The invention relates generally to systems and methods of optimizing the energy efficiency of hydraulic actuation systems, for use in, for example, storing energy using a system and methods for optimizing the efficiency of a compressed air energy storage system.
Traditionally, electric power plants have been sized to accommodate peak power demand. Moreover, electric power plant sizing must take into account their maximum power output, minimum power output, and a middle power output range within which they most efficiently convert fuel into electricity. Electric power plants are also constrained in terms of how quickly they can start-up and shut-down, and it is commonly infeasible to completely shut-down a power plant. The combination of power output constraints, and start-up and shut-down constraints, restricts a power plant's ability to optimally meet a fluctuating power demand. These restrictions may lead to increased green house gas emissions, increased overall fuel consumption, and/or to potentially higher operating costs, among other drawbacks. Augmenting a power plant with an energy storage system may create an ability to store power for later use, which may allow a power plant to fulfill fluctuating consumer demand in a fashion that minimizes these drawbacks.
An energy storage system may improve overall operating costs, reliability, and/or emissions profiles for electric power plants. Existing energy storage technologies, however, have drawbacks. By way of example, batteries, flywheels, capacitors and fuel cells may provide fast response times and may be helpful to compensate for temporary blackouts, but have limited energy storage capabilities and may be costly to implement. Installations of other larger capacity systems, such as pumped hydro systems, require particular geological formations that might not be available at all locations.
Intermittent electric power production sites, such as some wind farms, may have capacities that exceed transmission capabilities. Absent suitable energy storage systems, such intermittent power production sites may not be capable of operating at full capacity. The applicants have appreciated that intermittent production sites may benefit from a storage system that may be sized to store energy, when the production site is capable of producing energy at rates higher than may be transmitted. The energy that is stored may be released through the transmission lines when power produced by the intermittent site is lower than transmission line capacity.
Electric power consumption sites, such as buildings, towns, cities, commercial facilities, military facilities, may have consumption that periodically exceeds electricity transmission capabilities. Absent suitable energy storage systems, such power consumers may not be capable of operating at preferred levels. The applicants have appreciated that transmission constrained consumption sites may benefit from a storage system that may be sized to store energy, when the consumption site is consuming energy at rates lower than may be transmitted, and that the transmitted energy that is not immediately consumed may be stored. The energy that is stored may be released to the consumers when power consumption of the consumers is higher than the transmission line capacity.
Compressed air energy storage systems (CAES) are another known type of system in limited use for storing energy in the form of compressed air. CAES systems may be used to store energy, in the form of compressed air, when electricity demand is low, typically during the night, and then to release the energy when demand is high, typically during the day. Such systems include a compressor that operates, often at a constant speed, to compress air for storage. Turbines, separate from the compressor, are typically used to expand compressed air to produce electricity. Turbines, however, often require the compressed air to be provided at a relatively constant pressure, such as around 35 atmospheres. Additionally or alternatively, air at pressures higher than 35 atmospheres may need to be throttled prior to expansion in the turbine, causing losses that reduce the efficiency of the system, and/or reduce the energy density that a storage structure may accommodate. Additionally, to increase electrical energy produced per unit of air expanded through the turbine, compressed air in such systems is often pre-heated to elevated temperatures (e.g., 1000 C) prior to expansion by burning fossil fuels that both increases the cost of energy from the system and produces emissions associated with the storage of energy.
Known CAES-type systems for storing energy as compressed air have a multi-stage compressor that may include intercoolers that cool air between stages of compression and/or after-coolers that cool air after compression. In such a system, however, the air may still achieve substantial temperatures during each stage of compression, prior to being cooled, which will introduce inefficiencies in the system. Thus, there is a need to provide for CAES type systems that have improved efficiencies.
A CAES system may be implemented using a hydraulic drive system comprised of hydraulic components including components such as hydraulic pumps. Therefore, there is also a need for a system and methods to obtain a high efficiency output of a compressed air energy storage system, or other systems used to compress and/or expand gas, including controls and operating modes that allow for adjusting or varying the pressures and/or flow rates of hydraulic fluid within hydraulic pumps used in operation of such a system.
Systems and methods for efficiently operating a hydraulically actuated device/system are described herein. For example, systems and methods for efficiently operating a gas compression and expansion energy storage system are disclosed herein. Systems and methods are provided for controlling and operating the hydraulic pumps/motors used within a hydraulically actuated device/system, such as, for example, a gas compression and/or expansion energy system, within a maximum efficiency range of the pumps throughout an entire cycle of the system. In such a system, a variety of different operating regimes can be used depending on the desired output gas pressure and the desired stored pressure of the compressed gas. Hydraulic cylinders used to drive working pistons within the system can be selectively actuated and/or can be actuated to achieve varying force outputs to incrementally increase the gas pressure, within the system for a given cycle.
Systems and methods for efficiently operating a gas compression and/or expansion system are disclosed herein. The gas compression and/or expansion systems can use one or more hydraulic pumps/motors to move (or be moved by) gas and liquid within the system, and systems and methods are described herein to operate the hydraulic pump/motor in its most efficient regime, continuously or substantially continuously, during an operating cycle or stroke of the system. Hydraulic pumps can have efficient operating ranges that can vary as a function of, for example, flow rate and pressure, among other parameters. Systems and methods of operating the hydraulic pumps/motors are provided to allow them to function at an optimal efficiency throughout the stroke or cycle of the gas compression and/or expansion system.
