Generally, the present invention relates to an access barrier control system, such as a garage door operator system for use on a closure member moveable relative to a fixed member and methods for programming and using the same. More particularly, the present invention relates to the use of a mobile transmitter maintained by a carrying device, such as a vehicle, to initiate the opening and closing of an access barrier depending upon the position of the carrying device relative to the access barrier. Specifically, the present invention relates to an access barrier control system that utilizes a mobile transmitter that is enabled to automatically open an access barrier, such as a garage door, based on the generation of an open signal, and automatically closing the access barrier when the carrying device experiences a change in position beyond a predetermined threshold and generates a close signal.
When constructing a home or a facility, it is well known to provide garage doors that utilize a motor to enable the opening and closing of the door. Motors may also be coupled with other types of movable barriers such as gates, windows, retractable overhangs and the like. An operator is employed to control the motor and related functions with respect to the door. The operator receives command input signals for the purpose of opening and closing the door from a portable wireless remote transmitter, from a wired or wireless wall station, from a keyless entry device or other similar device. It is also known to provide safety devices that are connected to the operator for the purpose of detecting an obstruction so that the operator may then take corrective action with the motor to avoid entrapment of the obstruction.
To assist in moving the garage door or movable access barrier between limit positions a user-actuated remote radio frequency (RF) or infrared transmitter is used to actuate the motor and move the door in the desired direction. As such, these remote devices allow for users to open and close garage doors without getting out of their car. Additionally, such remote devices may be provided with other features, such as the ability to control multiple doors, lights associated with the doors, and other security features. As is well documented in the art, the remote devices and operators may be provided with encrypted codes that change after every operation cycle so as to make it virtually impossible to “steal” a code and use it at a later time for illegal purposes. An operation cycle may include opening and closing of the barrier, turning on and off a light that is connected to the operator and so on.
Although remote transmitters and like devices work well, they are cumbersome and distracting to the driver, as his or her hands are occupied with maintaining a controlled grip over the steering wheel, or gear shift while exiting the garage or driveway. As such, the potential damage resulting from the inadvertent actuation of the remote transmitter while the vehicle is in the path of the access barrier is increased. Furthermore, the switch mechanism of the remote device typically becomes worn after a period of time and requires replacement. To overcome these disadvantages, various systems for the “hands-free” operation of the remote transmitter have been developed. Such hands-free systems comprise a mobile transmitter that communicates, via various mobile signals, with a base operator that is configured to actuate an access barrier, such as a garage door, between opened and closed positions. Specifically, the mobile transmitter is generally carried by a carrying device, such as a vehicle, and is configured to transmit mobile signals to the base operator so as to move the access barrier between open and closed positions, depending on the relative position of the carrying device to the base operator, as well as other criteria.
Many hands-free systems utilize a mobile transmitter that is carried by a suitable carrying device, such as a vehicle, which communicates with the barrier operator, through signals periodically sent to the mobile transmitter, such that when no return signal is received, the barrier operator commands the access barrier to close. Unfortunately, such a manner of operation allows the closing of the access barrier to be potentially initiated with the user out of visual range of the door, which may result in safety concerns, as the user may be led to believe that the door has closed, when in fact an obstruction has caused the door to open and remain open allowing unauthorized access to others.
Therefore, there is a need in the art for an operator system that automatically initiates only the closing sequence for an access barrier depending upon the change in position of a carrying device. In addition, there is a need for an operator system that utilizes a mobile transmitter that automatically closes an access barrier based on the change in the angular position of a carrying device as it is moved. Furthermore, there is a need for an operator system that provides a mobile transmitter that includes an activity sensor, such as an accelerometer, so as to automatically close an access barrier when a carrying device has reached a predetermined linear distance from the access barrier. Still yet, there is a need for a mobile transmitter that includes an accelerometer that is capable of discriminating between unintended movement, such as the accidental movement of the mobile transmitter within a carrying device, and movement resulting from the acceleration of the carrying device, so as to conserve the transmitter's power source and properly control the movement of the access barrier. In addition, there is a need in the art for a mobile transmitter that automatically emits somewhat periodic signals that are received by the operator so as to automatically open an access barrier when the carrying device approaches the closed access barrier. And there is a need for a mobile transmitter that provides user-changeable sensitivity adjustment of the mobile open signal. Furthermore, there is a need for a mobile transmitter that includes a transceiver, to provide two-way communication between the mobile transmitter and the base operator solely to facilitate the selection and learning or re-learning of an optimum mobile remote transmitter communication frequency.
One aspect of the present invention, which shall become apparent as the detailed description proceeds, is attained by a system and methods for automatically moving access barriers initiated by mobile transmitter devices.
Another aspect of the present invention is to provide an operator system for automatically controlling access barriers used to enclose a carrying device, comprising a base controller associated with at least one access barrier, at least one base receiver associated with the base controller, and at least one mobile transmitter transmitting an open signal and a close signal, wherein the transmitter monitors a change in position of the carrying device and transmits the close signal when the mobile transmitter detects that the position of the carrying device has changed a predetermined amount, and wherein the mobile transmitter transmits the open signal automatically, the base controller selectively generating barrier movement commands depending upon when the open and close signals are received by the at least one base receiver.
Still another aspect of the present invention is method of automatically closing and opening an access barrier based on a change in position of a carrying device comprising automatically and periodically transmitting from a mobile transmitter maintained in the carrying device an open signal, determining whether a positional change of the carrying device exceeds a predetermined threshold value, transmitting from the transmitter a close signal if a change in a position of the carrying device exceeds the predetermined threshold value, receiving in a barrier operator that controls movement of the access barrier the open signal and the close signal, and closing the barrier when the close signal is received and the access barrier is open, and opening the access barrier after receiving the open signal and the access barrier is closed, but only after not receiving the open signal for a predetermined period of time.
For a complete understanding of the objects, techniques and structure of the invention, reference should be made to the following detailed description and accompanying drawings, wherein:
A system, such as a garage door operator system, which incorporates the concepts of the present invention, is generally designated by the numeral 10 in
The discussion of the system 10 is presented in three subject matter areas: the operator; the hands-free mobile transmitter; and operation of the mobile transmitter with the operator. The discussion of the operator presents aspects commonly found in a garage door operator and which enable features provided by the mobile transmitter. The structural aspects of the mobile transmitter include a discussion of an encryption technique utilized thereby; use of an activity and/or an ignition sensor by the mobile transmitter; and the setting of sensitivity levels and the ability of the mobile transmitter to be actuated manually. Finally, the discussion of the operation of the mobile transmitter and the operator is presented in two different operational scenarios. The first scenario relates to the use of the mobile transmitter to generate a signal to automatically close the access barrier based on the change in position of a carrying device, such as a vehicle; and the second scenario relates to the use of at least one mobile transmitter signal sequence to open the access barrier based on the proximity of the mobile transmitter to the access barrier. Furthermore, the second scenario provides an alternative mobile transmitter, which is more easily learned to the garage door operator while incorporating any or all of the benefits associated with the other scenario.
