I. Field of the Invention
The present invention relates to spinal surgery and, more particularly, to systems and methods for performing spinal fusion between adjacent cervical vertebrae.
II. Discussion of the Prior Art
Intervertebral spinal inserts are used to provide support and maintain normal distance between adjacent vertebrae in cases where a patient's vertebral discs have degenerated. Such degeneration can occur as a result of aging or trauma and typically results in pinched or damaged nerves between or proximal to the adjacent vertebrae. Moreover, such disc degeneration causes shifting of the loading along the patient's spinal column, which in turn further accelerates the vertebral degeneration.
Intervertebral inserts are typically used to reestablish normal intervertebral spacing and to cause fusion between adjacent vertebral bodies. A common problem with the existing intervertebral spinal inserts is that they do not provide stabilization in two perpendicular directions in the plane of the patient's intervertebral space. Another disadvantage is that, during such major surgery, the actual insertion of the intervertebral insert requires distraction of the adjacent vertebrae to first open a sufficiently large passage for the insertion of the insert therebetween. Such distraction is typically performed by dedicated instrumentation and invasive tools, which must first enter the intervertebral space and then grip and hold apart the adjacent vertebrae. Moreover, the shape of current inserts does not take advantage of the natural contoured shape of the adjacent vertebral surfaces.
It is desirable to be able to insert one or more prosthetic implants between vertebrae to stabilize the vertebrae and promote fusion of the vertebrae. Further, it is desirable to insert these implants via a minimally invasive procedure to reduce the potential trauma to a patient. In minimally invasive implant insertion procedures, it is desirable to be able to monitor the location of the implant relative to the vertebrae using a fluoroscope. When implanting bony implants, however, it may be difficult to visualize the implant in this fashion. A need exists, therefore, for an inserter, implant, and minimally invasive procedure that enables a surgeon to monitor the implant location relative to the vertebrae during the insertion process.
The present invention is directed at addressing this need and eliminating, or at least reducing, the effects of the shortcomings of the prior art as described above.
The present invention overcomes the drawbacks of the prior art by providing, according to a first broad aspect of the present invention, a system for performing spinal fusion, including a spinal implant and an implant insertion tool. The spinal implant has top and bottom sides, lateral sides, a proximal side and a distal side, where the top and bottom sides each have a generally polygonal cross-section. The proximal side is intersected generally perpendicular by at least two apertures defining a purchase region therebetween. The implant insertion tool includes an elongate fork member and a generally tubular lock member. The elongate fork member has a pair of clamping arms extending generally parallel and away from the distal end of an elongate section. Each clamping arm has an engagement feature dimensioned to slidably engage the apertures of the spinal implant. A thread feature is provided at the proximal end of the elongate section, as well as a handling feature further proximal from the thread feature. The generally tubular lock member has a distal end, a bore dimensioned to receive a proximal portion of the elongate fork member therethrough from the distal end but smaller than the outer dimension of said clamping arms of the elongate fork member, and a thread feature at the proximal end dimensioned to engage the thread feature of the elongate fork member. Clockwise rotation of the tubular lock member with respect to the elongate fork member causes the distal end of the tubular lock member to force the clamping arms of the elongate fork member to displace laterally toward the longitudinal axis of the elongate fork member. This causes the engagement features to displace toward each other, securing the spinal implant by creating a compressive force on the purchase region when the engagement features are slidably engaged in the at least two apertures.
The present invention overcomes the drawbacks of the prior art by providing, according to a second broad aspect of the present invention, a spinal implant for use with an inserter having an elongate fork member and a tubular lock member and at least two engagement features. The spinal implant includes a generally annular portion of bone fusion matrix having top and bottom sides, lateral sides, a proximal side and a distal side, with the top and bottom sides having a generally polygonal cross-section. At least two apertures are provided generally perpendicular to and intersecting with the proximal side, creating a purchase region therebetween.