As described herein, in some embodiments, hydraulic pumps/motors can be used to drive (or be driven by) a working piston within a gas compression and/or expansion system, in which a working piston can act on (or be acted on) gas contained in a working chamber to compress or expand the gas, directly, or indirectly through a liquid disposed between the working piston and the gas in the working chamber. The hydraulic loads applied to the working piston(s) can be varied during a given cycle of the system. For example, by applying hydraulic fluid pressure to different hydraulic pistons, and/or different surfaces of the piston(s) within the hydraulic pump(s)/motor(s), the ratio of the net working surface area of the hydraulic actuator to the working surface area of the working piston acting on the gas in the working chamber can be varied, and therefore the ratio of the hydraulic fluid pressure to the gas pressure in the working chamber can be varied during a given cycle or stroke of the system. In addition, the number of working pistons/working chambers and hydraulic cylinders can be varied as well as the number of piston area ratio changes within a given cycle. As used herein the term “piston” is not limited to pistons of circular cross-section, but can include pistons with a cross-section of a triangular, rectangular, or other multi-sided shape.
A gas compression and/or expansion system as described herein can include one or multiple stages of compression and/or expansion. For example, a system can include a single stage compression/expansion device, two stages, three stages, etc. As described herein, a system can also include “gear shifts” or “gear changes” within a given stage as will be described in detail below with reference to specific embodiments. As used herein, the terms “gear change” or “gear shift” are used to described a change in the ratio of the pressure of the hydraulic fluid in the active hydraulic actuator chambers to the pressure of the gas in the working chamber actuated by (or actuating) the hydraulic actuator, which is essentially the ratio of the pressurized surface area of the working piston(s) to the net area of the pressurized surface area(s) of the hydraulic piston(s) actuating the working piston(s). As used herein the term “gear” can refer to a state in which a hydraulic actuator has a particular piston area ratio (e.g., the ratio of the net working surface area of the hydraulic actuator to the working surface area of the working piston acting on, or being acted on by, the gas in a working chamber) at a given time period.
In some embodiments, a hydraulic actuator as described herein can be used to drive, or be driven by, a working piston within, for example, a water pump/motor, to move water (or other liquid) in and out of the working chamber of a pressure vessel used to compress and/or expand a gas, such as air, contained in the working chamber. As described herein, an actuator can also include “gear shifts” or “gear changes” (described above) during a cycle or stroke of the actuator. In some embodiments, an actuator as described herein can be used to drive, or be driven by, a working piston disposed within a compression and/or expansion device. For example, in some such embodiments, the working piston can be driven to compress one or more fluids within a working chamber. As used herein, “fluid” can mean a liquid, gas, vapor, suspension, aerosol, or any combination thereof. Although particular embodiments of an actuator are described herein to drive, or be driven by, a water pump/motor and/or a compression and/or expansion device, it should be understood that the various embodiments and configurations of an actuator can be used to drive, or be driven by, a working piston within a water pump, a compression and expansion device, a compression device, an expansion device, any other device in which a working piston is used to move a fluid, and/or any device to which motive force can be applied or from which motive force can be received.
In some embodiments, the devices and systems described herein can be configured for use only as a compressor. For example, in some embodiments, a compressor device described herein can be used as a compressor in a natural gas pipeline, a natural gas storage compressor, or any other industrial application that requires compression of a gas. In another example, a compressor device described herein can be used for compressing carbon dioxide. For example, carbon dioxide can be compressed in a process for use in enhanced oil recovery. In another example, a compressor device described herein can be used for compressing air. For example, compressed air can be used in numerous applications which may include cleaning applications, motive applications, ventilation applications, air separation applications, cooling applications, amongst others.
In some embodiments, the devices and systems described herein can be configured for use only as an expansion device. For example, an expansion device as described herein can be used to generate electricity. In some embodiments, an expansion device as described herein can be used in a natural gas transmission and distribution system. For example, at the intersection of a high pressure (e.g., 500 psi) transmission system and a low pressure (e.g., 50 psi) distribution system, energy can be released where the pressure is stepped down from the high pressure to a low pressure. An expansion device as described herein can use the pressure drop to generate electricity.
In some embodiments, a compression and/or expansion device as described herein can be used in an air separation unit. In one example application, in an air separator, a compression and/or expansion device can be used in a process to liquefy a gas. For example, air can be compressed until it liquefies and the various constituents of the air can be separated based on their differing boiling points. In another example application, a compression and/or expansion device can be used in an air separator co-located with in a steel mill where oxygen separated from the other components of air is added to a blast furnace to increase the burn temperature.
A compression and/or expansion system can have a variety of different configurations and can include one or more actuators that are use to compress/expand air within a compression/expansion device. In some embodiments, an actuator can include one or more pump/motor systems, such as for example, one or more hydraulic pumps/motors that can be use to move, or be moved by, one or more fluids within the system between various water pumps/motors and pressure vessels. U.S. provisional patent application No. 61/216,942, filed May 22, 2009, and U.S. patent application Ser. Nos. 12/785,086, 12/785,093 and 12/785,100, each filed May 21, 2010 and entitled “Compressor and/or Expander Device (collectively referred to herein as the “the Compressor and/or Expander Device applications”), the disclosures of which are hereby incorporated herein by reference, in their entireties, describe various energy compression and/or expansion systems in which the systems and methods described herein can be employed.
