The present invention relates to a computerized training and learning system. More particularly the present invention relates to a system and methods for automated interactive learning.
The prior art is replete with computerized or computer implemented training systems. Training systems typically include methods involving training related queries and answer generation. Training takes place in a virtual environment created by a programmed computer system. Known training systems provide trainees with classroom lessons and computer-based training (CBT) typically delivered by a computer or by a human instructor. This is typically followed by an after-action review that is provided trainees from which the effectiveness of training on the trainees can be judged and determined. If an assessment is not determined to be positive for a trainee (having been effectively trained by the course of instruction), the computer system either repeats the instruction process for the trainee, or it initiates a remedial process to bring the trainee up to an effective level of understanding. This, a rigid sequential process is repeated for all trainees who follow the identical sequence of instruction until the assessment indicates an adequate effectiveness of the training provided by such systems.
Intelligent tutoring systems are currently being developed. A major advantage of these systems (and also relevant to this work) is that the tutoring systems can create a worked-out solution with detailed explanations for any problem entered by a student or a teacher from any type of source, whether it be a textbook, a software program, or any randomly entered external problem.
A number of different types of devices and methods for tutoring and interaction of students and tutors are exemplified in the prior art. For example, prior art document U.S. Pat. No. 6,606,479B2 discloses a system and method for interactive, adaptive, and individualized computer-assisted instruction. The described invention includes an agent for each student which adapts to each student, and provides individualized guidance to each student and provides controls to the augmented computer assisted instructional materials. The instructional materials of the described invention are augmented to communicate a student's performance and the material's pedagogical characteristics to an agent, and to receive control from an agent. In a preferred embodiment, the agent maintains data reflecting the student's pedagogic or cognitive characteristics in a protected and portable media in the personal control of the student. Preferably, the content of the communication between the agent and the materials conforms to specified interface standards so that the agent acts independently of the content of the particular materials. Also preferably, the agent can project using various I/O modalities and integrated engaging lifelike displays resembling a real person.
Another prior art example is described in EP2087233 which discloses a system of computers on a wide area network that establishes connections between nodes on the basis of their multidimensional similarity at a particular point in time in a certain setting, such as a social learning network, and that sends relevant information to the nodes. Dimensions in the definition of similarity include a plurality of attributes in time and community space. Examples of such dimensions and attributes may include a position in a learning community's project cycle, titles of readings and projects, genre or subject matter under consideration, age, grade, or skill level of the participants, and language. Each of the network's nodes is represented as a vector of attributes and is searched efficiently and adaptively through a variety of multidimensional data structures and mechanisms. The system includes synchronization that can transform a participant's time attributes on the network and coordinate the activities and information of each participant.
U.S. Pat. No. 9,786,193B2 discloses a system and method for training a student employing a simulation station that displays output to the student and receives input from the student. The computer system includes a rules engine operating thereon and computer accessible data storage storing learning object data including learning objects configured to provide interaction with the student at the simulation system. The system further includes rule data defining a plurality of rules accessed by the rules engine. The rules data includes, for each rule, respective “if-portion” data defining a condition of data and “then-portion” data defining an action to be performed by the simulation station. The rules engine causes the computer system to perform the action when the condition of data is present in the data storage. For at least some of the rules, the action comprises outputting one of the learning objects so as to interact with the student. The system may be networked with middleware and adapters that map data received over the network to a rules engine memory.
US20090286218A1 discloses a computer for grading student work on a problem when a student's steps are shown in detail. A reference trace is created representing a best solution path to the problem. A student trace of the student's work is then created, which involves explicitly searching for a specific rationale for appending a step to the student trace; deeming the step a correct production provided the step was able to be reproduced and marking the step as traced; provisionally accepting the step as part of a best solution path subject to update and revocation if a better quality step is later found by a step conflict check; implicitly tracing the student's work to determine implicitly taken mental steps provided the explicit tracing failed to justify the step; appending any remaining untraced steps to the student trace and excluding them from the best solution path; computing a value of the steps in the student's work to produce a student value; and, comparing the student value to a total value of the steps in the reference trace to obtain a score.
US20090286218A1 discloses a system that provides a goal-based learning system utilizing a rule-based expert training system to provide a cognitive educational experience. The system provides the user with a simulated environment that presents a business opportunity to understand and solve optimally. Mistakes are noted and remedial educational material presented dynamically to build the necessary skills that a user requires for success in a business endeavor. The system utilizes an artificial intelligence engine driving individualized and dynamic feedback with synchronized video and graphics used to simulate real-world environments and real-world interactions. Multiple “correct” answers are integrated into the learning system to allow individualized learning experiences in which navigation through the system is at a pace controlled by a learner. A robust business model provides support for realistic activities and allows a user to experience real-world consequences for their actions and decisions and entails real-time decision making and synthesis of the educational material. A dynamic feedback system is utilized that narrowly tailors feedback and focuses it based on the performance and characteristics of the student to assist the student in reaching a predefined goal.
