The invention relates generally to systems and procedures configured to implement neuromuscular surgeries.
Often surgeries are undertaken near nerve bundles or around neural muscular junctions in the vicinity of a nearby tumor. Attempts to surgically remove the tumor, especially when it is very close to the nerve bundles, may cause damage to nerves, especially those nerves that operate the respective innervated muscles. Nerve activity is measured by exposing the nerves present on muscular tissue with electrolyte solutions to stimulate nerves to cause muscle activity. The electrolytes may also cause the muscles to activate, thus providing a source of muscle noise that obscures the signal generated by the nerve upon exposure of the nerve to the same electrolyte. Accordingly, the measurement of how alive a nerve is, that is its functional activity, is made less certain as the source of muscular activity cannot be ascertained with high fidelity. That is, how much muscular activity is attributable to electrolyte stimulation of muscle, versus how much muscular activity is attributable to electrolyte stimulation of nerves that in turn stimulate the muscle cannot be accurately ascertained.
Systems and methods employing photonic activation of innervated muscular tissue are descried to assist the implementation of neuromuscular surgeries to enable a surgeon to conduct surgical procedures to minimize the risk of cutting live nerves, or to assess where to make incisions to maintain or maximize neural muscular functionality of an organ undergoing a surgical process.
The systems and methods include optical-based equipment and methods to detect and anatomically map the location of active nerves or nerve bundles before, during, or after surgical procedures. The optical-based system supports and provides for methods to stimulate nerves in a non-electrolytic manner to activate or stimulate nerves within muscular tissue within the surgical field so that a given nerve's anatomical location or level of functional activity may be made contemporaneously apparent to the surgeon or operating personnel in the form of a neural activity map. The neural activity map provides for mapping of nerve location and classifying the mapped nerves by functional levels. The contemporaneously presented neural activity map enables the surgeon or operating personnel to initially plan a neural muscular surgery before undertaking incisions, or modify the surgical procedure based upon the updated neural mapping of the surgical region of interest.
Embodiments for the system and are described in detail below with reference to the following drawings.
Particular include descriptions of optical-based systems and methods relating to the execution of surgeries upon nerve containing muscular tissue. The below described systems and methods enable the detection and anatomically mapping the location of active nerves or nerve bundles before, during, or after surgical procedures. The optical-based system supports and provides for methods to stimulate nerves in a non-electrolytic manner to activate or stimulate nerves within muscular tissue within the surgical field so that a given nerve's anatomical location or level of functional activity may be made contemporaneously apparent to the surgeon or operating personnel in the form of a neural activity map. The neural activity map provides for mapping of nerve location and classifying the mapped nerves by functional levels. The contemporaneously presented neural activity map enables the surgeon or operating personnel to initially plan a neural muscular surgery before undertaking incisions, or modify the surgical procedure based upon the updated neural mapping of the surgical region of interest. The systems and methods include employing photonic activation of innervated muscular tissue to assist the implementation of neuromuscular surgeries. Particular embodiments include optical based systems and methods to detect and anatomically map the location of active nerves or nerve bundles before, during, and/or after surgical procedures. The optical system supports and provides for methods to stimulate nerves without requiring the need for using electrolytes to activate or stimulate nerves residing on or within at least a portion of muscular tissue viewable in a surgical field so that nerve tissue presence and functional activity may be mapped to an anatomical location and displayed on an analog or digital image of the tissue regions susceptible to surgical procedures. The photo activation of nerves provides an improved signal to noise ratio to allow rapid, contemporaneous detection with improved nerve tissue mapping resolution. The contemporaneous detection, nerve activity estimation, and improved mapping resolution within the surgical field affords greater confidence to the operating physician in making decisions regarding anatomical locations for conducting surgery within the surgical field. That is, the optical-based systems and methods provides an improved way to enable a surgeon to conduct surgical procedures to either minimize the risk of cutting live nerves, and/or to assess where to make incisions in order to maintain and/or maximize neural muscular functionality of a given organ undergoing the surgical process. Other particular embodiments provide for optical based systems and methods to alert and guide the surgeon where to engage in the surgical procedures, including those involving tumor removal with preservation of neural muscular function of adjacent organs or structures within the surgical field. The optical based systems and methods phontonically activate at least one nerve or a nerve bundle or bundles to detect neural activity and anatomically map the location of active nerves or nerve bundles during surgical procedures. The photo activation of nerves provides an improved signal to noise ratio relative to electrolyte stimulation methods and enables contemporaneous detection with improved nerve tissue mapping resolution. The contemporaneous nerve mapping within the neural muscular region of interest provides for informing surgery decision makers as to the specific locations of nerves and their relative functional activity. The located nerves may be classified as to being active, partially active, and/or to be virtually inactive or non-functioning or dead, either as standalone nerve branches and/or nerve bundles. Yet other systems and methods are described acquiring, processing, and presenting anatomical maps of innervated tissue within a surgical field in which the nerve, nerves, or nerve bundles are stimulated by light. The effect of the light-stimulated nerve, nerves, or nerve bundle are measured by an electromyleograph that provides variations in signal output in proportion to the activity of a nerve or nerves, or the number of functional nerves undergoing photo stimulation capable of a generating muscular activity captured as electromyleograph signals (EMS). The EMS outputs are measured and associated with scanner light position within the scanner illuminated region or regions of interest (ROI). Signal maps are then constructed by overlaying EMS readings to locations within the ROI. The EMS signal maps may be overlaid on video or computer generated images of the surgical field or surgical ROI. Yet other embodiments include methods to detect a nerve's location within a region-of-interest of the muscular innervated tissue.