The system 10 may be employed in conjunction with an access barrier 12, such as a conventional sectional garage door or other barrier. The opening in which the door is positioned for opening and closing movements relative thereto is surrounded by a frame generally indicated by the numeral 14. A track 26 extends from each side of the door frame and receives a roller 28 which extends from the top edge of each door section. A counterbalancing system generally indicated by the numeral 30 may be employed to balance the weight of the garage door 12 when moving between open and close positions or conditions. One example of a counterbalancing system is disclosed in U.S. Pat. No. 5,419,010, which is incorporated herein by reference.
An operator housing 32, which is affixed to the frame 14, carries a base operator 34 shown in detail in
Briefly, the base operator 34 powered by a suitable power source, such as a mains power outlet commonly found in residential homes, may be controlled by a wireless remote transmitter 40, which has a housing 41, or a wall station control 42 that is wired directly to the system 10 or which may communicate via radio frequency or infrared signals. The remote transmitter 40 requires actuation of a button to initiate or stop the movement of the access barrier 12 between positions. The wall station control 42 is likely to have additional operational features not present in the remote transmitter 40. The wall station control 42 is carried by a housing, which has a plurality of buttons thereon. Each of the buttons, upon actuation, initiates a particular command to the base operator 34 to initiate activity, which may include opening/closing of the access barrier 12, turning various lights on and off and the like. A program button 43, which may be recessed and preferably actuated only with a special tool, allows for programming of the base operator 34 for association with remote transmitter 40, and more importantly with a hands-free mobile transmitter to be discussed below. The system 10 may also be controlled by a remote keyless alphanumeric device 44, which includes a plurality of keys 46 with alphanumeric indicia thereon. It is also contemplated that the alphanumeric device 44 may include a display for the visual presentation of information regarding the system 10. In one aspect, actuating the keys 46 in a predetermined sequence allows for actuation of the access barrier 12, as well as to initiate various other features maintained by the base operator 34. As such, the transmitters 40, 42, and 44 provide the user with the ability to command the base operator 34 to move the access barrier 12 between opened and closed positions.
The base operator 34 also includes a base controller 52, which incorporates the necessary software, hardware and memory storage devices for controlling the operation of the overall system and for implementing the various advantages of the present invention. And while the base controller 52 may comprise Model MSP430F1232 supplied by Texas Instruments, it should be appreciated that other equivalent receivers, transceivers and controllers could be utilized.
In electrical communication with the base controller 52 is a storage device 54, which may comprise volatile memory, such as flash memory, or non-volatile memory, as well as a combination of both. The storage device 54 enables the base operator 34 to permanently store information utilized by the base controller 52 in conjunction with the operation of the base operator 34. The memory device 54 may maintain identification codes, state variables, count values, timers, door status, a last process or barrier move direction, and the like to enable operation of the mobile transmitter. Infrared and/or radio frequency signals generated by the transmitters 40, 42, 44 and the mobile transmitter to be discussed are received by a base receiver 56 which transfers the received information to a decoder contained within the base controller 52. Those skilled in the art will appreciate that the base receiver 56 may be replaced with a transceiver, which would allow the base controller 52 to facilitate learning of other devices, or to relay or generate command/status signals to other devices associated with the operator system 10. As such, the base controller 52 converts the received radio frequency signals or other types of wireless signals received from the transmitter 40 and various other wireless transmitters, including the mobile transmitter to be discussed, into a compatible format. It will be appreciated that the base receiver 56 utilizes an antenna suitable for receiving the desired radio frequency or infrared beacon signals from the various wireless transmitters.
Continuing, while the base receiver 56 is directly associated with the base operator 34, it may be configured as a stand-alone device. During operation, the base receiver 56 receives signals in a frequency range centered about 372 MHz generated by the transmitter, although the base receiver 56 may also be configured to receive signals in a frequency range of 900 to 950 MHZ, as well as any other frequency range. Indeed, one frequency range may be designated for only receiving door move signals from a transmitter, while the other frequency range receives identification type signals used to determine position or travel direction of a mobile transmitter relative to the base receiver 56, as well as door move signals. Of course, other frequency ranges compatible with the system 10 and approved for use by the appropriate government agency may be used.
In addition, the base controller 52 is capable of directly receiving transmission type signals from a direct wire source as evidenced by the direct connection to the wall station 42. And while the keyless device 44 may be directly connected to the base controller 52, it may also be configured to operate wirelessly and communicate with the base operator 34 via suitable RF signals. Furthermore, any number of remote transmitters 40a-x can transmit a signal that is received by the base receiver 56 and further processed by the controller 52 as needed. Likewise, there can be any number of wall stations 42. A learn button 59 may also be associated with the base controller 52, wherein actuation of the learn button 59 allows the base controller 52 to learn any of the different types of transmitters used by the system 10. Thus, during operation of the system 10, if an input signal is received from either of the remote transmitter 40, the wall station 42, or the keyless device 44 and found to be acceptable, the base controller 52 generates the appropriate electrical input signals for energizing a motor 60, which in turn rotates the drive shaft 36 and opens and/or closes the access barrier 12.
The system 10 may also include a light 62 that is connected to the base controller 52 and may be programmed to turn “on” and “off” depending upon the conditions of the mobile transmitter and how it is associated with the controller 52. Likewise, an alarm system 64 may be activated and/or deactivated depending upon the position of the mobile transmitter with respect to the base receiver 56. As such, the light 62 and/or alarm 64 may also be configured to provide an indication to the user of various states or conditions of the base operator 12. For example, the light 62 and/or alarm 64 may indicate when the mobile transmitter to be discussed has been successfully learned with the barrier operator 12.
A mobile transmitter 70, which may also be referred to as a hands-free transmitter or a proximity device, is included in the system 10 and effectively operates in much the same manner as the other wireless transmitters, except direct manual input from the user is not required, although manual input could be provided. As will be discussed in detail, the mobile transmitter 70 is typically placed within or is otherwise maintained by a carrying device 71, such as a vehicle. For example, the mobile transmitter 70 may be placed in the glove compartment, or attached to the sun visor of the carrying device 71 or incorporated into the carrying device. Additionally, the mobile transmitter 70 serves as the actuation device, and initiates opening movements of the access barrier 12 depending upon its proximity and direction of travel with respect to the base operator 34. Furthermore, the mobile transmitter 70 is configured to initiate closing movements of the access barrier 12 based on a change in angular and/or linear position of the carrying device 71 maintaining the mobile transmitter 70. In other words, the mobile transmitter 70 can be placed in the glove compartment, in the console of the vehicle or incorporated into the carrying device 71. It communicates with the base controller 52 for the purpose of opening and closing the access barrier 12 depending upon the position of the mobile transmitter 70 with respect to the base receiver 56.
