Hydrocarbon fluids such as oil and natural gas are obtained from a subterranean geologic formation, referred to as a reservoir, by drilling a well that penetrates the hydrocarbon-bearing formation. Once a wellbore is drilled, various forms of casing and other well completions may be deployed downhole. Sometimes, completion systems employ or work in cooperation with an electric submersible pumping system which may be used to pump oil or other hydrocarbon fluids to a collection location. In some environments, the fluids may be of relatively high viscosity and can thus inhibit pumping of the fluid via the electric submersible pumping system.
In general, a system and methodology are provided for facilitating various well operations by delivering a diluent to a desired location in a borehole. For example, a completion system may be disposed in the borehole and a diluent flow path is routed along an interior of the completion system to a desired location. In some applications, the diluent is delivered to an artificial lift system, e.g. an electric submersible pumping system, to dilute a fluid being produced. A flow control unit is positioned along the diluent flow path and may be selectively actuated to control flow of the diluent to the desired location.
However, many modifications are possible without materially departing from the teachings of this disclosure. Accordingly, such modifications are intended to be included within the scope of this disclosure as defined in the claims.
Certain embodiments of the disclosure will hereafter be described with reference to the accompanying drawings, wherein like reference numerals denote like elements. It should be understood, however, that the accompanying figures illustrate the various implementations described herein and are not meant to limit the scope of various technologies described herein, and:
In the following description, numerous details are set forth to provide an understanding of some embodiments of the present disclosure. However, it will be understood by those of ordinary skill in the art that the system and/or methodology may be practiced without these details and that numerous variations or modifications from the described embodiments may be possible.
The disclosure herein generally involves a system and methodology which facilitate various well operations by delivering a diluent to a desired location in a borehole. For example, the diluent may be delivered downhole to mix with a production fluid prior to pumping the production fluid to a collection location. The diluent can help reduce the viscosity of the production fluid (or other well fluid) to facilitate pumping of the fluid to the desired collection location. However, the diluent may comprise various types of substances selected to change other characteristics of the well fluid which is then pumped or otherwise moved to the collection location.
In an embodiment, a completion system may be disposed in a borehole, e.g. a wellbore. In this example, a diluent tubing is used to create a diluent flow path routed along an interior of the completion system to a desired location. In some applications, the diluent is delivered to an artificial lift system, e.g. an electric submersible pumping system, to dilute a fluid being produced or otherwise moved to a collection location. A flow control unit is positioned along the diluent flow path and may be selectively actuated to control flow of the diluent to the desired location, e.g. a downhole mixing location. By mixing the diluent with the well fluid, the characteristics of the well fluid are changed to facilitate pumping of the well fluid and/or to facilitate other operations related to the well fluid.
Referring generally to
In the specific example illustrated, well system 20 may comprise a wellbore casing 36 having, for example, a primary casing 38 and a liner 40 suspended from the primary casing 38. In this example, a lower completion 42 is run downhole into the borehole 22 and suspended within liner 40. In some applications, the lower completion 42 may be run downhole via a surface rig.
Depending on the specific well application, the lower completion 42 and the overall well system 20 may comprise a wide variety of components and systems. By way of example, lower completion 42 may comprise a sand control packer 44, a sand screen or a plurality of sand screens 46, and zonal isolation packers 48. In production applications, well fluid, e.g. oil, flows from a surrounding formation 50 and into the lower completion 42 through sand screens 46.
In the example illustrated, an upper completion 52 is engaged with lower completion 42. The upper completion 52 may be run downhole simultaneously with lower completion 42; or the upper completion 52 may be run downhole in a subsequent operation for engagement with the pre-positioned lower completion 42. The upper completion 52 also may comprise a variety of components and systems depending on the parameters of a given well operation. By way of example, the upper completion 52 may comprise a tubing 54, e.g. production tubing through which the well fluid entering via sand screens 46 may be produced to a surface location or other suitable location. Additionally, the upper completion 52 may comprise a variety of valves, such as inflow control valves 56, chemical injection valves 58, ball valves 60, safety valves 62, an/or other types of valves. Examples of other components of upper completion 52 comprise a production packer 64 which may be sealed against casing 36, e.g. against an internal surface of liner 40. The upper completion 52 also may comprise a seal assembly and/or sand control packer 66. However, various other and/or additional components and systems may be used by one or both of the lower completion 42 and upper completion 52.
In the embodiment of
The diluent delivery system 24 also may comprise a variety of components and configurations. In the example illustrated, the diluent delivery system 24 comprises a diluent tubing 84 which establishes a diluent flow path appropriately routed to deliver diluent 26 to the artificial lift system 32, e.g. to the electric submersible pumping system 68. The diluent flow path is separate from the well fluid flow path along which the mixture 34 of well fluid 30 and diluent 26 travels to the desired collection location. By way of example, the diluent tubing 84 may be disposed within tubing 54 such that the diluent tubing 84 extends to a surface location along the interior of tubing 54. In some applications, the diluent tubing 84 may be in the form of a conveyance coupled to the artificial lift system 32, thus allowing the diluent tubing 84 to be used for delivering the artificial lift system 32 downhole to the desired location within tubing 54. In the illustrated example, the diluent flow path also is routed along a packer pass through 86 which allows the diluent to flow through the packer 82 to the desired location 28.