The above described references and many other similar references have one or more of the following shortcomings: (a) the costs associated with these systems are high; (b) the tools used by the know systems are complex; (c) the Query-response mechanisms are not in real-time; (d) they systems do not provide human behavioral artificial tutors, that is, tutors that approximately mimic human beings. The previous solutions can be perceived to be sophisticated and extremely difficult to implement because of the complexity of the overall training system.
The present disclosure is related to use of systems and methods for automated interactive learning which provides an advanced training system for new generations of students.
The present invention relates to systems and methods for automated interactive learning which is used for providing an interactive learning system for use by a user. The user may be a student, trainee, or anyone generating a query and/or question.
One aspect of the present invention is to provide a system and methods for automated interactive learning comprising a semantic routing model, a deep learning model (content dependent and content independent), an automated student learning needs model, a helping service model, a content priori knowledge service, a computer implemented system, and mobile objects.
Another aspect of the present invention is to provide a semantic routing model. The semantic routing model routes a user's query or queries to one or a plurality of tutors. A selected tutor may have knowledge sufficient to answer the user's query. Otherwise the semantic routing model directs the user query to a tutor having knowledge necessary to provide a solution responsive to the user's query. The semantic routing model also provides real-time interaction with the user from the tutor optionally within a fixed period/amount of time.
Yet another aspect of the present invention is to provide a deep learning model which is further comprised of a content independent conversational model and a content dependent conversational model. The content dependent conversational model is also optionally referred to herein as a content dependent question solution model. The content independent conversational model includes tutor and student dialogue annotations and tutor and student Quality analysis annotations. The content dependent conversational model includes course contents and problem-solving step annotations. The course contents includes all the material that a user or students may submit queries about.
Another aspect of the present invention is to provide an automated student learning needs model. The automated student learning needs model is also referred to herein as an interactive based conversational model. In this model, a computer implemented system mimics and/or repeats human knowledge and their intricate level of interaction to or with the user. The automated student learning model is comprised of the following steps:
i. Receiving an incoming query from a user;
ii. Directing the query of step i. to a tutor for an accurate answer and to receive human behavioral knowledge in solving the query;
iii. Finding gaps and or lapses in user understanding and providing missing information or clarifying misconceptions the user has; and
iv. Providing the same answer and behavioral experience to the user for a next same type of query.
Yet another aspect of the present invention is to provide a helping service model. The helping service model assists the user in finding an accurate solution or answer to the user's query. The helping service model is further comprised of a solution engine executer, a next topic recommender, an incoming question topic identifier, a solution methods identifier and an optionally a question topic matcher. The solution engine executer provides service that enables solving the problem raised by the user's query by executing steps that are displayed or performed in the computer implemented system. The inventive system includes a GUI (graphical user interface) that allows the user to access the computer implemented system using mobile objects. The mobile objects may, without limitation, include the following: wireless phones, laptops, PCs, smartphones, wired (i.e., so-called landline telephones), and other devices that are used to communicate from one location to another location. The next topic recommender recommends the next topic after identifying the topic presented by a query. The incoming question topic identifier identifies the topic of the question in order to match this topic with the topics presented in the hierarchy of topics in the future. The solution method identifier identifies the method/theorem that should be used in order to solve the question. This method is part of the solution. For example: “Shell Method is used to find the volume of solids of revolutions”.
Another aspect of the present invention is to provide a content priori knowledge service model. The content priori knowledge service model consists of a content taxonomy creator which converts the course content with background knowledge into a hierarchy of topics that shows dependencies among these topics. For example: in order for a user to learn topic x, the user must also learn topics y and z and the topics ontology which is created from the course content (e.g., books) and information documented by tutors about the dependencies between course topics. It also has information about the details of each topic in the content and the solution steps of these topics. The ontology can also be used for applying inference to find knowledge that has not been explicitly mentioned. The taxonomy creator is also referred to herein as topic dependencies and the topic ontology consists of topic content details and a database predefined solution.
Before describing at least one embodiment of the invention in detail, it is to be understood that the invention is not limited in its application to the details of construction and to the arrangements of the components set forth in the following description or as illustrated in the drawings. The invention is capable of other embodiments and of being practiced and carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein are for the purpose of description only and should not be construed as limiting.
These together with other objects of the invention, along with the various features of novelty which characterize the invention, are pointed out with particularity in the present disclosure. For a better understanding of the claimed invention, its operating advantages and the specific objects attained by its uses, reference should be had to the accompanying drawings and descriptive matter in which there are illustrated embodiments of the invention.
The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.
Like reference numbers and designations in the various drawings indicate like elements.