In particular, the mobile transmitter 70 includes a processor 72 coupled to a memory device 74, which may comprise volatile memory, non-volatile memory, or a combination of both. As will be discussed in further detail, the memory device 74 may maintain system mobile state variables, count values, timer values, signal counts and the like which are utilized to enable operation of the overall system 10. In addition, the mobile transmitter 70 includes an emitter 76 that is capable of generating mobile signals 78, such as a mobile open signal and a mobile close signal based on a periodic or a staggered basis. It should be appreciated that the mobile open and close signals 78 may comprise RF (radio frequency signals) that are in a format compatible with that of the base operator 34. “Mobile” signals, as used herein, refer to signals generated by the transmitter 70 that are a result of the transmitter's position with respect to the operator and not as a result of a user actuating a button on the transmitter. For example, the mobile transmitter 70 may transmit the mobile signals 78 using a frequency of between about 300 MHz to 400 MHz, or that is within a frequency range of about 900 to 950 MHz, although any suitable frequency may be used. However, it should be appreciated that the mobile transmitter 70 may use any frequency that is compatible with any operator, including the base operator 34. The generation of the mobile open signal 78 and mobile close signal 78, as well as the information or format of the emitted signals may be changed depending upon a detected operational status of the carrying device, such as a vehicle, that maintains the mobile transmitter 70. Continuing, the processor 72 includes the necessary hardware, software and memory for generating signals to carry out the various functions of the present invention. The processor 72 and the memory 74 facilitate generation of the appropriate information to include in the mobile open and close signals 78 inasmuch as one remote mobile transmitter 70 may be associated with several operators or in the event several remote transmitters 70 are associated with a single operator. In other words, the base controller 52 is able to distinguish the mobile signals of different transmitters and act upon them accordingly. And the base controller is able to distinguish between an open mobile signal and a close mobile signal generated by the mobile transmitter, and since the operator in some embodiments will precisely know the position (open/close/between) and barrier movement status (moving up/moving down/stopped), the operator can respond in a desired, predetermined manner. The system will most likely be configured so that any door move commands generated by the mobile transmitter 70 can be overridden by any commands received from the wall station transmitter 42.
Continuing, the mobile transmitter 70 includes a learn/door move button 82 and a sensitivity/cancel button 83, which allows for override commands and/or programming of the mobile transmitter 70 with respect to the base controller 52. If needed, manual actuation of the learn/door move button 82, after programming, may be used to override normal operation of the proximity device 70 so as to allow for opening and closing of the access barrier 12 and also to perform other use and/or programming functions associated with the base operator 34. It is also contemplated that the actuation of the learn/door move button 82 allows the processor 72 to be programmed with updated position values in a manner to be discussed in detail below. Such updated position values may include, but are not limited to an angle threshold and/or linear distance threshold values for storage at the mobile memory unit 74. For example, the angle threshold value may be programmed to comprise a value of 35 to 45 degrees for example, although any suitable angle may be used, whereas the linear distance threshold value may be programmed to comprise a value between about 15 to 500 feet, although any suitable distance may be used. Re-programming of the threshold values may be done wirelessly, or the processor 72 and/or the memory unit 74 may be provided with a port that allows for direct re-programming. Alternatively, actuation of the sensitivity/cancel button 83, after programming, provides for temporary disablement of the hands-free features.
The mobile transmitter 70 also includes an activity sensor 84 that is coupled to the processor 72 and is configured to detect the angular or linear acceleration, movement, or displacement of the carrying device 71. Specifically, the activity sensor 84 may comprise an accelerometer, such as a multi-axis accelerometer, that is configured to detect changes in acceleration in three axes of movement. In addition, the activity sensor 84 may comprise a digital or analog compass that is configured to detect some type of observable phenomenon such as vibration of the carrying device 71 when it is energized, or the detection of electric emissions generated by the spark plugs maintained by the vehicle 71. In the alternative, the mobile transmitter 70 may be connected to an accessory or ignition switch, of the vehicle. The accessory or ignition switch determines the operational status of the carrying device 71, which causes the mobile transmitter 70 to generate mobile signals 78 in the manner to be discussed. As such, the detection of activity by the activity sensor 84 or the detection of the activity of the accessory/ignition switch by the mobile transmitter 70, allows the mobile transmitter 70 to automatically be placed into a sleep state when the carrying device 71 is not active, and be automatically placed into an awake state when the carrying device 71 is active.
Also coupled to the processor 72 is a position detector 85 that is configured to monitor, or otherwise detect a change in angular position of the carrying device 20. In one aspect, the position detector 85 may comprise a digital compass, an analog compass, a tilt switch, a gyroscope, a GPS (global positioning system) receiver, an accelerometer, as well as any other device suitable for detecting linear distance or angular changes in the position of the carrying device 71, or any combination of the foregoing devices that can generate a corresponding angle position signal for analysis by the processor 72 of the mobile transmitter 70. The position detector 85 is primarily used to detect a change in angular orientation, but in some embodiments the detector may also detect a change in linear position.
It is also contemplated that the mobile transmitter 70 may include an audio source 86 and a light source 87, such as a light-emitting diode. It is envisioned that the audio source 86 and/or the light source 87 may be employed to provide audio or verbal instructions/confirmation or light indications as to certain events that need the immediate attention of the person utilizing the mobile transmitter 70, and may also provide confirmation or rejection of the attempted programming or learning functions invoked by the buttons 82 and 83. In one aspect, the mobile transmitter 70 may be configured to turn the light 87 on and off, as well as to control various other functions, when a predetermined change in angle or distance has been attained by the carrying device 71.
In order to power the components of the mobile transmitter 70, a battery 97 coupled to the processor 72 is used. If desired, the battery 97 may be of a rechargeable type that is connectable to a power outlet provided by the carrying device. In this case, use of a long-life or rechargeable battery may eliminate the need for the activity sensor 84 or direct connection to the accessory or ignition switch of the carrying device 71.
A slide switch 99, which is ideally recessed in the transmitter housing, can be used to quickly enable or disable the mobile transmitter 70. The switch 99 is connected to the processor 72, and upon movement of the switch 99 to a disable position, a cancel command is automatically generated prior to powering down.