As background,
Energy can be stored within the system 100 in the form of compressed gas, which can be expanded at a later time period to access the energy previously stored. To store energy generated by the wind farm 102, the hydraulic actuator 112 can change the volume of a working chamber (e.g. by moving a piston in a cylinder) and/or to cause liquid to be introduced into the working chamber to reduce the volume available within the working chamber for gas. The reduction in volume compresses the gas. During this process, heat can be removed from the gas. During compression, the gas is delivered to a downstream stage of the compressor/expander device 120 and eventually, at an elevated pressure, to a compressed gas storage structure 122 (also referred to herein as a “cavern”). At a subsequent time, for example, when there is a relatively high demand for power on the power grid, or when energy prices are high, compressed gas may be communicated from the storage structure 122 and expanded through the compressor/expander device 120. Expansion of the compressed gas drives the hydraulic actuator 112 that, in turn, drives, by hydraulic power, the hydraulic pump/motor 111 to produce mechanical power, which in turn drives motor/generator 110 to produce electric power for delivery to the power grid 124. Heat at a relatively low temperature (e.g., between for example, about 10° C. and about 90° C.) may be added to the gas during expansion to increase the energy generated per unit mass of air during the expansion process. Heat at relatively high temperatures (e.g. greater than about 90° C.) may be added during expansion to increase the energy generated per unit mass of air during the expansion process.
As shown in
Each pressure vessel 324, 326 can be considered to define a working chamber for compressing and/or expanding a gas. The working chamber has a volume that is defined by the volume of the pressure vessel. The working chamber has a portion of this volume that can contain gas and a portion that contains liquid—the portion of the volume that contains gas is equal to the total volume of the working chamber less the volume of the portion containing liquid. Operation of the water pump to urge liquid from the pump cylinder into the pressure vessel reduces the volume of the portion of the working chamber that can contain gas, thus compressing the gas contained in that portion (e.g. during a compression cycle). Similarly, operation of the water pump to allow liquid to be transferred from the pressure vessel to the water pump increases the volume of the portion of the working chamber that can contain gas, allowing the gas to expand. Alternatively, a working chamber can be considered to be defined by the pressure vessel and the portion of the water pump in fluidic communication with the pressure vessel (i.e. on one side of the working piston), and any conduit or other volume connecting the pressure vessel and the water pump. So defined, the working chamber has a variable volume, which volume can be changed by movement of the working piston. A portion of the variable volume can be occupied by liquid (e.g. water), while the remaining portion can be occupied by gas (e.g. air). The pressure of the gas contained in the working chamber is essentially equal to the pressure of any liquid contained in the working chamber, and to the pressure acting on the corresponding side or face of the working piston.
The compressor/expander device 320 may also include fins, dividers and/or trays 334 that can be positioned within the interior of the first and second pressure vessels 324, 326. The dividers 334 can increase the overall area within a pressure vessel that is in direct or indirect contact with air, which can improve heat transfer. The dividers 334 can provide for an increased heat transfer area with both air that is being compressed and air that is being expanded (either through an air/liquid interface area or air/divider interface), while allowing the exterior structure and overall shape and size of a pressure vessel to be optimized for other considerations, such as pressure limits and/or shipping size limitations.
In this embodiment, the dividers 334 are arranged in a stack configuration within the first and second pressure vessels 324 and 326. Each divider 334 can be configured to retain a pocket of air. In one illustrative embodiment, each of the dividers 334 can include an upper wall, a downwardly extending side wall that may conform in shape and substantially in size to the inner wall of the pressure vessel, and an open bottom. The open bottom of each of the dividers 334 face in a common, substantially downward direction when the pressure vessel is oriented for operation. It is to be appreciated that although the figures show dividers that conform in size and shape to the interior of the pressure vessels 324, 326, and are generally shaped similarly to one another, other configurations are also possible and contemplated, including embodiments that include dividers that are substantially smaller in width than the interior of a pressure vessel and/or that are shaped and sized differently than one another, among other configurations. Various other shapes and configurations of dividers can be used, such as, for example, the dividers that are shown and described in U.S. Provisional App. No. 61/216,942 and the Compressor and/or Expander Device applications incorporated by reference above.
As shown in
As discussed above, heat can be transferred from and/or to air that is compressed and/or expanded by liquid (e.g., water) within a pressure vessel. An air/liquid or air/divider interface (e.g., provided in part by dividers discussed above) may move and/or change shape during a compression and/or expansion process in a pressure vessel. This movement and/or shape change may provide a compressor/expander device with a heat transfer surface that can accommodate the changing shape of the internal areas of a pressure vessel through which heat is transferred during compression and/or expansion. In some embodiments, the liquid may allow the volume of air remaining in a pressure vessel after compression to be nearly eliminated or completely eliminated (i.e., zero clearance volume).
A liquid (such as water) can have a relatively high thermal capacity as compared to a gas (such as air) such that a transfer of heat energy from the gas to the liquid significantly decreases the temperature rise of the gas but incurs only a modest increase in the temperature of the liquid. This allows buffering of the system from substantial temperature changes. Heat that is transferred between the gas and liquid or components of the vessel itself may be moved from or to the pressure vessel through one or more heat exchangers that are in contact with the liquid or components of the vessel. One type of heat exchanger that can be used to accomplish this is a heat pipe, as discussed in greater detail below.