The present invention overcomes the drawbacks of the prior art by providing, according to a third broad aspect of the present invention, an implant insertion device for inserting a spinal implant having at least two apertures defining a purchase region therebetween. The implant insertion device includes an elongate fork member and a generally tubular lock member. The elongate fork member has a pair of clamping arms extending generally parallel and away from the distal end of an elongate section. Each clamping arm has an engagement feature dimensioned to slidably engage the apertures of the spinal implant. A thread feature is provided at the proximal end of the elongate section. A generally cylindrical handling feature is provided further proximal from the thread feature. The generally tubular lock member has a distal end, a bore dimensioned to receive a proximal portion of the elongate fork member therethrough from the distal end but smaller than the outer dimension of the clamping arms of the elongate fork member. A thread feature is provided at the proximal end dimensioned to engage the thread feature of the elongate fork member. Clockwise rotation of the tubular lock member with respect to the elongate fork member will cause the distal end of said tubular lock member to force the clamping arms of the elongate fork member to displace laterally toward the longitudinal axis of the elongate fork member. This lateral displacement causes the engagement features to displace toward each other and thus secure the spinal implant by creating a compressive force on the purchase region.
The present invention overcomes the drawbacks of the prior art by providing, according to a fourth broad aspect of the present invention, a method for performing spinal fusion, comprising the steps of: (a) providing a spinal implant having top and bottom sides, lateral sides, a proximal side and a distal side, said top and bottom sides having a generally polygonal shape, the proximal side being intersected generally perpendicular by at least two apertures creating a purchase region therebetween; (b) providing a spinal implant insertion device having an elongate fork member and a tubular lock member, the elongate fork member having a pair of clamping arms extending generally parallel and away from the distal end of an elongate section, each clamping arm having an engagement feature dimensioned to slidably engage the apertures of the spinal implant, a thread feature at the proximal end of the elongate section and a handling feature further proximal from the thread feature, and the generally tubular lock member having a distal end, a bore dimensioned to receive a proximal portion of the elongate fork member therethrough from the distal end but smaller than the outer dimension of the clamping arms of the elongate fork member, and a thread feature at the proximal end that is dimensioned to engage the thread feature of the elongate fork member; (c) engaging the at least two apertures of the spinal implant with the engagement features of the elongate fork member; (d) rotating the tubular lock member clockwise with respect to the elongate fork member causing the distal end of said tubular lock member to force the clamping arms of the elongate fork member to displace laterally toward the longitudinal axis of the elongate fork member, the lateral displacement causing the engagement features to displace toward each other and thus securing the spinal implant by creating a compressive force on the purchase region; (d) introducing the inserter and the secured spinal implant into a prepared intervertebral space; (e) rotating the tubular lock member counterclockwise with respect to the elongate fork member causing a reduction of the compressive force on the purchase region and allowing the engagement features of the elongate fork member to be slidably disengaged from the spinal implant; and (f) removing the spinal implant insertion device from the prepared intervertebral space.
Other objects and advantages of the invention will become apparent upon reading the following detailed description and upon reference to the drawings in which:
Illustrative embodiments of the invention are described below. In the interest of clarity, not all features of an actual implementation are described in this specification. It will of course be appreciated that in the development of any such actual embodiment, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with apparatus-related and business-related constraints, which will vary from one implementation to another. Moreover, it will be appreciated that such a development effort might be complex and time-consuming, but would nevertheless be a routine undertaking for those of ordinary skill in the art having the benefit of this disclosure. The apparatus disclosed herein boast a variety of inventive features and components that warrant patent protection, both individually and in combination.
The two-pronged feature 12 disposed at the distal end of the elongate fork member 11 utilizes two clamping arms 16. The clamping arms 16 are generally parallel and spaced apart from one another when in a freestanding configuration. An engagement feature 17 is disposed on each of the clamping arms 16 at its distal end generally parallel to the clamping arms 16. Each engagement feature 17 is coupled with the clamping arms 16 so that the engagement feature 17 is restrained from movement relative to the clamping arm 16. The engagement features 17 are generally cylindrical with a diameter smaller than the apertures 36 previously described on the exemplary implant 30 enabling each of the engagement features 17 to slidably engage one of the apertures 36.
