The invention relates generally to nondestructive testing and more specifically, to eddy current inspection of manufactured components.
Gas turbine engines include rotating shafts and disks, which support rotating blades in the fan, compressor, high pressure turbine, and low pressure turbine. The rotating components are subject to substantial centrifugal loads during operation, which generate corresponding stress that must be limited for maximizing component life. In addition, defects, flaws, or other anomalies in the material may be introduced during the original manufacture of the engine components, or may occur during the operational life thereof. Accordingly, the engine components are typically inspected during the manufacturing process, and during routine maintenance outages, for uncovering any anomaly therein, which might limit the useful life of the components.
A common, non-destructive inspection technique is eddy current (EC) inspection of typically metal components. An EC probe includes a small electrical coil mounted near the tip thereof through which an alternating current is generated, which in turn produces an eddy current in the component. The probe tip is moved along the surface of the component for inspection and is used to measure the interaction between the electromagnetic field and the component. A defect or geometric abnormality in the material, which changes the homogeneity thereof, will disturb the eddy current. The disturbed eddy current modifies the exciting current in the probe coil, and the modified current is then suitably detected and correlated to particular properties of the material to indicate the corresponding anomaly.
For example, eddy current inspection is commonly used for measuring residual stress, density, and degrees of heat treatment in typically metal components. It is also typically used for detecting physical defects or abnormalities on or near the material surface such as dents, bumps, or minute cracks in the material.
Crack detection is particularly important in turbine engine components since cracks may propagate under stress and substantially reduce the useful life of a component, and may eventually lead to component failure if not suitably accommodated. However, the typical eddy current inspection apparatus is specifically configured for inspecting external surfaces of the specimen, with any internal cavities or channels with complex geometry therein typically being inspected visually using an optical borescope. Small or minute cracks in an internal channel are difficult to detect visually, and can substantially reduce the useful life of the specimen.
For example, a high pressure turbine (HPT) blade includes a hollow airfoil fed with coolant through several inlet channels extending downwardly through the supporting dovetail thereof. The dovetail includes corresponding lobes having serpentine profiles. The external surfaces of the dovetail lobes may be readily inspected using conventional eddy current equipment, yet the internal channels in the dovetail are relatively small and effectively hide the surfaces thereof from ready access. In addition, the geometry effects of such internal cavities give rise to substantial noise in the response signal such that small cracks and other fine defects cannot be detected using conventional EC inspection techniques.
Therefore, there is a need for an improved EC inspection technique for inspection of internal cavities in manufactured parts having limited access. Further, it is desirable that the EC inspection technique be repeatable and capable of detecting small cracks.
In accordance with an embodiment of the invention, a method for inspecting an internal cavity in a part is provided. The method includes inserting a probe into the internal cavity. The method also includes controlling movement of the probe using a defined scan path to scan the probe over a region of interest in the internal cavity. The method further includes applying multiple multifrequency excitation signals to the probe to generate a number of multifrequency response signals. The multifrequency excitation signals are applied along the defined scan path within the internal cavity. The method also includes performing a multifrequency phase analysis on the multifrequency response signals to inspect the internal cavity.
In accordance with another embodiment of the invention, another method for inspecting an internal cavity in a part is provided. The method includes generating a defined scan path to inspect a region of interest within the internal cavity. The defined scan path is generated using a computer model of the part and a computer model of an eddy current probe. The method also includes inserting the eddy current probe into the internal cavity. The method further includes controlling movement of the probe using the defined scan path to scan the eddy current probe over the region of interest. The method also includes applying multiple excitation signals to the probe to generate a number of response signals. The excitation signals are applied along the defined scan path within the internal cavity. The method also includes analyzing the response signals to inspect the internal cavity.
In accordance with another embodiment of the invention, an inspection system is provided. The inspection system includes an eddy current probe configured to induce eddy currents in a part. The inspection system also includes an eddy current instrument coupled to the eddy current probe, wherein the eddy current instrument is configured to apply multiple excitation signals to the eddy current probe to generate a number of response signals. The inspection system further includes a robot coupled to the eddy current probe and configured to insert the eddy current probe into an internal cavity in the part and to scan the eddy current probe over a region of interest within the internal cavity in accordance with a defined scan path. The inspection system also includes a processor configured to analyze the response signals from the eddy current instrument to inspect the region of interest within the internal cavity of the part.
These and other features, aspects, and advantages of the present invention will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:
As discussed in detail below, embodiments of the invention include a system and methods for inspecting internal cracks. As used herein, the term ‘internal cracks’ refers to anomalies at a region of interest located inside a cavity on an internal surface, either on a convex airfoil side or on a concave airfoil side of a blade. The internal surface on the convex side of a part is more difficult to access from outside than the one on a concave side. Some non-limiting examples of the anomalies include cracks and pits.
Turning to the drawings,
The inspection system 10 also includes an eddy current instrument 22 coupled to the eddy current probe 14 that applies multiple excitation signals to the eddy current probe 14 to generate response signals corresponding to the internal crack in the part 12. A processor 24 coupled to the eddy current instrument 22 is configured to analyze the response signals from the eddy current instrument 22 to inspect the region of interest within the internal cavity of the part 12. In a particular embodiment, the eddy current instrument 22 is configured to supply the excitation signals at selective frequencies and the processor 24 is configured to perform a multifrequency phase analysis on the response signals to inspect the internal crack of the part 12. Multifrequency phase analysis is discussed in U.S. Pat. No. 7,206,706, Changting Wang et al, “Inspection Method and System Using Multifrequency Phase Analysis,” which is hereby incorporated by reference in its entirety.
Multiple excitation signals are applied to the probe scanning along the internal cavity to generate multifrequency response signals in step 66. In a particular embodiment, the excitation signals induce eddy currents with the eddy current probe in the part resulting in generation of the multifrequency response signals. A multifrequency phase analysis is performed on the multifrequency response signals to inspect the internal cavity in step 68. In an exemplary embodiment, information regarding a position of the probe is supplied and the multifrequency response signals are correlated with the information of the position to identify the location of inspection data within the internal cavity.
An eddy current probe is inserted into the internal cavity in step 84. Movement of the eddy current probe is controlled using the defined scan path to scan the eddy current probe over the region of interest in step 86. In a particular embodiment, the movement is controlled by a robot. Multiple excitation signals are applied to the probe at multiple positions within the internal cavity to generate multifrequency response signals in step 88. The response signals are analyzed to inspect the internal cavity in step 90. In an exemplary embodiment, information regarding a position of the probe is supplied and the multifrequency response signals are correlated with the information of the position to identify the location of inspection data within the internal cavity. In another embodiment, the internal cavity inspected is on a convex side of the part.
The various embodiments of a system for inspecting internal cracks and a method for the same described above thus provide a way to achieve convenient, efficient and accurate detection of defects in areas that are not easily accessible. These systems also allow for highly efficient aircraft systems due to improved detection of internal cracks.
Of course, it is to be understood that not necessarily all such objects or advantages described above may be achieved in accordance with any particular embodiment. Thus, for example, those skilled in the art will recognize that the systems and techniques described herein may be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other objects or advantages as may be taught or suggested herein.
Furthermore, the skilled artisan will recognize the interchangeability of various features from different embodiments. For example, the use of an eddy current probe with respect to one embodiment can be adapted for detecting defects on a concave side of a part. Similarly, the various features described, as well as other known equivalents for each feature, can be mixed and matched by one of ordinary skill in this art to construct additional systems and techniques in accordance with principles of this disclosure.
While only certain features of the invention have been illustrated and described herein, many modifications and changes will occur to those skilled in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the invention.