The method includes exposing portions of the region-of-interest with an energy source, the region-of-interest being in view of a camera; collecting signals arising from the exposed portions from an electromyleograph in signal communication with the innervated tissue exposed to the energy source; measuring the strength of the collected signals; mapping the measured signals within the region-of-interest onto an image of the region-of-interest captured by the camera, and correlating the mapped signals within the image of region-of-interest. The particular embodiments provide for exposing the region-of-interest with an energy source having at least one of infra red light, visible light, and ultraviolet light, and that mapping the measured signals within the region-of-interest includes Cartesian, radial, circular, and polar forms of mapping. Correlation of the mapped signals includes signal strength values that are overlaid upon or with the portions of the region-of-interest. Other particular embodiments provide that mapped signal correlation includes overlaying representations of the signal strength values with the portions of the region-of-interest. The overlaid representations may include visual-coding the signal strength values with the portions of the region-of-interest.
The particular embodiments also provide for a nerve response mapping system configured to detect a nerve or set of nerves associated with innervated tissue, including muscular tissue, located within a surgical region-of-interest of an organ or tissue region. The nerve response mapping system may also estimate, predict, or otherwise classify the nerve activity of degree of functionality by employing a means for exposing portions of the surgical region-of-interest with either a light energy source or an acoustic source, a means for obtaining an image of the region-of-interest, an electromyleograph in signal communication with the innervated tissue exposed to the light energy source or the acoustic energy source to generate signals arising from the exposed portions, a means for measuring the strength of the collected signals, a means for mapping the measured signals within the image of the region-of-interest, and a means for correlating the mapped signals with the image of the region-of-interest.
Alternate embodiments of the nerve response mapping system include that the energy source includes at least one of an infra red light, a visible light, an ultraviolet light, and an acoustic energy, and the means for mapping the measured signals within the region of interest includes a computer having a display of the region of interest configured to present representations of values of the collected signals with the portions at least one of a Cartesian, radial, circular, and polar map of the exposed portions overlaid onto the display, and the means for correlating the measured signals within the region of interest includes the computer system configured to present visual coding of the signal strength values with the portions of the region-of-interest.