The system and methods for automated interactive learning 100 are comprised of the following steps:
i. Receiving a query from the user;
ii. Identification of topics of the step (i) query using the content priori knowledge service model 103;
iii. Identification of the prerequisite topics from the content Ontology of the topics of the query of step (ii). It also identifies the method and the solution of the question using the content priori knowledge service model 103;
iv. Recommendation of extra background on the same topic question to the user by the computer implemented system using the helping service model 102;
v. Finding the solution of the query of the user using deep learning model 103;
vi. Providing content knowledge based and conversational based dialogue to the user in response of the query using automated student learning model; and
vii. Approaching to a human tutor at any point of time in the response to the query of the user using semantic routing model 101.
Yet another embodiment of the present invention includes a deep learning model 103.
Another embodiment of the present invention includes an automated student learning needs model 106.
i. Receiving a query from a user;
ii. Directing the query of step (i) to the tutor for an accurate answer and to receive human behavioral knowledge in solving the query;
iii. Finding gaps and/or lapse in user understanding and providing the missing information or clarifying misconceptions the user has; and
iv. Providing the same answer and behavioral experience to the user for the next same type of query.
Yet another embodiment of the present invention is to provide a helping service model 102. The helping service model 102 assists the user in finding an accurate solution to the query. The helping service model 102 is further comprised of a solution engine executer, a next topic recommender, an incoming question topic identifier, a solution methods identifier and optionally a question topic matcher. The solution engine executer provides service that enables the system to solve the problem posed by the query by executing the steps that are displayed or performed in the computer implemented system. A GUI (graphical user interface) allows the user to access the computer implemented system in the mobile objects. The mobile objects can include a mobile phone, a laptop, a PC, a smartphone, a telephone, and other devices that are used to communicate information or data from one location to another location. The next topic recommender recommends the next topic after identifying the topic of the question. The incoming question topic identifier identifies the topic of the question in order to match this topic with the topics presented in the hierarchy of topics in the future. The solution method identifier identifies the method/theorem that should be used in order to solve the query. This method is part of the solution. For example: “Shell Method is used to find the volume of solids of revolutions.”
Another embodiment of the present invention is to provide a content priori knowledge service model 107 as shown in
Another embodiment of the present invention provides a data collection and an annotation model. The data collection and annotation model captures human intelligence in a structured format in order for the system to achieve deep learning from humans in order to behave the same way that humans behave when solving problems and in the conversational interactions with the user/learner. The data collection and annotation model is comprised of a human data collection model and a content base data collection model. The human data collection model captures human behavior while solving a query received from the user. The content base data collection model identifies incoming questions and/or incoming queries from the user in multiple topics and identifies the method/theorem that should be used to solve the question/query, specific content data needs to be captured and segmented. This collection method allows subject matter experts to tag content data based different levels, such as question level, pre-content level and content level. The question level is used to specify methods/theorems that the computer implemented system used to solve the problem. The pre-content level is used to specify prerequisite topics they believe are relevant to solve the problem and the content level is used to specify the steps executed to solve the problem.
It is to be understood that the above description is intended to be illustrative, and not restrictive. For example, the above-discussed embodiments may be used in combination with each other. Many other embodiments will be apparent to those of skill in the art upon reviewing the above description.
The benefits and advantages which may be provided by the present invention have been described above with regard to specific embodiments. These benefits and advantages, and any elements or limitations that may cause them to occur or to become more pronounced are not to be construed as critical, required, or essential features of any or all of the embodiments.
While the present invention has been described with reference to particular embodiments, it should be understood that the embodiments are illustrative and that the scope of the invention is not limited to these embodiments. Many variations, modifications, additions and improvements to the embodiments described above are possible. It is contemplated that these variations, modifications, additions and improvements fall within the scope of the invention.
A number of embodiments of the invention have been described. It is to be understood that various modifications may be made without departing from the spirit and scope of the invention. For example, some of the steps described above may be order independent, and thus can be performed in an order different from that described. Further, some of the steps described above may be optional. Various activities described with respect to the methods identified above can be executed in repetitive, serial, or parallel fashion.
It is to be understood that the foregoing description is intended to illustrate and not to limit the scope of the invention, which is defined by the scope of the following claims, and that other embodiments are within the scope of the claims. In particular, the scope of the invention includes any and all feasible combinations of one or more of the processes, machines, manufactures, or compositions of matter set forth in the claims below. (Note that the parenthetical labels for claim elements are for ease of referring to such elements, and do not in themselves indicate a particular required ordering or enumeration of elements; further, such labels may be reused in dependent claims as references to additional elements without being regarded as starting a conflicting labeling sequence).
This patent application claims the benefit of priority under 35 U.S.C. § 119 (e) to U.S. Provisional Application No. 62/747,612 filed Oct. 18, 2018 entitled “System and Methods for Automated Interactive Learning”, the contents of which are incorporated herein by reference as if set forth in full.
| Number | Date | Country | |
|---|---|---|---|
| 62747612 | Oct 2018 | US |