Further proximal from the engagement features 17, the outer surface of each of the clamping arms 16 is tapered when the arms are in a freestanding parallel relationship to one another. The taper feature 18 is oriented with the larger dimension closest to the engagement features 17 and the smaller dimension closest to the proximal handling feature 14 of the device. Proximal to the taper feature 18, the elongate fork member 11 becomes generally cylindrical and has a constant diameter approximately matching the smallest outer dimension of the taper feature 18. In the presented embodiment, the clamping arms 16 join to form one body. The length of the generally cylindrical portion 15 ranges from approximately 2–23 cm. A threaded feature 13 is disposed concentric and proximal to the generally cylindrical portion 15.
The handling feature 14 in the exemplary embodiment is the most proximal feature and is generally cylindrical. The handling feature allows a clinician to manipulate the tool during an implant insertion procedure which may include multiple facets or knurling. Alternatively, the handling feature 14 may be constructed to engage a complimentary control device. In the presented embodiment, the handling feature 14 is generally cylindrical with one flat surface 19. In addition, a concentric channel 20 is disposed toward the proximal end of the handling feature 14 and intersects the flat surface 19. When mated to a complimentary handling device, the flat surface 19 restricts rotation between the complimentary handling fixture and the handling feature 14. Similarly, the concentric channel 20 provides a surface that may be engaged by a retractable feature on the complimentary handling fixture to restrict axial motion between the complimentary handling fixture and the elongate fork member 11.
In order to use the system to perform a spinal fusion procedure, the clinician must first designate the appropriate implant size. After the implant 30 is chosen, the engagement features 17 of the elongate fork member 11 are inserted into the apertures 36 on the implant 30. At that time the implant 30 and elongate fork member 11 are slidably engaged with one another. Before the clinician can manipulate the combined implant 30 and elongated fork member 11, they must be releasably secured together. In order to secure the implant 30 onto the elongate fork member 11, the clinician would next employ the tubular lock member 21. The clinician would insert the proximal end of the elongate fork member 11 into the central bore 22 of the tubular lock member 21 at its distal end. The tubular lock member 21 would then be advanced over the elongate fork member 11 until the thread feature 13 of that member and the thread feature 23 of the tubular lock member 21 become engaged.
Once engaged, advancement of the tubular lock member requires rotation of the tubular lock member 21 with respect to the elongate fork member 11. Preferably, after only a small amount of engagement of the thread features the distal end of the tubular lock member 21 would contact the taper feature 18 of the elongate fork member 11. The tubular lock member 21 would be advanced creating greater interference as the distal end approaches the distal end of the taper feature 18 which has the larger outer dimension. The increasing interference would laterally displace the clamping arms 16 of the elongate fork member 11 towards each other. Since the engagement features 17 of the elongate fork member 11 were initially inserted into the apertures 36 of the exemplary implant 30, the displacement of the clamping arms 16 would create a compressive force on the purchase region 38 separating the apertures 36 of the exemplary implant 30. That compressive force allows a clinician to manipulate the system without the exemplary implant 30 becoming disengaged from the inserter 10.
A clinician can utilize the secured system in either an open or minimally invasive spinal fusion procedure. In either type of procedure, a working channel would be created in a patient that reaches the targeted spinal level. After the creation of that channel, the intervertebral space would be prepared. After preparation the secured device is used to place a spinal implant 30 into the prepared intervertebral space. Once the implant 30 is inserted into the prepared space, the implant 30 is released from the implant inserter 10 by retracting the tubular lock member 21 from the elongate fork member 11 by rotating the tubular lock member 21 with respect to the elongate fork member 11 in the opposite direction from that used to initially secure the implant 30. That motion removes the compressive force on the purchase region 38 between the apertures 36 of the implant 30 and allows the engagement features 17 to be slidably removed from the apertures 36. After the engagement features 17 are disengaged from the implant 30, the inserter 10 is removed from the working channel and the channel is closed. As previously mentioned, additional materials may be included in the procedure either before, during or after the insertion of the implant 30 to aid the natural fusion of the targeted spinal level.
While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof have been shown by way of example in the drawings and are herein described in detail. It should be understood, however, that the description herein of specific embodiments is not intended to limit the invention to the particular forms disclosed, but on the contrary, the invention is to cover all modifications, equivalents, and alternative falling within the spirit and scope of the invention as defined by the appended claims.
