoring of desired characteristics, e.g. seal integrity and/or other characteristics. Additionally, the expansion tool 32 may comprise various types of fluid passages, locking mechanisms, seals, and/or other features and components. The seals 42, 44, 46 may comprise various types of annular seals, e.g. O-ring seals, disposed about a body of the expansion tool 32.
Although a few embodiments of the system and methodology have been described in detail above, those of ordinary skill in the art will readily appreciate that many modifications are possible without materially departing from the teachings of this disclosure. Accordingly, such modifications are intended to be included within the scope of this disclosure as defined in the claims.
The present document is based on and claims priority to U.S. Provisional Application Ser. No. 62/340289, filed May 23, 2016, which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62340289 | May 2016 | US |