While the previous discussion of the mobile transmitter 70 relates to a system that enables the automatic operation of the access barrier 12, it is also contemplated that the mobile transmitter 70 may be programmed or otherwise configured to provide for the hands-free control of other systems maintained by the barrier operator 12. For example, the mobile transmitter 70 may be configured to turn the light 62 on and off, as well as to control various other functions, when a predetermined change in angle or distance has been attained by the carrying device 71.
Referring now to
The carrying device 71 is positionable in the enclosure 110 or anywhere along the length of the driveway 114 and the street 116. The carrying device 71 may be in either a “docked” state inside the enclosure 110 or in an “away” state anywhere outside the enclosure, as well as various other positions therebetween. In some instances, the “away” state may further be defined as a condition when the signals generated by the mobile transmitter 70 are no longer receivable by the base operator 34.
Thus, the system 10 is configured such that when the carrying device 71 moves from the docked state inside the enclosure 110 and experiences a change in angular and/or linear position that exceeds a predetermined threshold value that the mobile transmitter 70 transmits a mobile close signal 78 to command the base operator 34 to close the access barrier 12. Alternatively, the system 10 is configured, such that when the carrying device 71 comes within a predetermined distance, a mobile open signal periodically transmitted by the mobile transmitter 70, commands the base operator 34 to open the access barrier 12 thereby allowing access to the enclosure 110.
As such,
The change in the angular position of the carrying device 71 as it transitions from the docked position 122 to either of the action positions 124A-C initiates the transmission of a mobile close signal 78. That is, as the carrying device 71 leaves the docked position 122, it may proceed generally along one of 3 paths, identified as A, B, and C in which respectively correspond with the various action positions 124A-C shown in
In addition, the activity sensor 84 as well as the angle position detector 85 may be configured to measure the linear movement of the carrying device 71, and as such may also be used to determine if the carrying device 71 has moved by an amount that exceeds the predetermined threshold distance value that is also stored at the mobile controller 70. Thus, if the carrying device 71 does not make a turn in either direction A, or C, and proceeds along path B, which does not result in any changes in the angular orientation that exceed that of the predetermined threshold angle value stored at the mobile transmitter 70, the change in linear position between the docked state 122 and the action position 124B may be monitored to determine if it exceeds a predetermined threshold distance value. In other words, because movement of the carrying device 20 along path B to the action position 124B does not result in an angular change or a change that is below the angle threshold, the activity sensor 84 or the angle position detector 85 is used to determine whether the carrying device 71 has moved from the docked position 122 by an amount that exceeds the distance threshold value ensuring that the carrying device 71 is clear of the movement of the access barrier 12 so as to automatically close the access barrier 12. As such, when the carrying device 71 moves from the docked position 122 to the active position the angle position detector 85 or the activity sensor 84 monitor both the angular change and the linear change (distance) of the particular path A, B, and C that is taken by the carrying device 71 and compares the current angle and linear distance values to threshold values stored in the memory 74 of the mobile transmitter 70, so as to generate a mobile close signal 78 which is received and acted upon by the operator in a manner that will be discussed.
A. Encryption
It will be appreciated that the mobile open and mobile close signals 78 generated by the mobile transmitter 70 may be encrypted in accordance with various protocols discussed below. An exemplary algorithm should be fairly simple and small so as not to use all the resources of the processor 72 of the mobile transmitter 70. Different size bit keys could be used depending upon the desired level of security. The serial number of the transmitting unit, including the mobile transmitter 70, will be encrypted using an open source algorithm. Each mobile transmitter 70 is provided with a unique serial number by the manufacturer or the installer. And each base controller 52 is formatted to accept and learn a predesignated range of serial numbers, and has software to decrypt a data transmission which includes the encrypted serial number. Added security may be provided by adding a counter or other changing data that changes on every transmission by a predetermined pattern. The changing counter may be a 16-bit number that changes on every transmission according to a predetermined pattern (simple incrementing or it could be a more complex pattern). The base operator 34 will know how the counter changes and it will receive this message and it will require receipt of a second message with a new counter value that changed according to the predetermined pattern. This prevents any hostile device that emulates the transmitted message, such as the mobile open and close signals 78, and reproduces the exact same message. The base operator 34 will know that the message is not from a safe source if the counter does not change accordingly.
The base receiver 56 receives the first transmission but will then expect a second transmission with an expected change in the counter data. It will accept the command only if the counter data changes to the expected value. If the data the base receiver 56 receives does not have a changing counter, then the base receiver 56 could discard the command and assume it is from a hostile source. The key for the encryption routine is split into two parts, whereby part of the key will be a static number known to both the mobile transmitter 70 and the base operator 34, and part of the key will be derived from the counter value. This will help prevent any hostile device that receives the message, such as the mobile open and close signals 78, from having access to sensitive data such as the serial number. The mobile transmitter 70 will transmit the encrypted sensitive data and the counter in the open in the following manner:
The base receiver 56 will use the same static key to decrypt the sensitive data, and it will check the counter to make sure it is at the expected value. If both the key decrypts the data properly and the counter validates correctly, only then will the base receiver 56 accept the command or mobile open or close signal transmitted by the mobile transmitter 70. As such, use of such an encryption algorithm facilitates use of the mobile transmitter 70 with the operator system.
B. Activity/Ignition Sensors
As previously discussed, the mobile transmitter 70 utilizes the activity sensor 84 to determine when the carrying device 71 is active. In particular, the activity sensor 84 may comprise an accelerometer, as well as other sensors that are able to detect vibration or electrical noise or other detectable phenomenon generated by the carrying device 71 to indicate that it is in an operative or moving condition, or has been otherwise started. In addition, the activity sensor 84 may comprise a compass or an accelerometer, such that activity or the operational status of the carrying device 71 can be determined through detection of small changes in the angular position of the carrying device 71.
Alternatively, the operational state of the carrying device 71 may be detected by an ignition sensing circuit 130 maintained by the mobile transmitter 70, as shown in
Having the mobile transmitter 70 connected directly to the power supply or battery 292 of the vehicle 71 provides advantages over a solely battery-powered proximity device, as the battery 97 maintained by the mobile transmitter 70 would no longer be needed. Furthermore, the three-wire configuration of the accessory or ignition switch 290 may be employed wherein a single wire provides constant power from the battery 292 to the carrying device 70. Another wire connects the accessory switch 290 to the vehicle 71 and as such powers the mobile transmitter 70, and a third wire provides the common ground connection to the vehicle 70. While the prior discussion sets forth the various connections utilized to couple the mobile transmitter 70 to the accessory switch 290 of the vehicle, it should be appreciated that all three of the signals discussed are normally found in a vehicle, such as a combustion driven vehicle, as well as an electric or hybrid-electric vehicle. Furthermore, the three-wire set-up could possibly be minimized to a two-wire set-up if the common/ground is attached to a metal chassis of the vehicle 71. In any event, the mobile transmitter 70 draws power from the constant power supply of the vehicle 71 and uses the ignition sensing circuit 130 as a means of detecting of when the vehicle 71 is operational.