The diluent delivery system 24 further comprises a flow control unit 88 positioned along the diluent flow path, e.g. along diluent tubing 84. The flow control unit 88 is operable to control the flow of diluent 26. For example, the flow control unit 88 may be actuated to selectively allow or prevent flow of diluent 26 along the diluent flow path. In some applications, the flow control unit 88 may be selectively actuated via application of a sufficient pressure differential to the flow control unit 88.
Referring generally to
The spring-loaded seal element/cup packer 96 is oriented to block flow in the direction of arrows 102 when, for example, the pumping of diluent 26 from a surface location is stopped (see
Once the pressure (P1) is sufficiently greater than the pressure (P2), the spring-loaded seal element 96 is forced to the open flow position. The spring-loaded seal element 96 may be constructed to transition to the open flow position upon exposure to a sufficient pressure differential (P1-P2). In other words, when the pressure differential (P1-P2) is greater than a predetermined set point, the flow control unit 88 is actuated to an open flow position to allow flow of diluent 26 to the desired location 28. The set point may vary depending on the parameters of a given application. In some embodiments, the set point may be in the range of 250-1000 psi or in a narrower range such as 450-550 psi. However, other applications may utilize other pressure differentials/set points for actuation of the flow control unit 88 between operational positions.
Referring generally to
In this embodiment, mounting structure 90 comprises an internal cavity 114 which contains a pressurized fluid 116 used to inflate sealing element 108 through a port 117. The internal cavity 114 may be closed to contain the pressurized fluid 116, or the pressurized fluid 116 may be supplied via a suitable control line or other source of supply. Consequently, the actuation of flow control unit 88 is affected by pressure (P1) on one side, pressure (P3) on the opposite side, and pressure (P2) within internal cavity 114 and inside sealing element 108.
Once the pressure (P1) is sufficiently greater than the pressure (P3), the sealing element 108 is forced inwardly to the open flow position by spreading the base members 110, as illustrated in
Referring generally to
In the embodiment illustrated in
Once the pressure (P1) is sufficiently greater than the pressure (P2), the sealing element 120 is forced inwardly to the open flow position by shifting the slidable end 122, as illustrated in
Referring generally to
In this embodiment, spring 138 biases ball valve operator 130 and ball valve 126 to the closed position when the artificial lift system 32, e.g. electric submersible pumping system 68, is off. When the electric submersible pumping system 68 is turned on and operated, the fluid discharged into tubing 54 via discharge 78 establishes a discharge pressure (Pd) which acts on piston 134 via a port 144 extending through the ball valve housing 128. The port 144 is positioned on a side of piston 134 opposite spring 138 so as to operate against the spring.
In the embodiment illustrated, another port 146 is located through ball valve housing 128 on an opposite side of piston 134. The port 146 is exposed to an electric submersible pumping system intake pressure (Pi) via a passageway 148, e.g. tubing, routed to an intake side of the packer 82. Thus, one side of piston 134 is exposed to a reduced intake pressure (Pi) and the other side of the piston 134 is exposed to an increased discharge pressure (Pd) when the electric submersible pumping system 68 is operated. When the pressure differential (Pd-Pi) reaches a predetermined or set level, the force exerted by spring 138 is overcome and piston 134 is shifted. The shifting of piston 134 moves ball valve operator 130 in a direction which actuates the ball valve 126 to an open flow position, as illustrated in
When in the open position, the diluent 26 flows along the diluent flow path to the desired location 28. In this specific example, the diluent 26 flows down through diluent tubing 84, through ball valve 126, through packer 82 via packer pass through passages 86, and then to the desired location 28 at the intake of electric submersible pumping system 68. If the electric submersible pumping system 68 is shut off, then Pd equals Pi and spring 138 once again shuts the ball valve 126 to block flow of diluent 26.
Depending on the application, the diluent delivery system 24 may have a variety of configurations. In embodiments described herein, the diluent delivery system 24 may be operated with no control line from the surface. Embodiments of diluent delivery system 24 also prevent uncontrolled flow of diluent injection by effectively providing check valve functionality. In other words, no diluent 26 is discharged from the diluent tubing 84 when the surface system is not pumping diluent 26. However, when the surface system is pumping diluent 26 downhole to the desired location 28, the system is able to provide a back pressure which prevents sucking of the diluent 26 into the formation 50 or into the electric submersible pumping system 68 if not desired. A variety of diluent surface systems may be used to provide a desired flow rate of the diluent 26 with an appropriately limited surface supply pressure.
Similarly, the overall well system 20 may have a variety of components and configurations. For example, the lower completion 42 and the upper completion 52 may have many types of components, sizes, and/or configurations. In some applications, the lower completion and upper completion may be combined into a single completion conveyed downhole as a single unit. In other applications, additional completions may be used to perform a desired well operation. The diluent delivery system may be used in production operations and in other well servicing operations, e.g. injection operations. Additionally, artificial lift systems other than electric submersible pumping systems may be used in some applications. The type of diluent and the flow path for delivering diluent to the desired location in a given borehole also may be selected or changed according to the parameters of a given application.
Although a few embodiments of the disclosure have been described in detail above, those of ordinary skill in the art will readily appreciate that many modifications are possible without materially departing from the teachings of this disclosure. Accordingly, such modifications are intended to be included within the scope of this disclosure as defined in the claims.
The present document is based on and claims priority to U.S. Provisional Application Ser. No. 61/901762 filed Nov. 8, 2013, which is incorporated herein by reference in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2014/064457 | 11/7/2014 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
61901762 | Nov 2013 | US |