Thus, the liquid within a pressure vessel can be used to transfer heat from air that is compressed (or to air that is expanded) and can also act in combination with a heat exchanger to transfer heat to an external environment (or from an external environment). By way of example, as shown in
The embodiment of
As shown in
As shown in
Each of the first and second pressure vessels 424 and 426 of the first stage are fluidly coupled to the pressure vessels 462 and 464 of the second stage by a conduit that may include one or more valves (not shown in
The housing 484 of the hydraulic cylinder 448 defines an interior volume that is divided into two portions at any given time during a stroke of the hydraulic cylinder by the drive piston or hydraulic piston 478. As shown in
For example, referring to the water pump 446 and its associated hydraulic cylinders 448 and 450, to move the working piston 474 within the housing 482 to change the volume of the working chamber bounded in part by the working piston, one or both of the hydraulic cylinders 448 and 450 can be actuated at a given time period to provide the desired force to move the piston. For example, to move the piston 474 upward, hydraulic fluid can be pumped into the blind side, or both the blind side and the rod side of the hydraulic cylinder 450, or hydraulic fluid can be pumped into the rod side of the hydraulic cylinder 448, or a combination thereof. To move the piston 474 downward, hydraulic fluid can be pumped into the blind side of hydraulic cylinder 448, both the blind side and the rod side of the hydraulic cylinder 448, or the rod side of the hydraulic cylinder 450, or a combination thereof. Each of these modes has a different total area of hydraulic piston bearing the pressure of the hydraulic fluid, and thus will exert a different force on the working piston 474. It is to be appreciated that varying the pressure of the hydraulic fluid can act in concert with the varying combinations of reservoir pressurization to provide a wide range of force to move the piston.
The system 400 can be configured to operate within a desired energy efficiency range of the hydraulic pump(s). The operating pressure range of the hydraulic pump(s) and the ratio of surface areas of the water pistons to the hydraulic drive pistons (also referred to herein as “piston ratio”) can be used to determine an optimal operating sequence for the compression process. In addition, by varying which hydraulic pump(s) is actuated to move a water piston at a particular point in the cycle, the pressure in the system can be further varied. The pump has a preferred range of pressure and flow, within which it can be continuously operated as the air piston strokes.
As shown, for example, in
In some embodiments, a combination of surface areas associated with hydraulic drive piston 478 and hydraulic drive piston 480 are pressurized to achieve a desired output force on rod 476, which may correspond to a second pressure of water W. The effective or net operating surface area Anet being pressurized for a given gear is then equal to the sum of the surface areas associated with the various portions of the hydraulic cylinders 448 and 450 being pressurized with hydraulic fluid. The sum of the surface areas can also be referred to as the surface area of the hydraulic piston(s) SAh. It is to be appreciated that other embodiments include those in which the hydraulic fluid pressure communicated to the various surface areas in actuator 412 may be different from each other.
The ratio of the surface area of the working piston or water piston SAw to the surface area of the hydraulic piston(s) SAh dictates the hydraulic pressure needed to achieve a desired water pressure, and thus gas pressure, at a given point in the cycle. By varying the surface area ratio for a given water pump/hydraulic cylinder set, varying levels of water pressure can be achieved at different points within the compression cycle for the same levels of hydraulic pressure. The pressure of the hydraulic fluid needed to achieve a particular water pressure (and/or air pressure) can be calculated as follows.
Fh(force of hydraulic fluid)=Ph(hydraulic pressure)×SAh(SAr or SAb or SA(b-r))
Fw(force applied to water)=Pw(water pressure)×SAw
Fh=Fw
Pw×SAw=Ph×SAh
Pw=Ph×(SAh/SAw) and Ph=Pw×(SAw/SAh)
A maximum and minimum operating pressure for each hydraulic pump can be established, e.g. as the limits of a range of operating pressure within which the hydraulic pump operates at or above a desired energy efficiency. This pressure range can be used to determine the piston ratio (e.g., (SAh/SAw)) needed at various points during a compression cycle to operate the system so as to approach or achieve operation within the maximum efficiency range of the hydraulic pump. For example, for a hydraulic pump having a maximum efficient operating pressure of 300 bar and a desired maximum output pressure of the air (and therefore the water) is 30 bar, the piston ratio (i.e., (SAw/SAh)) required at the end of the pressurization cycle, when the water and air pressure reaches 30 bar, is 10:1. Correspondingly, if the hydraulic pump has a minimum efficient operating pressure of 120 bar, and the air enters the system at 3 bar, then the piston ratio (i.e., (SAw/SAh)) required at the start of the pressurization cycle, when the water and air pressure is 3 bar, is 40:1. The number of water pumps and hydraulic pumps needed, and the piston ratios (and corresponding size of the hydraulic cylinders and water pumps) for the various water pump/hydraulic sets can then be determined such that the system can operate within the desired efficiency range for the entire compression cycle (i.e., compressing the air from 3 bar to 30 bar). There are a variety of different operating sequences that can be used to incrementally increase the pressure in the system and to achieve this output. It is understood that the approach can be applied using hydraulic pumps with maximum operating pressures higher or lower than 300 bar, and minimum operating pressures higher or lower than 120 bar.
At a given time during a compression or expansion cycle, the actuator 412 can be referred to as being in a particular “state” or gear that is associated with the piston area ratios being pressurized within the actuator at that time. As described above, when the system makes a change in the ratio of the pressure of the hydraulic fluid in the hydraulic actuator to the pressure of the water in the water pump(s) actuated by the hydraulic actuator (i.e., the ratio of the pressurized surface area of the water piston to the net operating pressurized surface area(s) of the hydraulic piston(s) actuating the water piston) this is referred to as a “gear shift” or “gear change.” There is a variety of different combinations or sequences of gear changes (changes in piston area ratios) that can be incorporated into a particular operating sequence of the system.