Moreover, by employing such a configuration, the mobile transmitter 70 is connected to the battery 292 of the vehicle 71 at all times, and thus there is no need to worry about a “sleep time” for the mobile transmitter 70 since it is now powered directly by the battery 292 of the vehicle 71. As such, if the accessory switch 290 is on, the mobile transmitter 70 remains in an active state. However, if the accessory or ignition switch 290 is off, the mobile transmitter 70 enters a sleep mode to minimize current draw from the battery 292. And it will further be appreciated that the mobile transmitter 70 always has the ability to relay any change of state (active/sleep) information to the base receiver 56 of the base operator 52.
C. Sensitivity Settings/Mobile Manual Input
Generally, the mobile transmitter 70 determines whether the carrying device 71 is active and initiates communications with the base operator 34 via the base receiver 56. That is, the mobile transmitter 70 is capable of generating various mobile open and close signals 78 with different transmit power levels and, if needed, with different identification codes for receipt by the base controller 52 at an appropriate time. In response to the various mobile open and close signals 78 received by the base operator 34, the base controller 52 executes the automatic opening or closing of the access barrier 12, as well as various status change commands. It will be appreciated that
It can be seen that a methodology for adjusting the sensitivity of the mobile transmitter 70 by actuation of the buttons provided by the mobile transmitter 70 is designated generally by the numeral 300, as shown in
If at step 306 the buttons 82 and 83 are not pressed for the predetermined period of time then the processor 72 of the mobile transmitter 70 inquires at step 312 as to whether the sensitivity/cancel button 83 has been pressed for a predetermined period of time, such as three seconds. If the button 83 is held for more than three seconds, the process continues to step 314, where the processor 72 allows for cycling to a desired sensitivity setting. It will be appreciated that the mobile transmitter 70 may be provided with one or more transmit power levels. In this embodiment, there are four power levels available thus allowing a different value to be set for the mobile open signal 78. For example, the four power levels may be designated, from lowest to highest, as P0, P1, P2 and P3. If at step 312 it is determined that button 83 has not been pressed for more than three seconds, the process continues to step 316 to determine whether the learn/door move button 82 has been pressed for a predetermined period of time, such as three seconds, or not. If the learn/door move button 82 has been pressed for more than three seconds, then at step 318 the mobile learn flag is set and this is confirmed by the beeping of the audio source 86 twice and the blinking of the light source 87 twice. Upon completion of the confirmation, the process proceeds to step 310 and normal operation continues. If, however, at step 316 it is determined that the learn/door move button 82 has not been pressed for three seconds, then the process continues to step 320 where the processor 72 of the mobile transmitter 70 determines whether the sensitivity/cancel button 83 has been momentarily pressed or not. If the learn/door move button 82 has been pressed, then at step 322 a cancel flag is set, a door move flag is cleared, and a confirmation signal in the form of one blink by the light source 96 and a high to low beep generated by the audio source 94. And then the process is completed at step 310.
If at step 320 the sensitivity/cancel button 83 is not pressed momentarily, then the process inquires as to whether the learn/door move button 82 has been momentarily pressed or not at step 324. If the button 82 has been momentarily pressed, then at step 326 the door move flag is set, the cancel flag is cleared and a confirmation is provided in the form of one blink and a low to high beep or audio tone. This step allows for execution of a manual door move command if desired. If button 82 is not momentarily pressed at step 324, then the processor, at step 328, awaits for both buttons to be released. Once this occurs then the process is completed at step 310.
For the purposes of clarity the reader is reminded that the discussion that follows is to explain setting of the threshold values that will cause the mobile transmitter to initiate sending of a mobile close signal. The discussion continues with the operational scenarios of when a mobile open signal and a mobile close signal are generated by the mobile transmitter so as to initiate the auto-closure of the access barrier 12 and the auto-opening of the access barrier 12, wherein both scenarios are implemented by interaction between the mobile transmitter 70 and the operator 34.
Before setting forth the operational steps for automatically closing the access barrier 12 based on a change in position of the carrying device 71, a presentation of the sequence utilized to establish the predetermined threshold angle and position values utilized by the mobile transmitter 70 when automatically closing the access barrier 12 will be presented.
The operational steps taken to establish the threshold positional (angle and distance) values used by the mobile transmitter 70 in accordance with the automatic closing of the access barrier 12 are indicated generally by the numeral 400, as shown in
If the user elects to manually set the threshold angle value, the user initially moves the carrying device 71 to a docked, or otherwise stationary position that is within an enclosure whose access is controlled by the access barrier 12, as indicated at step 412. That is, the docked position is where the user of the carrying device 20 would normally park the carrying device 71 when not in use. Next, at step 414 the user depresses and holds the learn/door move button 82 of the mobile transmitter 70 for a first predetermined amount of time while the carrying device 71 is in the docked position to invoke the baseline angle detection mode indicated at step 416. However, it should be appreciated that the baseline angle detection mode may be entered using a variety of techniques, including depressing the learn/door move button 82 in a predetermined sequence, or any other unique manner of indicating that the mode of step 416 is to be initiated. Next, the baseline angle of the carrying device 71 generated by the position detector 85 is identified and then stored in the memory 74, as indicated at step 418. After step 418 is performed, the carrying device 71 and transmitter 70 are moved to a position outside of the enclosure and clear of the path of the access barrier 12, as indicated at step 420. The position outside of the enclosure to which the carrying device 71 is moved should be indicative of the typical driving pattern taken by the user when exiting the enclosure, and preferably is a position that still allows the driver to view the access barrier 12 as he or she is leaving. Once the carrying device 71 is moved to the desired position, the process continues to step 422, where the learn/door move button 82 is depressed, and the current angle value associated with the position of the carrying device 71 established in step 420 is generated by the position detector 85, identified and stored in the memory 74. At step 424, the mobile transmitter 70 calculates and stores the threshold angle value based on the change in magnitude of the angle between the baseline and current angle values identified at steps 418 and 422.
