Gravel packs are used in wells for removing particulates from inflowing hydrocarbon fluids. In a variety of applications gravel packing is performed in long horizontal wells by pumping slurry comprising gravel suspended in a carrier fluid down the annulus between the wellbore wall and screen assemblies. The slurry is then dehydrated by returning the carrier fluid to the surface after depositing the gravel in the wellbore annulus. To return to the surface, the carrier fluid flows inwardly through the screen assemblies and into a production tubing which routes the returning carrier fluid back to the surface. In some applications, inflow control devices have been combined with the screen assemblies to provide control over the inflow of production fluids.
Sometimes the inflow control devices may be combined with alternate path type screen assemblies which utilize shunt tubes for transporting slurry. For example, the slurry may be moved through shunt tubes once bridging has occurred in the annulus surrounding the screen assemblies. The slurry flows through the shunt tubes and exits through nozzles to enable bypassing of the bridging and to enhance gravel packing of the annulus. When inflow control devices are utilized, however, the complexity of the dehydration process is increased because return flow of the carrier fluid through the inflow control devices may be insufficient to obtain reasonable pumping times for gravel packing an entire production zone.
In general, a system and methodology are provided for facilitating formation of a gravel pack in a wellbore. Gravel slurry is delivered downhole to a desired gravel packing zone located along an annulus surrounding a gravel packing completion. Dehydration of the gravel pack is facilitated by providing a return flow path for a carrier fluid along drainage layers of adjacent screen assemblies. The drainage layers of adjacent screen assemblies are coupled by drainage layer shunt tubes which bypass corresponding couplings between the adjacent screen assemblies. In some embodiments, the drainage layer shunt tubes facilitate delivery of the returning carrier fluid to a sliding sleeve assembly.
However, many modifications are possible without materially departing from the teachings of this disclosure. Accordingly, such modifications are intended to be included within the scope of this disclosure as defined in the claims.
Certain embodiments of the disclosure will hereafter be described with reference to the accompanying drawings, wherein like reference numerals denote like elements. It should be understood, however, that the accompanying figures illustrate the various implementations described herein and are not meant to limit the scope of various technologies described herein, and:
In the following description, numerous details are set forth to provide an understanding of some embodiments of the present disclosure. However, it will be understood by those of ordinary skill in the art that the system and/or methodology may be practiced without these details and that numerous variations or modifications from the described embodiments may be possible.
The disclosure herein generally involves a system and methodology which facilitate formation of gravel packs in wellbores. A gravel packing system is constructed so that gravel slurry is delivered downhole to form a gravel pack in a wellbore. The gravel slurry is delivered to a desired gravel packing zone located along an annulus surrounding a gravel packing completion. Once placed in the desired gravel packing zone, the gravel pack is dehydrated through removal of a carrier fluid from the gravel used to form the gravel slurry.
Dehydration of the gravel pack is facilitated by providing a return flow path for the carrier fluid which improves the flow rate of the carrier fluid flowing from the gravel pack region to an interior of the gravel packing completion for return to the surface. As described in greater detail below, the return flow path allows the carrier fluid to flow along drainage layers of adjacent screen assemblies. The drainage layers of the adjacent screen assemblies are coupled by drainage layer shunt tubes which bypass corresponding couplings between the adjacent screen assemblies. The drainage layer shunt tubes improve the flow rate of returning carrier fluid, particularly in embodiments utilizing screen assemblies with solid base pipes combined with a flow control devices. In some embodiments, the drainage layer shunt tubes facilitate delivery of the returning carrier fluid to a sliding sleeve assembly.
The drainage layer shunt tubes and overall improved drainage system may be constructed in various embodiments for use in several different applications in which it is useful to connect drainage layers of sequential sections of a gravel packing completion. For example, one or more drainage layer shunt tubes may be employed between sequential sections of gravel packing multistage completions and/or in gravel packing completions using alternate path screen assembly sections having inflow control devices. The drainage layer shunt tubes may be used to couple sequential drainage layers without the use of specialized couplings between base pipes.