Yet other alternate embodiments of the nerve response mapping system include that the energy source may be housed in a wedge shaped enclosure that is configured for insertion between a nerve layer and a muscle layer of the region of interest that may be subjected to surgical procedures. From the wedge shaped housing, energies derived from infrared, ultraviolet, and/or acoustic energy are directed to the nerve layer for stimulation of a single nerve, a nerve branch, or nerve branches, and/or bundle of nerves. The direction of the light may be expansive over a substantial portion of the region of interest, or in a incremental manner by scanning in a series of raster like lines having scanning increments of light or acoustic cells definable in a Cartesian plane to obtain higher resolution signals more focused on smaller regions of the nerves, nerve branches, and/or nerve bundles. Via the electromyleograph in signal communication with the muscle layer, nerve activity from the energy stimulation is measured in the form of electromyleograph generated signals proportionately resulting from muscle movement generated from nerve activity communicated to the muscle layer as a result of the energy stimulation, either infrared, visible, ultraviolet, or acoustic delivered energy. Symbols or numerical values of electromyleograph generated signals proportionately resulting from fully active or functioning nerves to partially active or functioning nerves to virtually inactive or non-functioning nerves may then be plotted, in a map-like grid, as an overlay upon a displayed depiction of the surgical region of interest. The displayed depiction may include a “live” video image feed, a single screenshot image, and/or a graphical presentation of the region of interest. The symbols may be color coded or otherwise visually encoded to indicate differences in degrees of nerve activity as a function of nerve location stimulation. Patients undergoing radical prostatectomy bare bear the risk to of having nerve bundles along the periphery of the prostate severely compromised by encroaching tumor growth, and functionality significantly altered during surgical incisions made to remove the tumor growth or other compromised prostate regions. Optical nerve stimulation within the surgical field or region of interest is advantageous, as it does not create electrical artifacts in electromyleographs that commonly occurs by non-optical nerve stimulation processes. Thus, optical or photonic based EMS readings provide improved signal to noise ratios that exhibit high spatial selectivity, permitting a map of the nerve bundles in a region subject to surgical intervention.
The NRM 10 also includes an optical window 34 of the optical scanner 30 that delivers light energy 40 received from the optical fiber 24 to a surgical field or surgical ROI 12 within an illuminated region 42 that exposes stimulating light to a nerve locus 16. The illuminated region 42 may be an even, near simultaneous illumination of a defined region, or progressively outlined in a near continuous or raster scan movement as a light bar is swept across the ROI 12. A camera image or series of images of the ROI 12 is captured by the camera 62 having a view of the ROI 12 and conveyed to the control and acquisition center 62. The camera 62 may be still camera or video, and the images conveyed may be analog and/or digital images.
The light energy 40 may be adjusted from infrared to ultraviolet energies to impart the optimal wavelength to promote nerve stimulation. When the light energy is other than infrared, the IR Nerve Stimulator 20 may be configured to be a Visible Light Nerve Stimulator 20 or an Ultraviolet Light Nerve Stimulator 20. The nerve locus 16 may include a single nerve, a plurality of nerves, or a bundle of interconnecting nerves. Nerve locus 16, upon being photo-stimulated from the optical scanner 30, causes muscle activity within the surgical field 12 in proportion to the native functionality of the nerve or nerves and generally in proportion to the light received. The muscle activity is measured by the EMS output delivered or conveyed through signal connectors 44 from the surgical ROI 12 to the electromyleograph 50. EMS signals are outputted to the control and acquisition center 60 to provide a nerve response map onto video or computer images of the ROI 12 within the illuminated region 40.
The nerve response map may extend beyond a single illuminated region 40 when the surgical ROI 12 is expanded beyond a single field of view. In the case of prostate surgery, the EMS indicates the activity of the cavernosal nerve of the penis. The same nerve may be stimulated on the exterior or anterior region of the prostate while the prostate is being surgically removed.
The neural activity of nerve loci 124 and 128 within each branch or trunk of the nerve loci tree structures will be able to be mapped onto an image of the ROI 12 at a resolution defined by the size of the scanning cell 112. The size of the scanning cell 112 may be varied to accommodate different desired signal resolutions, so that the number of columns and rows may be varied beyond the 10 by 17 Cartesian coordinate combinations depicted in this figure. Generally, the smaller the scanning cell 112, the greater the resolution. EMS outputs through signal connectors 44 to the myleograph 50. The EMS signal outputs is relayed to the Control and Acquisition Center 60 and is overlaid onto the image of the surgical ROI 12 sent by the camera 62 and presented on monitor 64. A grid plot of the microvolt or millivolt or equivalent readings will guide the surgeon in where to, or where not to, cut depending on the nerve map overlay.
In alternate embodiments, the scan cells 112 may be defined by pinpoint lasers, infrared, visible, and/or ultraviolet lasers. At higher energies, for example red, green, blue, and ultraviolet energy, the power wattage may be progressively lowered at the lower light wavelengths so that light stimulation of the nerves is at a level that doesn't damage the nerves and/or surrounding tissue.
The application claims priority to and incorporates by reference in its entirety U.S. Provisional Patent Application No. 60/968,823 filed Aug. 29, 2007.
Number | Date | Country | |
---|---|---|---|
60968823 | Aug 2007 | US |