For example, although shown and described above with reference to implants formed from bone, it is to be readily appreciated that the insertion tool and manner of delivering multiple implants simultaneously may be employed with implants of any number of suitable constructions, including but not limited to metal, ceramic, plastic or composite. Moreover, with regard to bone, it will be readily appreciated that this term may be construed to include bone autograft (from the patient), allograft (from other human cadavers), or xenograft (bone from other species). It will also be appreciated that, although shown within the context of cervical spinal fusion, the system and related methods disclosed herein may find application in other areas of spinal fusion, such as thoracic and/or lumbar spinal fusion, such as may be accomplished by varying the sizes and dimensions of the implants and introducer system depending upon the particular spinal level (thoracic or lumbar). As an added convenience, the inserter 10 and/or any of a variety of sizer instruments used with the inserter 10 may be provided in a color-coded fashion comprising any number of different colors, with each color denoting a specific size implant 30 to employ. In this fashion, the surgeon may quickly and easily identify which size implant 30 (as well as a specific size inserter 10) depending upon the color coding of the sizer (not shown) employed to pre-size the intradiscal space.
This application claims the benefit of the filing date under 35 USC 119(e) of provisional application entitled “Spinal Surgery Systems and Methods”, Ser. No. 60/336,501 filed Oct. 30, 2001, and fully incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
803692 | Hill | Nov 1905 | A |
3486505 | Morrison | Dec 1969 | A |
3518993 | Blake | Jul 1970 | A |
3604487 | Gilbert | Sep 1971 | A |
3745995 | Kraus | Jul 1973 | A |
3848601 | Ma et al. | Nov 1974 | A |
4026304 | Levy | May 1977 | A |
4026305 | Brownlee et al. | May 1977 | A |
4646738 | Trott | Mar 1987 | A |
4657550 | Daher | Apr 1987 | A |
4743256 | Brantigan | May 1988 | A |
4781591 | Allen | Nov 1988 | A |
4834757 | Brantigan | May 1989 | A |
4877020 | Vich | Oct 1989 | A |
4878915 | Brantigan | Nov 1989 | A |
4932975 | Main et al. | Jun 1990 | A |
4961740 | Ray et al. | Oct 1990 | A |
4962766 | Herzon | Oct 1990 | A |
5026373 | Ray et al. | Jun 1991 | A |
5055104 | Ray | Oct 1991 | A |
5062845 | Kuslich et al. | Nov 1991 | A |
5092572 | Litwak et al. | Mar 1992 | A |
5133717 | Chopin | Jul 1992 | A |
5133755 | Brekke | Jul 1992 | A |
5171278 | Pisharodi | Dec 1992 | A |
5192327 | Brantigan | Mar 1993 | A |
5217497 | Mehdian | Jun 1993 | A |
5269785 | Bonutti | Dec 1993 | A |
5284153 | Raymond et al. | Feb 1994 | A |
5290494 | Coombes et al. | Mar 1994 | A |
5300076 | Leriche | Apr 1994 | A |
5304210 | Crook | Apr 1994 | A |
5306307 | Senter et al. | Apr 1994 | A |
5306309 | Wagner et al. | Apr 1994 | A |
5322505 | Krause et al. | Jun 1994 | A |
