The present disclosure relates generally to design and validation of gas turbine engines, and more particularly to a system and methods for determining blade clearance for asymmetric rotors.
The determination of the tip clearance of blades in a gas turbine engine is important for gas turbine engines. Several different types of noncontact sensors may be used to generate a signal which is sensitive to the displacement of a rotor blade. When turbine blades have a symmetric spacing, blade clearance can be monitored in the frequency domain as a function of the amplitude of the blade pass frequency. Some recently designed engines have asymmetric blade spacing to produce decreased levels of vibration excitation at specific frequencies. The conventional methods of detection and signal processing system for symmetric blades does not work for asymmetrically spaced blades. Accordingly, there is a desire to provide determination of blade clearance for asymmetric rotors.
Disclosed and claimed herein are a system and methods for determining blade clearance for asymmetrical rotors. In one embodiment, a method includes detecting displacement data of a rotor blade coupled to a shaft and receiving tachometer data determined for rotation speed of the shaft. The method also includes resampling the displacement data of the rotor blade based on the tachometer data, wherein resampling includes sampling the displacement data at constant increments of shaft rotation, and determining blade clearance based on the resampled displacement data.
In one embodiment, a system for determining blade clearance for asymmetrical rotors includes a displacement sensor configured to detect displacement data of a rotor blade coupled to a shaft, a tachometer configured to output tachometer data for rotation speed of the shaft, and an analysis unit coupled to the displacement sensor and tachometer. According to one embodiment, the analysis unit is configured to resample the displacement data of the rotor blade based on the tachometer data, wherein resampling includes sampling the displacement data at constant increments of shaft rotation, and output an indication of blade clearance based on the resampled displacement data.
Other aspects, features, and techniques will be apparent to one skilled in the relevant art in view of the following detailed description of the embodiments.
The features, objects, and advantages of the present disclosure will become more apparent from the detailed description set forth below when taken in conjunction with the drawings in which like reference characters identify correspondingly throughout and wherein:
One aspect of the disclosure relates to determining the clearance of blades in a gas turbine engine. In one embodiment, a method for determining the clearance of blades in a gas turbine engine includes. Angular resampling of may be performed for the displacement data using the tachometer data in order to determine blade clearance.
According to another embodiment, a system for determining the clearance of blades in a gas turbine engine includes a displacement sensor, tachometer and analysis unit. The analysis unit may be configured to determine blade clearance based on angular resampling of displacement data using tachometer data.
As used herein, the terms “a” or “an” shall mean one or more than one. The term “plurality” shall mean two or more than two. The term “another” is defined as a second or more. The terms “including” and/or “having” are open ended (e.g., comprising). The term “or” as used herein is to be interpreted as inclusive or meaning any one or any combination. Therefore, “A, B or C” means “any of the following: A; B; C; A and B; A and C; B and C; A, B and C”. An exception to this definition will occur only when a combination of elements, functions, steps or acts are in some way inherently mutually exclusive.
Reference throughout this document to “one embodiment,” “certain embodiments,” “an embodiment,” or similar term means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, the appearances of such phrases in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner on one or more embodiments without limitation.
Referring now to the figures,
According to one embodiment, system 100 may be configured to determine blade clearance for rotors of a gas turbine engine with asymmetrical rotors. As shown in
Tachometer 115 may be configured to output data for rotation speed of shaft 120. Tachometer 120 may produce pulses at regular intervals.
Analysis unit 105 may include memory 106, such as RAM or Rom memory configured to store data and controller 107 configured to process data and one or more executable instructions. According to one embodiment, analysis unit 105 may be configured to resample received displacement data of the rotor blade based on the tachometer data and output an indication of blade clearance based on the resampled displacement data.
Process 200 may be initiated at block 205 with detecting displacement data of a rotor blade coupled to a shaft. Displacement data determined for the rotor blade can include blade length measurement data. The displacement data for the rotor blade may be instantaneous rotor blade displacement data determined by a capacitive displacement sensor.
At block 210, tachometer data determined for rotation speed of the shaft may be received. The tachometer data is determined by a tachometer producing pulses at regular intervals. The displacement data of the rotor blade may be resampled based on the tachometer data at block 215. Resampling can include sampling the displacement data at constant increments of shaft rotation. According to one embodiment, the resampling may be angular resampling to generate a resampled waveform for each revolution of the rotor blade based on one or more of determining zero up-crossings for the tachometer data, determining an angle of shaft of interest at each up-crossing, interpolating up-crossing angles to find shaft angle at all original sample times, and interpolating the signal at equal angular increments.
At block 220 blade clearance may be determined based on the resampled displacement data. The displacement data for the rotor blade may be output for control of a gas turbine engine. Blade clearance may further be based on a moving synchronous average as will be discussed in more detail below with reference to
Referring now to
Computing a moving synchronous average at block 321 may include determining one or more of a standard deviation and peak-to-peak displacement of the moving synchronous average as an indication of blade clearance. The moving synchronous average may be determined as a scalar feature which is sensitive to mean tip clearance. Computing temperature compensation of the scalar feature to compensate for thermal sensitivity of the sensor.
A blade clearance indication at block 325 may be based on the determined standard deviation at block 320.
While this disclosure has been particularly shown and described with references to exemplary embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the claimed embodiments.
This application claims priority to U.S. Provisional Application No. 61/922,443 filed on Dec. 31, 2013 and titled System and Methods for Determining Blade Clearance for Asymmetric Rotors, the disclosure of which is hereby incorporated by reference in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US14/71562 | 12/19/2014 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
61922443 | Dec 2013 | US |