Alternatively, if the user desires to manually set the threshold distance value, the user initially moves the transmitter 71 and the carrying device 70 to a docked or otherwise stationary position that is within an enclosure whose access is controlled by the access barrier 12, as indicated at step 432. That is, the docked position is where the user would normally park the carrying device 71 when not in use. Next, at step 434 the user depresses and holds the learn/door move button 82 of the mobile transmitter 70 for a second predetermined amount of time, which is different from the amount of time used in step 414, while the carrying device 71 is in the docked position to invoke the baseline distance detection mode indicated at step 436. However, it should be appreciated that the baseline distance detection mode may be entered using a variety of techniques, including depressing the learn/door move button 82 in a predetermined sequence, or any other unique manner of indicating that the mode of step 436 is to be initiated. Next, the baseline position or starting point at which the carrying device 71 is docked is identified and stored in the memory 74, as indicated at step 438. After step 438 is performed, the carrying device 71 is moved to a position outside of the enclosure and clear of the path of the access barrier 12, as indicated at step 440. The position outside of the enclosure to which the carrying device 71 is moved should be indicative of the typical driving pattern taken by the use when exiting the enclosure, and preferably is a position that still allows the driver to view the access barrier 12 as he or she is leaving. Once the carrying device 71 is moved to the desired position, the process continues to step 442, where the learn/door move button 82 is depressed, and the current position of the carrying device 71 established in step 440 is identified by the activity sensor 84 or the position detector 85 and stored in the memory 74. At step 444, the mobile transmitter 70 calculates and stores the threshold distance value based on the distance that is between the baseline starting position and the current position values identified at steps 438 and 442.
The user may also decide to use preset values that have been pre-programmed into the mobile transmitter 70 to set the threshold angle and distance values. To set such values, the user initially moves the carrying device 71 to a docked or otherwise stationary position that is within an enclosure whose access is controlled by the access barrier 12, as indicated at step 450. That is, the docked position is where the user would normally park the carrying device 71 when not in use. Next, at step 452 the user depresses and holds the learn/door move button 82 of the mobile transmitter 70 for a third predetermined amount of time, which is different from the amount of time used in steps 414 and 434, while the carrying device 71 is in the docked position to invoke the baseline angle and distance detection mode indicated at step 454. However, it should be appreciated that the baseline angle and distance detection mode may be entered using a variety of techniques, including depressing the learn/door move button 82 in a predetermined sequence, or any other unique manner of indicating that the mode of step 454 is to be initiated. Next, the baseline angle and baseline position/starting point corresponding to the docked position of the carrying device 71 is identified by the position detector 85 and/or the activity sensor 84 and stored in the memory 74, as indicated at step 456. Next, at step 458 the angle and distance threshold values are calculated by the processor 72 using the baseline values previously identified in step 456. That, is the mobile transmitter 70 utilizes the pre-programmed criteria, such as a predetermined angular or positional change from the identified baseline values to calculate the threshold angle and threshold distance values, which are then stored in the mobile transmitter 70. For example, the pre-programmed criteria may include angle values of 30-45 degrees and/or distance values of 15 to 500 feet, although any suitable angle or distance value may be used.
While the operational steps 400 set forth above are indicative of one manner of implementing the identification of the threshold angle and distance values, such should not be construed as limiting, as such process or sequence may be readily modified or altered using known techniques, while still retaining the general functionality of the process 400.
With the procedure for establishing the threshold angle and distance values utilized by the mobile transmitter in carrying out the auto-close features of the present invention set forth, the discussion of the specific steps for carrying out the auto-close feature of the present invention is presented below. In particular, the steps for automatically closing the access barrier 12 based on a change in position of the carrying device 71 are generally referred to by the numeral 500, as shown in
Returning to step 518, if the linear displacement of the carrying device 71, as determined by the mobile transmitter 70, does exceed the predetermined threshold value, then the process continues to step 522, where the mobile transmitter 70 transmits a mobile close signal 78 to the base operator 34 to automatically close the access barrier 12.
Returning to step 516, if the change in angular position of the carrying device 71, as determined by the mobile transmitter 70 is greater than the predetermined angular threshold value, then the process continues to step 524. At step 524, the mobile transmitter 70 transmits a mobile close signal 78 to the base operator 34 to automatically close the access barrier 12.
Thus, at steps 522 and 524 of the process, the mobile transmitter 70 transmits a mobile close signal 70 to the base operator 34 to automatically close the access barrier 12. Once the mobile close command signal 78 is transmitted to the base operator 34, the process continues to step 526, where the ability of the mobile transmitter 70 to transmit a mobile close command signal is disabled. Also at this time, generation of the mobile open command signal is disabled for a predetermined period of time such as five minutes for example. This is done to prevent the barrier from inadvertently opening if the user with the mobile transmitter happens to drive by their garage shortly after leaving. By preventing generation of unneeded mobile close commands, power drain at the transmitter's battery is reduced. And such a feature reduces the possibility of interference with other devices. After the ability of the mobile transmitter 70 to transmit a mobile close signal 78 is disabled, the process continues to step 528. At step 528 the process determines whether the mobile transmitter 70 is still detecting any activity of the carrying device 71. If the mobile transmitter 70 is detecting activity of the carrying device 71, the process continues to step 530, whereby the mobile transmitter 70 resumes cycling between sleep and awake states. However, if at step 528, the mobile transmitter 70 does not detect any activity at the carrying device 71, then the process continues to step 530. At step 530 the mobile transmitter 70 is reset so as to allow it to be capable of transmitting a subsequent mobile close signal 78, whereupon the process returns to step 510.
In another embodiment of implementation of the auto-close feature of the present invention, it is contemplated that the angle position detector 85 comprises a two-axis analog compass, although a two-axis digital compass may also utilized. Furthermore, in this embodiment the activity sensor 84 comprises the ignition sensing circuit 130 or detector that is used to determine when the carrying device 71 is active. As such, the operational steps taken by the system 10 when utilizing the two-axis compass and ignition sensor are generally referred to by the numeral 550 in
Returning to step 560, if the linear displacement of the carrying device 71, as determined by the mobile transmitter 70, does exceed the predetermined threshold distance value, the process continues to step 564, where the mobile transmitter 70 transmits a mobile close signal 78 to the base operator 34 to automatically close the access barrier 12.
Returning to step 558, if the change in angular position of the carrying device 71, as determined by the mobile transmitter 70 is greater than the predetermined threshold angle value, then the process continues to step 566. At step 566, the mobile transmitter 70 transmits a mobile close signal 78 to the base operator 34 to automatically close the access barrier 12.