5334205 | Cain | Aug 1994 | A |
5336223 | Rogers | Aug 1994 | A |
5364400 | Rego, Jr. et al. | Nov 1994 | A |
5395372 | Holt et al. | Mar 1995 | A |
5397363 | Gelbard | Mar 1995 | A |
5405391 | Henderson et al. | Apr 1995 | A |
5413602 | Metz-Stavenhagen | May 1995 | A |
5425772 | Brantigan | Jun 1995 | A |
5431658 | Moskovich | Jul 1995 | A |
5443514 | Steffee | Aug 1995 | A |
5443515 | Cohen et al. | Aug 1995 | A |
5445639 | Kuslich et al. | Aug 1995 | A |
5454811 | Huebner | Oct 1995 | A |
5458638 | Kuslich et al. | Oct 1995 | A |
5484403 | Yoakum et al. | Jan 1996 | A |
5489308 | Kuslich et al. | Feb 1996 | A |
5514180 | Heggeness et al. | May 1996 | A |
5522879 | Scopelianos | Jun 1996 | A |
5522899 | Michelson | Jun 1996 | A |
5524624 | Tepper et al. | Jun 1996 | A |
5527312 | Ray | Jun 1996 | A |
5534030 | Navarro et al. | Jul 1996 | A |
5540688 | Navas | Jul 1996 | A |
5545222 | Bonutti | Aug 1996 | A |
5562736 | Ray et al. | Oct 1996 | A |
5565005 | Erickson et al. | Oct 1996 | A |
5571190 | Ulrich et al. | Nov 1996 | A |
5571192 | Schonhoffer | Nov 1996 | A |
5593409 | Michelson | Jan 1997 | A |
5609636 | Kohrs et al. | Mar 1997 | A |
5611800 | Davis et al. | Mar 1997 | A |
5611810 | Arnold et al. | Mar 1997 | A |
5632747 | Scarborough et al. | May 1997 | A |
5645598 | Brosnahan | Jul 1997 | A |
5653761 | Pisharodi | Aug 1997 | A |
5653762 | Pisharodi | Aug 1997 | A |
5658336 | Pisharodi | Aug 1997 | A |
5658337 | Kohrs et al. | Aug 1997 | A |
5662710 | Bonutti | Sep 1997 | A |
5665122 | Kambin | Sep 1997 | A |
5669909 | Zdeblick et al. | Sep 1997 | A |
5676703 | Gelbard | Oct 1997 | A |
5683394 | Rinner | Nov 1997 | A |
5683400 | McGuire | Nov 1997 | A |
5683464 | Wagner et al. | Nov 1997 | A |
5690629 | Asher et al. | Nov 1997 | A |
5700264 | Zucherman et al. | Dec 1997 | A |
5700291 | Kuslich et al. | Dec 1997 | A |
5700292 | Marguiles | Dec 1997 | A |
5702449 | McKay | Dec 1997 | A |
5702451 | Biedermann et al. | Dec 1997 | A |
5702453 | Rabbe et al. | Dec 1997 | A |
5702454 | Baumgartner | Dec 1997 | A |
5702455 | Saggar | Dec 1997 | A |
5703451 | Yamamichi | Dec 1997 | A |
5707373 | Sevrain et al. | Jan 1998 | A |
5711957 | Patat et al. | Jan 1998 | A |
5716415 | Steffee | Feb 1998 | A |
5720748 | Kuslich et al. | Feb 1998 | A |
5720751 | Jackson | Feb 1998 | A |
5728159 | Stroever et al. | Mar 1998 | A |
5741261 | Moskovitz et al. | Apr 1998 | A |
5755797 | Baumgartner | May 1998 | A |
5766252 | Henry et al. | Jun 1998 | A |
5772661 | Michelson | Jun 1998 | A |
5775331 | Raymond et al. | Jul 1998 | A |
5779642 | Nightengale | Jul 1998 | A |
5782830 | Farris | Jul 1998 | A |
5782919 | Zdeblick et al. | Jul 1998 | A |
5785710 | Michelson | Jul 1998 | A |
5797909 | Michelson | Aug 1998 | A |
5800549 | Bao et al. | Sep 1998 | A |
5800550 | Sertich | Sep 1998 | A |
5814084 | Grivas et al. | Sep 1998 | A |
5851208 | Trott | Dec 1998 | A |
5865845 | Thalgott | Feb 1999 | A |
5865848 | Baker | Feb 1999 | A |