In the example of system 400, where each water pump has two identical associated hydraulic cylinders to actuate the water pump, there are sixteen possible states for the two actuators, i.e. every combination of each chamber being pressurized or not pressurized (two states for four chambers gives 24 combinations). For identical hydraulic cylinders (i.e. in which the blind side area of each cylinder is the same and the rod side area of each cylinder is the same), there are four different possible gears (with associated piston area ratios) that can be used to actuate each working or water piston in each direction. For example, to move a water piston upward in one water pump, hydraulic fluid can be pumped into (1) the rod side of the upper hydraulic cylinder (or the rod side of the upper hydraulic cylinder and the blind side of both cylinders, which cancel each other out), (2) the blind side of the lower hydraulic cylinder (or the blind side of the lower cylinder and the rod side of both cylinders, which cancel each other out), (3) both the blind side and the rod side of the lower hydraulic cylinder, or (4) both the rod side of the upper hydraulic cylinder and the blind side of the lower hydraulic cylinder. The state in which none of the chambers is pressurized does not produce any force on the working piston, nor (for identical cylinders) does the state in which all chambers are pressurized. In the embodiment depicted in
In other embodiments, an actuator can be configured to have a different number of possible different gears and gear changes based on, for example, the number of hydraulic cylinders, the size (e.g., diameter) of the housing of a hydraulic cylinder in which a hydraulic piston is movably disposed, the size (e.g., diameter) of the hydraulic pistons disposed within the housing of the hydraulic cylinders, the number and size of drive rods coupled to the hydraulic pistons, and/or the size of the working piston to be actuated. Further examples of actuators are described below with reference to
Thus, the hydraulic pressure time profile can be varied as needed to achieve a particular output air pressure. The efficiency range of the hydraulic pump system can determine the number of gears and gear shifts that may be needed for a desired air pressure range (difference between input or start pressure and output or end pressure). For example, if the hydraulic pump's efficiency range is narrower, then more gears may be needed for a given air pressure range. The size and number of gears can also depend on the particular operating speed (RPM) of the system.
As shown in the example of
It is important to recognize that the system operates three air manipulation processes in concert: one intake process and two compression processes. Therefore, there are three air volumes to recognize. During all compression strokes, there is one volume of air being drawn into the system at a substantially constant intake pressure, and there are two volumes of air, at two different pressures, compressing simultaneously. For example, while a first volume of air is being taken in at a substantially constant pressure of, for example, 3 bar, a second volume of air is being compressed from, for example, 3 bar to 30 bar, a third volume of air is being compressed from, for example, 30 bar to the discharge pressure (which varies with cavern pressure), for example 180 bar.
Before the pistons 444A and 444B, and 466 reach the end of their strokes (as shown in
It is appreciated, and will be familiar to those skilled in the art, that in addition to valves that allow fluidic communication with a supply of pressurized fluid, all hydraulic cylinder chambers may also be provisioned with valves (not shown) that may allow fluidic communication with a low pressure hydraulic fluid reservoir (not shown), and that when these valves open, the associated hydraulic chamber fluid substantially maintains the low pressure of the hydraulic reservoir, and that hydraulic fluid can flow, which can allow hydraulic piston motion. Gear shift descriptions involving opening or closing valves communicating with pressurized hydraulic fluid, purposely omit, for brevity, detailing the associated closing or opening of valves that communicate between the cylinder chambers and the low pressure hydraulic fluid reservoir.
It is important to recognize that the timing of the gear shifts during compression of stage one are independent of the timing of the gear shifts in stage two. The preferred method of gear shift operation primarily attends to selecting gears that result in pressurized hydraulic fluid pressures that maximize the hydraulic pump operation energy efficiency. The hydraulic fluid pressures that drive each stage of compression against a first air pressure developing in the first stage of compression, and against a second air pressure developing in a second stage of compression, may differ, and that first air pressure differs from the second air pressure. In the preferred embodiment, the pressure of the pressurized hydraulic fluid that drives stage one is controlled independently from the pressure of the pressurized hydraulic fluid that drives stage two, and this may be achieved by provisioning each of stage one and stage two with a dedicated hydraulic pump/motor. It is recognized that in some embodiments, the pressure of the pressurized hydraulic fluid that drives stage one may be the same pressure as the pressure of the pressurized hydraulic fluid that drives stage two, and this may be achieved by provisioning both stages with a single hydraulic pump/motor.
The previous description and the following description is based on a compression process configured as a gear system with six available gears, where the sixth gear has the largest ratio of effective water piston surface area to effective hydraulic fluid surface area; in other words, in sixth gear the flow of a relatively small volume of hydraulic fluid will create a relatively large volume of water flow, and thus a relatively large change in volume available to be occupied by the gas being compressed. It is important to recognize that the first stage of the system is configured with a first set of six gear ratios, and that the second stage of the system is configured with a second set of six gear ratios. The six gears may be implemented using two, three, or more water pumps. It is also important to recognize that the first stage of compression operates at an air pressure range that is lower than the air pressure range operated in the second stage of compression. Correspondingly, the system is configured such that the six gear range used to drive the first stage of compression consists of gear ratios that are higher than the six gear range configured to drive the second stage of compression. It is appreciated, and it is anticipated, that embodiments can have more gears or fewer gears. It is appreciated, and it is anticipated, that embodiments can use more water pumps, or can use fewer water pumps.