Thus, at steps 564 and 566 of the process the mobile transmitter 70 transmits a mobile close command signal 78 to the base operator 34 to automatically close the access barrier 12. Once the mobile close signal 78 is transmitted to the base operator 34, the process continues from either of steps 564 and 566 to step 568, where the ability of the mobile transmitter 70 to transmit a mobile close command is disabled. As noted previously, such a feature reduces the possibility of interference with the operation of other devices. After the ability of the mobile transmitter 70 to transmit a mobile close signal 78 is disabled, the process continues to step 570. At step 570, the process determines whether the mobile transmitter 70 still detects that that the ignition of the carrying device 71 is active. Thus, if the mobile transmitter 70 detects that the ignition of the carrying device 71 is still active, the process returns to step 568. However, if the mobile transmitter 70 does not detect that the ignition of the carrying device 71 is still active, the process continues to step 572. At step 572, the ability of the mobile transmitter 70 to transmit a mobile close signal 78 is reset, or otherwise re-enabled, whereupon the process returns to step 552. And as is discussed in regard to the operational embodiment shown in
A methodology for operation of the base controller 52 to automatically close and open the access barrier 12 based on the transmitted mobile open command signal or the mobile close command signal received by the base operator 34, is designated generally by the numeral 600, as shown in
The base controller 52 monitors frequencies detected by the base receiver 56, and in particular listens for a mobile open signal 78 and/or a mobile close signal 78, either of which may also be referred to as a mobile close command signal or a mobile open command signal, and which are generated by the mobile transmitter 70 or any one of the other transmitters 40,44 and wall station 42 at step 612. Next, at step 613 the operator 34 begins processing of the signals. At step 614 the base controller 52 determines whether a mobile open signal 78 has been received or not. If a mobile open signal 78 has been received, then the base controller 52 investigates the “last process” variable at step 615 to determine whether the last course of action was an “open” door move or a “close” door move. If the last process variable was not “open,” then at step 616, the base controller 52 queries as to whether a process variable “lose open” is greater than A. The value A is usually set by the manufacturer, but provisions could be made for re-programming of the variable as required be certain operating environments. In any event, this query is made to ensure that an inappropriate action is not taken until the mobile transmitter 70 is in fact away or out of range of the base controller 52. If the lose open variable is not greater than A, then the process returns to step 612. However, if at step 616 the lose open variable is greater than A, the base controller 52 queries as to whether a cancel signal has been sent by the mobile transmitter 70 or not at step 617. If a cancel signal has been sent, then the process returns to step 612 and any door move command that would otherwise be generated by the controller 52 is not sent. If a cancel signal has not been received at step 617, then the process continues to step 618, where the base controller 52 determines whether the access barrier 12 is open or not. As noted previously, the base controller 52 is able to detect the position of the access barrier 12 by use of mechanisms associated with the door movement apparatus. In any event, if the door position is open, the process continues to step 619 and the variable lose open is reset and then the process returns to step 612. However, if the door position is not open, as determined at step 618, then at step 620 the controller 52 executes an open door command and the variable last process is set equal to open. And then at step 619, the variable lose open is reset to a value, typically zero. Upon completion of step 619, the process returns to step 612.
Returning to step 614, if a mobile open signal 78 is not received, then at step 621 the lose open variable is incremented and the process continues at step 622. Or, if at step 615 the last process variable is designated as open, then the process continues on to step 622 where the controller 52 determines whether a close signal has been received or not. If at step 622 a close signal has not been received, then the process returns to step 612. Alternatively, if a mobile close signal from the mobile transmitter 71 or a signal from one of the remote transmitters 40,44 or wall station 42 is received by the base operator 34 at step 622, the process continues to step 624, where the base controller 52 queries as to whether the last process variable was a close movement. If the last process variable was set to close, then the process returns to step 612. However, if the last process variable was not set to close at step 624, the process continues to step 626. At step 626, the process determines whether a cancel signal has been sent by the transmitters 40,44 or the wall station 42 or from the mobile transmitter 71.
If a cancel signal has received by the base operator 34 at step 626, then the process returns to step 612. However, if a cancel signal has not been received by the base operator 34, then the base controller 52 inquires as to whether the position of the access barrier 12 is closed or not, as indicated at step 628. If the position of the access barrier 12 is closed, then the process returns to step 612. However, if the position of the access barrier 12 is not closed, then at step 629 the base controller 52 generates a door close command and the access barrier 12 is closed and the variable last process is set equal to close, whereupon the process returns to step 612.
As can be seen from the methodology 600, the use of the mobile open signal 78 generated by an active mobile transmitter 70 enables the hands-free operation so as to open the access barrier 12 depending upon the position of the mobile transmitter 70 and whether the position of the door 12 is determined to be open or closed. Furthermore, the process 600 enables the access barrier 12 to be manually closed by use of the remote transmitters 40,44, as well as the wall station 42.
It will also be appreciated that the remote mobile transmitter 70 may be activated or manually turned on when one arrives closer to the destination so as to begin sending identification signals. Such a feature would also allow for further power savings on the mobile transmitter 70.
Specifically, the transceiver 900 allows the mobile transmitter 70′ and the base operator 34′ to have two-way communications between each other only for the purpose of learning the mobile transmitter 70′ to the base operator 34′. The two-way communication allows both the base operator 34′ and the mobile transmitter 70′ to communicate in order to select a clear communication frequency to be used by the mobile transmitter 70′ to send commands, such as the mobile open and close signals 78, to the base operator 34′. Exemplary commands may comprise a barrier open/close command to actuate the barrier 12 between open and closed positions. Additionally, the two-way communication between the base operator 34′ and the mobile transmitter 70′ during the learning process may allow a suitable security code, or other data to be selected and stored. The security code ensures that only mobile transmitters 70′ that have been properly learned with the base operator 34′ are permitted to execute commands at the base operator 34′. For example, the security code used by the base operator 34′ to identify a learned mobile transmitter 70′ may be used to authenticate command signals sent therefrom. It should be appreciated that the security code may comprise a rolling code that may employ any suitable encryption algorithm.