According to an embodiment, a drainage layer shunt tube is used to transport returning carrier fluid from a drainage layer of one screen assembly section to the drainage layer of another screen assembly section (and/or to another completion section). The returning carrier fluid is the fluid flowing from the gravel slurry as the gravel pack is dehydrated. The returning carrier fluid passes inwardly through filter screens of the screen assembly sections. The drainage layer shunt tube may be in the form of a single tube or a plurality of tubes extending between adjacent drainage layers. Use of drainage layer shunt tubes to connect adjacent drainage layers improves the rate of flow with respect to the returning carrier fluid and also provides for reduced complexity on the rig floor. Drainage layer shunt tubes are easily connected and provide an economical and time efficient methodology for connecting drainage layers, e.g. sequential drainage layers along a gravel packing completion.
In alternate path applications, shunt tubes and packing tubes are used for transporting and delivering gravel slurry to a desired well zones even when bridging occurs along the annulus. Some alternate path applications utilize screen assemblies with solid walled base pipes combined with inflow control devices. When using inflow control devices alone for return flow of carrier fluid, the flow rate of the returning carrier fluid may be undesirably low. The drainage layer shunt tubes, however, may be connected to the drainage layers of adjoining screen assemblies to improve the flow rate. In some embodiments, a drainage layer shunt tube also may be connected to an opening/port in a sliding sleeve assembly to facilitate rapid flow of the returning carrier fluid into an interior of the gravel packing completion for return to a surface collection location.
Referring generally to
Referring generally to
In the embodiment illustrated in
Adjacent screen assembly sections 30 are joined by couplings 54. For example, each coupling 54 may be used to connect sequential, adjacent base pipes 42. Additionally, a drainage layer shunt tube system 56 may be used to connect drainage layers 46 of at least some of the adjacent screen assembly sections 30. By way of example, the drainage layer shunt tube system 56 may comprise drainage layer shunt tubes 58 with at least one tube 58 coupled between selected pairs of adjacent screen assembly sections 30. Each shunt tube 58 may be arranged to extend from a drainage layer 46 of one screen assembly section 30 to the drainage layer 46 of the next adjacent screen assembly section 30 independently of coupling 54. In some embodiments, the shunt tube 58 is disposed externally of the corresponding coupling 54 and extends past the corresponding coupling 54 at a position radially outward of the coupling 54. One or more shunt tubes 58 may be used to bypass each corresponding coupling 54 between adjacent screen assembly sections 30, as illustrated.
With additional reference to
In this example, each drainage layer shunt tube 58 is connected between sequential drainage layers 46 via engagement with end rings 60 of adjacent screen assembly sections 30, as illustrated in
The shunt tube system 56 and the individual shunt tubes 58 provide a useful, inexpensive structure for connecting drainage layers 46 to enable flow communication of, for example, returning carrier fluid to enhance dehydration of the gravel pack. The drainage layer shunt tube (or tubes) 58 extending between each pair of adjacent screen assembly sections 30 provide a system which is readily assembled while on rig floor 32 and as the gravel packing completion 24 is assembled and deployed downhole into wellbore 22.
The drainage layer shunt tubes 58 are particularly useful in gravel packing completions 24 which utilize alternate path technology. The drainage layer shunt tubes 58 are readily combined with alternate path type screen assembly sections 30. In
Referring again to
The slurry shunt tubes 72 and packing tubes 74 may be mounted to the screen assembly sections 30 via a variety of mounting structures 76. One embodiment of such a mounting structure 76 is a plurality of shunt rings 78 mounted along the exterior of the gravel packing completion 24. By way of example, the shunt rings 78 may be mounted around filter screens 44, end rings 60, couplings 54, and/or at other suitable locations along the gravel packing completion 24 to provide support for the slurry shunt tubes 72 and packing tubes 74.
Depending on the application and environment, the various features of drainage layer shunt tube system 56 and overall gravel packing completion 24 may be changed or modified. For example, the drainage layer shunt tubes 58 may be slotted or otherwise perforated to keep out sand while facilitating dehydration of the gravel pack 36 in regions where there are no filter screens 44. The drainage layer shunt tubes 58 also may incorporate other types of filters to facilitate dehydration in regions between filter screens 44 while also providing a flow path into tubes 58 between sequential drainage layers 46.
