Hydrocarbon fluids such as oil and natural gas are obtained from a subterranean geologic formation, referred to as a reservoir, by drilling a well that penetrates the hydrocarbon-bearing formation. Once a wellbore is drilled, various forms of casing and other well completions may be deployed downhole. Sometimes, completion systems employ or work in cooperation with an electric submersible pumping system which may be used to pump oil or other hydrocarbon fluids to a collection location.
In producing hydrocarbons or the like from certain subterranean formations, it is common to produce large volumes of particulate material (e.g., sand) along with the formation fluids, especially when the formation has been fractured to improve flow therefrom. This sand production must be controlled, otherwise it may impact the economic life of the well.
A tubular joint installable on a tubular string disposable within a wellbore according to one or more embodiments of the present disclosure includes a perforated section, a filter section, and a packer. The perforated section is proximate a first end and includes a first plurality of orifices to allow fluid communication between a bore of the tubular joint and a first area surrounding the tubular joint proximate the perforated section. The filter section is proximate a second end and includes a filter assembly sized to filter fluid flowing into the bore via a second plurality of orifices from a second area proximate the filter section. The packer is disposed between the perforated section and the filter section and operable to isolate the first area from the second area when the tubular string is disposed within the well.
A production system disposable within a wellbore according to one or more embodiments of the present disclosure includes a tubular string disposable within the wellbore and a tubular joint coupled to the tubular string. The tubular joint includes a perforated section, a filter section, and a packer. The perforated section is proximate a first end and includes a first plurality of orifices to allow fluid communication between a bore of the tubular joint and a first area surrounding the tubular joint proximate the perforated section. The filter section is proximate a second end and includes a filter assembly sized to filter fluid flowing into the bore via a second plurality of orifices from a second area proximate the filter section. The packer is disposed between the perforated section and the filter section and operable to isolate the first area from the second area when the tubular string is disposed within the well.
A method for producing formation fluids from a formation according to one or more embodiments of the present disclosure includes positioning a tubular string comprising a tubular joint within a wellbore extending through the formation. The method also includes filtering a fluid flowing from a first annulus surrounding a filter section of the tubular joint into the tubular joint via a filter assembly of the tubular joint. The method further includes isolating the first annulus surrounding a second annulus surrounding a perforated section of the tubular joint via a packer of the tubular joint. The method also includes flowing the filtered fluid entering the tubular joint into the second annulus via orifices in the filter section of the tubular joint.
However, many modifications are possible without materially departing from the teachings of this disclosure. Accordingly, such modifications are intended to be included within the scope of this disclosure as defined in the claims.
Certain embodiments of the disclosure will hereafter be described with reference to the accompanying drawings, wherein like reference numerals denote like elements. It should be understood, however, that the accompanying figures illustrate the various implementations described herein and are not meant to limit the scope of various described technologies. The drawings are as follows:
In the following description, numerous details are set forth to provide an understanding of some embodiments of the present disclosure. However, it will be understood by those of ordinary skill in the art that that embodiments of the present disclosure may be practiced without these details and that numerous variations or modifications from the described embodiments may be possible.
In the specification and appended claims: the terms “connect,” “connection,” “connected,” “in connection with,” “connecting,” “couple,” “coupled,” “coupled with,” and “coupling” are used to mean “in direct connection with” or “in connection with via another element.” As used herein, the terms “up” and “down,” “upper” and “lower,” “upwardly” and “downwardly,” “upstream” and “downstream,” “uphole” and “downhole,” “above” and “below,” and other like terms indicating relative positions above or below a given point or element are used in this description to more clearly describe some embodiments of the disclosure.
Referring now to
The downhole well completion 110 may be constructed to facilitate production of well fluids and/or injection of fluids. By way of example, the downhole well completion 110 may comprise at least one tubular joint 112, e.g. a plurality of tubular joints 112. Each tubular joint 112 may include a shroud that cover a screen filter, as described in more detail below, through which fluid may enter the corresponding tubular joint 112. The fluid may then be pumped uphole via electric submersible pumps (“ESPs”) for production to a suitable location, e.g. a surface location. For example, hydrocarbon well fluids may flow from formation 106, into wellbore 102, and into the tubular joints 112. The hydrocarbon well fluids may then flow from the tubular joints 112 to the ESPs 114. In some embodiments, the downhole well completion 110 also may include one or more packers 116, which may be used to isolate sections or zones 118 along the wellbore 102.
Turning now to
The packer 208 of the tubular joint 212 may be a cup seal packer, for example, according to one or more embodiments of the present disclosure. With this configuration, the packer 208 isolates a producing zone adjacent the filter section 200 so that flow is forced through the filter section 200 for enhanced sand control. That is, in operation, the flow comes from the reservoir, flows into the filter section 200, and flows into the bore of the tubular joint 212.
As shown in
As further shown in
In either case, any threading of the tubular joint 212 is located at the upper and lower ends 206, 202 of the tubular joint 212, instead of in between one or more of the perforated section 204, the packer 208, and the filter section 200, for example. Therefore, the tubular joint 212 eliminates the need to make up the sand screen joint to the packer joint and then to the perforated pup joint, for example. Moreover, by eliminating separate joints (i.e., multiple tubing/mandrels that have to be screwed together), the tubular joint 212 eliminates undesirable leak paths at threaded connections between one or more of the perforated section 204, the packer 208, and the filter section 200, and reduces the costs and time that would otherwise between required to assemble these sections together.
Turning now to
As used herein, a range that includes the term between is intended to include the upper and lower limits of the range; e.g., between 50 and 150 includes both 50 and 150. Additionally, the term “approximately” includes all values within 5% of the target value; e.g., approximately 100 includes all values from 95 to 105, including 95 and 105. Further, approximately between includes all values within 5% of the target value for both the upper and lower limits; e.g., approximately between 50 and 150 includes all values from 47.5 to 157.5, including 47.5 and 157.5.
Although a few embodiments of the disclosure have been described in detail above, those of ordinary skill in the art will readily appreciate that many modifications are possible without materially departing from the teachings of this disclosure. Accordingly, such modifications are intended to be included within the scope of this disclosure as defined in the claims.
This application claims priority to and the benefit of U.S. Provisional Application No. 63/196800, filed Jun. 4, 2021, which is incorporated by reference herein in its entirety for all purposes.
Number | Date | Country | |
---|---|---|---|
63196800 | Jun 2021 | US |