With reference to
If a gear shift from fifth to fourth is initiated, the valves (not shown) that supply pressurized hydraulic fluid from the hydraulic pump/motor to the rod side chambers of hydraulic cylinders 452 and 458, and 472 are closed. Closing these valves increases the piston rod “push” already coming from hydraulic cylinders 452 and 458, and 472, by leaving only the blind side chambers of hydraulic cylinders 452 and 458, and 472 in fluidic communication with the pressurized hydraulic fluid. The increased piston rod “push” combines with the ongoing piston rod “pull” from hydraulic cylinders 454 and 456, and 470 to achieve a fourth gear piston rod force that can be greater than the fifth gear piston rod force. The fourth gear piston rod force must be sufficient to achieve the water pump position depicted in
If a gear shift third to second is initiated, the valves (not shown) that supply pressurized hydraulic fluid from the hydraulic pump/motor to the rod side chambers of hydraulic cylinders 448 and 476 are opened. Opening these valves results in augmenting the piston rod “push” already applied by hydraulic cylinders 450 and 474, with a piston rod “pull” from hydraulic cylinders 448 and 476. It is to be appreciated that the sequence described above corresponds to an embodiment in which SAr<SA(b-r), and that embodiments in which the surface areas are of a different relative sizes, for example, SAr>SA(b-r), the pressurization combination that achieves sixth gear versus fifth gear can vary, and thus the preferred pressurization sequence can vary.
If a gear shift from second to first is initiated, the valves (not shown) that supply pressurized hydraulic fluid from the hydraulic pump/motor to the rod side chambers of hydraulic cylinders 450 and 474 are closed. Closing these valves increases the piston rod “push” already coming from hydraulic cylinders 450 and 474, by leaving only the blind side chambers of hydraulic cylinders 450 and 474 in fluidic communication with the pressurized hydraulic fluid. The increased piston rod “push” combines with the ongoing piston rod “pull” from hydraulic cylinders 448 and 476 to achieve a first gear piston rod force that can be greater than the second gear piston rod force. The first gear piston rod force must be sufficient to achieve the water pump position depicted in
As illustrated by the flow arrows for water and air in
As illustrated by the flow arrows for water and air in
As illustrated by the flow arrows for water and air in
It should be noted that gear shift points may also be constrained by other embodiment details such as the maximum extension position of a hydraulic cylinder. It should also be noted that a hydraulic pump's operating characteristics usually interact, and changes in pressure usually also create changes in flow rate.
As discussed above, heat can be transferred from air (or other gas) that is compressed in the pressure vessel to reduce the work consumed by the compression process. Heat can be transferred from air to a liquid, and/or air to dividers within the compression vessel, and/or from the liquid out of the pressure vessel. In some embodiments, to increase heat transfer, the system can be operated at a relatively slow speed. For example, in some embodiments, a complete compression or expansion cycle may be slow enough to provide additional time for heat transfer between the air and liquid. Enough heat energy may be transferred, according to some embodiments, to approximate an isothermal compression and/or expansion process, achieving work reduction or extraction and the efficiencies associated therewith. Additionally or alternatively, faster speeds may allow larger power levels to be achieved during expansion, isothermally or with temperature changes, which may be desirable at particular times during the system operation.
The use of a liquid (e.g. water) as a medium through which heat passes during compression and/or expansion may allow for a continuous temperature moderation process and may provide a mechanism by which heat may be moved in and/or out of the compression vessel. That is, during compression the liquid may receive heat from air that is being compressed, and pass this heat to the external environment continuously, or in batches, both while air is being compressed and while air is being received by the pressure vessel for later compression. Similarly, heat addition may occur when a compressor/expander device is operating in an expansion mode both during expansion and as expanded air is passed from a pressure vessel.
As discussed above, the liquid within a pressure vessel can be in contact with the air at one or more air/liquid interfaces and air/divider interfaces, across which heat is transferred from air that is compressed and/or to air that is expanded. The pressure vessel can also include a heat exchanger, such as one or more heat pipes as discussed above, that transfers heat between the liquid and an environment that is external to the device. Heat may be moved from air that is compressed and/or to air that is expanded to achieve isothermal or near isothermal compression and/or expansion processes.
In the embodiment shown in
The hydraulic piston 778 divides the interior region of housing 784 of the hydraulic cylinder 748 into two portions: a hydraulic fluid chamber C1 above the hydraulic piston 778 and a hydraulic fluid chamber C2 below the hydraulic piston 778. Similarly, the hydraulic piston 790 divides the interior region of housing 785 of the hydraulic cylinder 750 into two portions: a hydraulic fluid chamber C3 above the hydraulic piston 780 and a hydraulic fluid chamber C4 below the hydraulic piston 780. The hydraulic fluid chambers C1 and C2 can be referred to as the blind side and the rod side, respectively, of the hydraulic cylinder 748, and the fluid chambers C3 and C4 can be referred to as the rod side and the blind side, respectively, of the hydraulic cylinder 750.
The hydraulic piston 778 has an operating surface area A1 on the side of the hydraulic piston 778 associated with fluid chamber C1 (the blind side) and an operating surface area A2 on the side associated with the fluid chamber C2 (the rod side). The hydraulic piston 780 has an operating surface area A3 on the side of the hydraulic piston 780 associated with the fluid chamber C3 (the rod side) and an operating surface area A4 on the side associated with fluid chamber C4 (the blind side).
Thus, because of the different sized hydraulic pistons and/or the different sized drive rods R1 and R2, the operating surface areas A1 and A2 of the hydraulic piston 778 are different than the operating surface areas A3 and A4 of the hydraulic piston 780. For example, the rod side operating surface area A2 of hydraulic piston 778 can be smaller than the rod side operating surface area A3 of hydraulic piston 780. It is appreciated that R2 can be made bigger than R1 to a degree that can make A2 equal to A3, or A2 greater than A3. In an example in which hydraulic piston 778 has a smaller diameter than hydraulic piston 780, the blind side operating surface area A1 of hydraulic piston 778 is smaller than the blind side operating surface area A4 of hydraulic piston 780.