Turning to
Somewhat simultaneously with step 916, the mobile transmitter 70′ enters a transmit mode, as indicated at step 918. During the transmit mode, the transceiver 900 of the mobile transmitter 70′ initiates the transmission of the learning signal to the transceiver 902 of the base operator 34′, as indicated at step 920. Upon the receipt of the learning signal/learning data by the base transceiver 902, the base operator 34′ analyzes the signal to verify that the mobile transmitter 70′ is in the learn mode, as indicated at step 922 of the process 910. At step 924, if the base operator 34′ determines that the mobile transmitter 70′ is in the learn mode, the base operator 34′ proceeds to transmit a first acknowledge (ACK) signal, along with the learning data that includes the desired operating frequency that the base operator 34′ has selected for communications with the mobile transmitter 70′. Next, at step 926, the mobile transmitter 70′ enters a receive mode and listens for the first acknowledge (ACK) signal, and the learning data sent by the base operator 34′. If the mobile transmitter 70′ receives the first acknowledge (ACK) signal and the learn data transmitted by the base operator 34′, the mobile transmitter 70′ transmits a second acknowledge (ACK) signal back to the base operator 34′, as indicated at step 928. At step 930, the base operator 34′ listens for the second acknowledge signal sent by the mobile transmitter 70′. If at step 932, the base operator 34′ receives the second acknowledge (ACK) signal from the mobile transmitter 70′, the base operator 34′ stores the learn data to the memory 74. In addition, the base operator 34′ switches to the quiet communication frequency that is to be also utilized by the transmitting portion of the transceiver 900 of the mobile transmitter 70′. Correspondingly, the mobile transmitter 70′ stores the learn data received from the base operator 34′ in its memory 54, and switches to the same quiet communication frequency that was selected by the base operator 34′. Thus, once the communication frequency has been established, the base operator 34′ is prohibited from sending communication signals or data to the mobile transmitter 70′. In other words, all other communications, except for the learning process, are one-way from the mobile transmitter 70′ to the receiving portion of the base transceiver 902 during an operate mode. Thus, the mobile transmitter 70′ can continue to transmit various signals needed, such as mobile open and close signals 78, and to transmit any associated data to the base operator 34′ in order to effect the functions of any of the embodiments disclosed herein.
As indicated in the preceding discussion, by replacing the emitter 76 as shown in
Based upon the foregoing, one advantage of the present invention is to provide a mobile transmitter, which periodically generates a mobile open signal receivable by the base operator to initiate the automatic opening of an access barrier as the carrying device moves toward the base operator. Another advantage of the present invention is that it provides a mobile transmitter that maintains an angle position detector that is capable of determining when the angular position of a carrying device exceeds a predetermined value, so as to automatically close an access barrier. Another advantage of the operator system is that the mobile transmitter provides an activity sensor that is capable of determining when the linear movement of a carrying device exceeds a predetermined value, so as to automatically close the access barrier. The proposed system is also advantageous in that manual user input is not required and the user has the ability to set sensitivity for when a mobile open signal is generated based upon the position of the carrying device with respect to the access barrier. Another advantage of the present system is that two-way communications takes place only during the learn mode between the base operator and the mobile transmitter. Still another advantage is that after the learning process is complete, only one-way communications take place between the base operator and the mobile transmitter during the operate mode.
Thus, it can be seen that the objects of the invention have been satisfied by the structure and its method for use presented above. While in accordance with Patent Statutes, only the best mode and preferred embodiment has been presented and described in detail, it is to be understood that the invention is not limited thereto and thereby. Accordingly, for an appreciation of the true scope and breadth of the invention, reference should be made to the following claims.
This application is a continuation-in-part of prior application Ser. No. 11/999,539, filed on Dec. 6, 2007 now U.S. Pat. No. 7,635,960, which is a divisional application of prior application Ser. No. 11/296,849, filed on Dec. 8, 2005, now U.S. Pat. No. 7,327,108, which is a continuation-in-part of prior application Ser. No. 11/211,297, filed on Aug. 24, 2005, which is now U.S. Pat. No. 7,327,107 all of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4942393 | Waraksa et al. | Jul 1990 | A |
5177900 | Solowiej | Jan 1993 | A |
5319364 | Waraksa et al. | Jun 1994 | A |
5406275 | Hassett et al. | Apr 1995 | A |
5412379 | Waraksa et al. | May 1995 | A |
5515036 | Waralsa et al. | May 1996 | A |
5831533 | Kanno | Nov 1998 | A |
5903226 | Suman et al. | May 1999 | A |
5940007 | Brinkmeyer et al. | Aug 1999 | A |
5973611 | Kulha et al. | Oct 1999 | A |
5990828 | King | Nov 1999 | A |
6002332 | King | Dec 1999 | A |
6011468 | Lee | Jan 2000 | A |
6028537 | Suman et al. | Feb 2000 | A |
6172430 | Schmitz et al. | Jan 2001 | B1 |
6271765 | King et al. | Aug 2001 | B1 |
6285931 | Hattori et al. | Sep 2001 | B1 |
6388559 | Cohen | May 2002 | B1 |
6400956 | Richton | Jun 2002 | B1 |
6415439 | Randell et al. | Jul 2002 | B1 |
6448894 | Desai | Sep 2002 | B1 |
6476732 | Stephan | Nov 2002 | B1 |
6513252 | Schierbeek et al. | Feb 2003 | B1 |
6542076 | Joao | Apr 2003 | B1 |
6559775 | King | May 2003 | B1 |
6563431 | Miller, Jr. | May 2003 | B1 |
6593845 | Friedman et al. | Jul 2003 | B1 |
6615132 | Nagasaka et al. | Sep 2003 | B1 |
6634408 | Mays | Oct 2003 | B2 |
6693581 | Gottwald et al. | Feb 2004 | B2 |
6803851 | Kramer et al. | Oct 2004 | B1 |
6894601 | Grunden et al. | May 2005 | B1 |
6911898 | Chung | Jun 2005 | B2 |
6943725 | Gila | Sep 2005 | B2 |
6970085 | Okabe et al. | Nov 2005 | B2 |
7068181 | Chuey | Jun 2006 | B2 |
7071813 | Fitzgibbon | Jul 2006 | B2 |
7135957 | Wilson | Nov 2006 | B2 |
7167076 | Wilson | Jan 2007 | B2 |
7194412 | Mays | Mar 2007 | B2 |
7289014 | Mullet et al. | Oct 2007 | B2 |
7310043 | Mamaloukas | Dec 2007 | B2 |
7327107 | Mullet et al. | Feb 2008 | B2 |
20040012483 | Mays | Jan 2004 | A1 |
20040070516 | Nielsen | Apr 2004 | A1 |
Number | Date | Country |
---|---|---|
299 01 677 | Feb 2003 | DE |
20 2004 004 446 | Oct 2004 | DE |
1 026 354 | Aug 2000 | EP |
1 176 392 | Jan 2002 | EP |
1 184 236 | Mar 2002 | EP |
1 298 955 | Apr 2003 | EP |
Number | Date | Country | |
---|---|---|---|
20080169900 A1 | Jul 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11296849 | Dec 2005 | US |
Child | 11999539 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11999539 | Dec 2007 | US |
Child | 12077303 | US | |
Parent | 11211297 | Aug 2005 | US |
Child | 11296849 | US |