5885299 | Winslow et al. | Mar 1999 | A |
5888219 | Bonutti | Mar 1999 | A |
5888224 | Beckers et al. | Mar 1999 | A |
5893890 | Pisharodi | Apr 1999 | A |
5904719 | Errico et al. | May 1999 | A |
5910315 | Stevenson et al. | Jun 1999 | A |
5954769 | Rosenlicht | Sep 1999 | A |
5968098 | Winslow | Oct 1999 | A |
5993474 | Ouchi | Nov 1999 | A |
6004326 | Castro et al. | Dec 1999 | A |
6008433 | Stone | Dec 1999 | A |
6015436 | Schunhuffer | Jan 2000 | A |
6033405 | Winslow et al. | Mar 2000 | A |
6039761 | Li et al. | Mar 2000 | A |
6042582 | Ray | Mar 2000 | A |
6045580 | Scarborough et al. | Apr 2000 | A |
6048342 | Zucherman et al. | Apr 2000 | A |
6063088 | Winslow | May 2000 | A |
6083225 | Winslow et al. | Jul 2000 | A |
6096080 | Nicholson et al. | Aug 2000 | A |
6102948 | Brosnahan, III | Aug 2000 | A |
6120506 | Kohrs et al. | Sep 2000 | A |
6132472 | Bonutti | Oct 2000 | A |
6159211 | Boriani et al. | Dec 2000 | A |
6159215 | Urbahns et al. | Dec 2000 | A |
6193756 | Studer et al. | Feb 2001 | B1 |
6200347 | Anderso | Mar 2001 | B1 |
6224607 | Michelson | May 2001 | B1 |
6224631 | Kohrs | May 2001 | B1 |
6241769 | Nicholson et al. | Jun 2001 | B1 |
6241771 | Gresser et al. | Jun 2001 | B1 |
6251140 | Marino et al. | Jun 2001 | B1 |
6258125 | Paul et al. | Jul 2001 | B1 |
6277149 | Boyle et al. | Aug 2001 | B1 |
6319257 | Carignan et al. | Nov 2001 | B1 |
6371989 | Chauvin et al. | Apr 2002 | B1 |
6383221 | Scarborough et al. | May 2002 | B1 |
6440142 | Ralph et al. | Aug 2002 | B1 |
6442814 | Landry et al. | Sep 2002 | B1 |
6454806 | Cohen et al. | Sep 2002 | B1 |
6527773 | Lin et al. | Mar 2003 | B1 |
6547823 | Scarborough et al. | Apr 2003 | B2 |
6595998 | Johnson et al. | Jul 2003 | B2 |
6626905 | Schmiel et al. | Sep 2003 | B1 |
6635086 | Lin | Oct 2003 | B2 |
6648895 | Burkus et al. | Nov 2003 | B2 |
6755841 | Fraser et al. | Jun 2004 | B2 |
20020058950 | Winterbottom et al. | May 2002 | A1 |
20030105528 | Shimp et al. | Jun 2003 | A1 |
Number | Date | Country |
---|---|---|
2015507 | Jan 1991 | CA |
369603 | May 1990 | EP |
517030 | May 1992 | EP |
667127 | Aug 1995 | EP |
706876 | Apr 1996 | EP |
716840 | Jun 1996 | EP |
737448 | Oct 1996 | EP |
796593 | Sep 1997 | EP |
880938 | Feb 1998 | EP |
809974 | Apr 1998 | EP |
809975 | Apr 1998 | EP |
811356 | Apr 1998 | EP |
WO-9404100 | Mar 1994 | WO |
WO-9410928 | May 1994 | WO |
WO-9501810 | Jan 1995 | WO |
WO-9608205 | Mar 1996 | WO |
WO-9617564 | Mar 1996 | WO |
WO-9641582 | Dec 1996 | WO |
WO-9720513 | Jun 1997 | WO |
WO-9733525 | Sep 1997 | WO |
WO-9737620 | Oct 1997 | WO |
WO-9809586 | Mar 1998 | WO |
WO-9814142 | Apr 1998 | WO |
WO-9817208 | Apr 1998 | WO |
WO-9825539 | Jun 1998 | WO |
WO-9908627 | Feb 1999 | WO |
WO-9938461 | Aug 1999 | WO |
WO-0045712 | Aug 2000 | WO |
WO-0045713 | Aug 2000 | WO |
WO-9106261 | May 2001 | WO |
WO-0141681 | Jun 2001 | WO |
WO-0149333 | Jul 2001 | WO |
Number | Date | Country | |
---|---|---|---|
60336501 | Oct 2001 | US |