The hydraulic piston 778 is coupled to a driven member (in this embodiment a working piston) 774 via a drive rod R1 and the hydraulic piston 780 is coupled to the working piston 774 via a drive rod R2. The working piston 774 is movably disposed within a housing 782 having an interior region that is divided by the working piston 774 into two working chambers, WC1 and WC2, each configured to contain a fluid (e.g., water and/or air). The drive rods R1 and R2 slidably extend though respective openings in the housing 782, each of which can include a seal such that the drive rods R1 and R2 can move within the openings to actuate the working piston 774, but fluid cannot pass between the working chambers WC1, WC2 and the hydraulic fluid chambers C2 and C3, respectively. In this embodiment, a diameter of the drive rod R1 is less than a diameter of the drive rod R2 and a diameter of the hydraulic piston 778 is smaller than a diameter of the hydraulic piston 780.
As described above for other embodiments, the actuator 712 can be operated in one of multiple different gears, or states at any given time period during a cycle of the actuator 712 by varying the effective piston ratio (e.g., the net operating surface area of the hydraulic pistons to the surface area of the driven member, e.g. working piston) during a cycle or stroke of the actuator 712. For a given hydraulic fluid pressure, the pressure of a working fluid within the housing 782 can be varied by varying the net operating hydraulically pressurized area of the hydraulic pistons, for convenience the possible area variations can be referred to as “gears”. Conversely, for a given working fluid pressure, the hydraulic fluid pressure can be varied, e.g. in an expansion cycle. The quantity and sequence of gears can be varied as desired to achieve a desired relationship between the pressure of the working fluid within the reservoir (which is essentially the same as the pressure of the fluid in the working chamber) and the hydraulic fluid pressure supplied from (or supplied to) the hydraulic pump/motor. Thus, the actuation of the working piston (whether driving gas compression or being driven by gas expansion) can be fine tuned by configuring an optimal gear sequence for a given stroke of the hydraulic actuator 712. As previously described, the number of possible gears for a given actuator can be based on the number of hydraulic cylinders, the size of the pistons, the size of the drive rods and the size of the working piston. In this embodiment, because the pistons 778 and 780 have different diameters and the drive rods R1 and R2 have different diameters, the 16 possible states of the actuator (each of the four chambers can be pressurized or not pressurized) can define 15 possible gears for which the actuator 712 (since the state in which no chambers are pressurized does not produce any net hydraulic piston area). If the drive rods R1 and R2 have the same diameter, the number of possible gears is 14, because when all of the chambers are pressurized, the resulting net operating surface area will be equal to zero, as described in more detail below.
The net operating surface area Anet of the actuator 712 for a particular gear is equal to the total of the surface areas (e.g., A1, A2, A3, A4) associated with the chambers (C1-C4) that are active for that gear. For purposes of illustration, the sign convention used in this example refers to a force exerted on the surface areas A1 and A3 as being in a positive (+) direction, and a force exerted on the surface areas A2 and A4 as being in a negative (−) direction. Thus, in this example, considering the driven member to be working piston 774 operating in a compression mode, if the net operating surface area Anet is negative, the actuator 712 will cause the working piston 774 to move in the up direction (e.g., gears U1-U8), and if the net operating surface area is positive, the actuator 712 will cause the working piston 774 to move in the down direction. Conversely, if the driven member is working piston 774 operating in an expansion mode, when expanding gas drives working piston 774 in the up direction, gears U1-U8 will be operative so that the active hydraulic chambers associated with those gears to pressurize hydraulic fluid in those chambers and supply that fluid to, and drive in a motor mode, the hydraulic pump/motor.
The different gears can be activated by placing selected hydraulic fluid chambers (e.g., C1, C2, C3, and/or C4) of the actuator 712 into fluidic communication with hydraulic fluid at a working hydraulic pressure (such as supplied by a hydraulic pump/motor operating as a pump, or supplied by the hydraulic fluid chambers to the hydraulic pump/motor operating as a motor), and fluidically isolating the other chambers from the working hydraulic pressure. For example, one or more valves can be coupled to each of the chambers C1-C4 that can be selectively opened (e.g. by a hydraulic controller, as described above and as described below with reference to actuator 812 shown in
In one example, as shown in the table of
Referring to gear U8 in the table of
The bottom row of the table of
Specifically,
The housing 884 of the hydraulic cylinder 848 defines within its interior region a fluid chamber C1 above the hydraulic piston 878 and a fluid chamber C2 below the hydraulic piston 878. Similarly, the housing 885 of the hydraulic cylinder 850 defines within its interior region a fluid chamber C3 above the hydraulic piston 880 and a fluid chamber C4 below the hydraulic piston 880. In this embodiment, the fluid chambers C1 and C2 can be referred to as a blind side and a rod side, respectively, of the hydraulic cylinder 848, and the fluid chambers C3 and C4 can be referred to as a first rod side and a second rod side, respectively, of the hydraulic cylinder 850.
The hydraulic cylinder 848 is coupled to a hydraulic pump/motor 814 (or other suitable source of pressurized hydraulic fluid) via conduits 895, and the hydraulic cylinder 850 is coupled to the hydraulic pump/motor 814 via conduits 896. The hydraulic pump/motor 814 is coupled to a system controller 816 that can be used to operate and control the hydraulic pump/motor 814 as described for previous embodiments. A valve 898 is coupled between each chamber of the hydraulic cylinders 848 and 850 and the hydraulic pump/motor 814 that can be selectively opened and closed, e.g. under control of the system controller 816, to fluidically couple or fluidically isolate, respectively, the high pressure side of the hydraulic pump/motor 814 to each chamber so that the system or hydraulic controller 816 can selectively actuate (supply pressurized hydraulic fluid to) one or both chambers of one or both of the hydraulic cylinders 848 and 850 in a similar manner as described above for previous embodiments.