Additionally, the size and shape of the drainage layer shunt tubes 58 may be selected according to the parameters of a given operation. For example, the drainage layer shunt tubes 58 may have cross-sections which are round, square, rectangular, or another suitable shape. Additionally, the flow area as well as the wall thickness may be selected according to the parameters of a specific application or applications. The shape of elbow sections 64 also may vary. For example, the elbow sections 64 may be formed with 90° angles, 45° angles, or with other suitable angles to appropriately position straight tube section 66.
Referring generally to
As illustrated in
The sliding sleeve assembly 80 further comprises a closure system 86 which may be selectively actuated to open or close opening 84 with respect to fluid flow through opening 84. By way of example, closure system 86 may comprise a sliding sleeve 88 slidably mounted within housing 82. As illustrated, the sliding sleeve 88 may be sealed with respect to an interior surface of housing 82 via a plurality of seals 90. The closure system 86, e.g. sliding sleeve 88, is selectively shiftable to an open port position, as illustrated, which allows carrier fluid resulting from dehydrating of the gravel slurry to flow into the interior 52 of the gravel packing completion 24.
Upon completion of the gravel packing operation, the closure system 86, e.g. sliding sleeve 88, may be shifted past opening 84 to a closed port position which blocks further flow through opening 84. The opening 84 may be closed off during, for example, production operations in which well fluid flows into interior 52 via inflow control devices 48 for production to a surface collection location.
The closure system 86 may be actuated via a variety of mechanisms. If sliding sleeve 88 is utilized, for example, a shifting tool may be run downhole through the interior of gravel packing completion 24 to engage and shift the sliding sleeve 88 between the open port and closed port positions. The shifting tool may be run on a work string, wireline, coiled tubing, drill pipe, or other suitable conveyance. In some applications, however, a downhole actuator 92 may be coupled with sliding sleeve 88 to shift the sliding sleeve between the open port and closed port positions. By way of example, the downhole actuator 92 may be an electromechanical actuator or a hydraulic actuator coupled to a surface control by, for example, communication lines 94. However, downhole actuator 92 also may be constructed to enable wireless control.
In some applications, returning carrier fluid is filtered prior to entry into interior 52 through opening 84. By way of example, a filter 96 may be located upstream of opening 84 to filter the inflowing carrier fluid. In the specific example illustrated, the filter 96 is located within outer housing 86 and externally of housing 82 proximate opening/ports 84.
Depending on the operation, the sliding sleeve assembly 80 may be coupled into gravel packing completion 24 at a variety of selected locations. For example, the sliding sleeve assembly may be connected to accept flow of returning carrier fluid from a downhole location or from both downhole and uphole locations. The sliding sleeve assembly 80 also may be utilized with alternate path systems comprising, for example, slurry shunt tubes 72 and packing tubes 74.
Many types of materials, components, and component configurations may be used in constructing the gravel packing system described herein. For example, the filter screens may be made from a variety of woven and nonwoven materials in various patterns and arrangements. Similarly, the drainage layer shunt tubes may be made in various shapes, sizes and configurations. Additionally, the drainage layer shunt tubes may be made from solid walled tubes or from tubes having porous sections comprising meshes, screens, porous materials, and/or other suitable materials. The gravel packing system also may comprise different numbers of drainage layer shunt tubes, base pipes, filter screens, couplings, slurry shunt tubes, packing tubes, and/or other components and features to facilitate gravel packing of a desired well zone or zones.
Although a few embodiments of the disclosure have been described in detail above, those of ordinary skill in the art will readily appreciate that many modifications are possible without materially departing from the teachings of this disclosure. Accordingly, such modifications are intended to be included within the scope of this disclosure as defined in the claims.
Number | Name | Date | Kind |
---|---|---|---|
5341880 | Thorstensen | Aug 1994 | A |
20030029614 | Michel | Feb 2003 | A1 |
20080142227 | Yeh | Jun 2008 | A1 |
20100051262 | Dusterhoft | Mar 2010 | A1 |
Number | Date | Country | |
---|---|---|---|
20170342809 A1 | Nov 2017 | US |