The hydraulic piston 878 has an operating surface area A1 on the side associated with fluid chamber C1 (e.g., the blind side) and an operating surface area A2 on the side associated with the fluid chamber C2 (e.g., the rod side). The hydraulic piston 880 has an operating surface area A3 on the side of the hydraulic piston 880 associated with the fluid chamber C3 (e.g., the first rod side) and an operating surface area A4 on the side associated with fluid chamber C4 (e.g., the second rod side).
In this example embodiment, and as shown in
The different gears can be activated by selectively fluidically coupling a source of hydraulic fluid at a working hydraulic pressure (e.g. via the hydraulic pump/motor 814 described above) to one or more of the fluid chambers (e.g., C1, C2, C3, and/or C4) of the actuator 812, as described for previous embodiments. For example, a selected one or more of the valves 898 can be selectively opened to pump hydraulic fluid into one or more of the chambers and/or to drain hydraulic fluid out of one or more of the chambers (e.g., at the end of a stroke). One or more of the gears can be actuated during a given cycle of the actuator 812 to achieve a desired output pressure of the fluid within the housing 882. The order of the gears can also be varied. Thus, although the gears are labeled D1-D7 and U1-U7 in
A net operating surface area Anet of a particular gear is equal to the total of the surface areas (e.g., A1, A2, A3, A4) associated with the chambers (e.g., C1-C4) that are pressurized for a given gear. As described above, in this example embodiment, one or more hydraulic cylinders can also optionally be coupled to an opposite end of the working piston. In such an embodiment, the net operating surface area Anet of a particular gear will also include the surface areas associated with pressurized chambers of the hydraulic cylinder(s) operating on the opposite end of the working piston in a similar manner as described above for actuator 712.
The housing 984 of the hydraulic cylinder 948 defines within its interior region a fluid chamber C1 above the hydraulic piston 978 and a fluid chamber C2 below the hydraulic piston 978. The housing 985 of the hydraulic cylinder 950 defines within its interior region a fluid chamber C3 above the hydraulic piston 980 and a fluid chamber C4 below the hydraulic piston 980. The hydraulic piston 978 has an operating surface area A1 on the side associated with fluid chamber C1 and an operating surface area A2 on the side associated with the fluid chamber C2. The hydraulic piston 980 has an operating surface area A3 on the side of the hydraulic piston 980 associated with the fluid chamber C3 and an operating surface area A4 on the side associated with fluid chamber C4.
As with the previous embodiments, the actuator 912 can be operated in multiple different gears to move a working piston (not shown) within a housing (not shown). A net operating surface area Anet of a particular gear is equal to the total of the surface areas (e.g., A1, A2, A3, A4) associated with the chambers (e.g., C1-C4) that are pressurized for a given gear as previously described. One or more hydraulic cylinders can also optionally be coupled to an opposite end the working piston. In such an embodiment, the net operating surface area Anet of a particular gear will also include the surface areas associated with pressurized chambers of the hydraulic cylinder(s) operating on the opposite end of the working piston in a similar manner as described above for other embodiments.
When the hydraulic piston 1078 is disposed within the housing 1085 (as shown in
When the hydraulic piston 1078 is disposed with the housing 1085 (as shown in
In this embodiment, the hydraulic piston 1078 has a smaller diameter than the hydraulic piston 1080 and a diameter of the hydraulic drive rod R1 is equal to a diameter of the hydraulic drive rod R2. As with other embodiments described herein, the hydraulic pistons 1078 and 1080 can have other sizes relative to each other, and the drive rods R1 and R2 can have other sizes relative to each other. For example, the hydraulic piston 1078 can be larger than the hydraulic piston 1080. In such an embodiment, the set of possible gears can be changed based on the relative sizes of the hydraulic pistons and/or the position of the hydraulic pistons relative to the working piston. The hydraulic piston 1078 has an operating surface area A1 and an operating surface area A2, and the hydraulic piston 1080 has an operating surface area A3 and an operating surface area A4 as shown in
As with the previous embodiments, the actuator 1012 can be operated in multiple different gears to move the working piston 1074 within the housing 1082. A net operating surface area Anet of a particular gear is equal to the total of the surface areas (e.g., A1, A2, A3, A4) associated with the chambers (e.g., C1, C2, C3, C4) that are pressurized for a given gear as previously described. The different gears can be activated by selectively fluidically coupling a source of hydraulic fluid at a working hydraulic pressure (e.g. via a hydraulic pump) to one or more of the fluid chambers (e.g., C1, C2, C3, and/or C4) of the actuator 1012, as described for previous embodiments. For example, as shown in
In this example, the number of possible gears and gear shifts for the actuator 1012 also varies when the hydraulic piston 1078 engages the housing 1084. Thus, during one cycle or stroke of the actuator 1012, the possible number of gears will change. For example, when the hydraulic piston 1078 is disposed within the housing 1085, there are four possible pressurization states (two chambers, each pressurized or not pressurized), so the number of possible gears is equal to three; one gear defined when hydraulic fluid is pumped into fluid chamber C1, one gear defined when hydraulic fluid is pumped into fluid chamber C2, and one gear defined when hydraulic fluid is pumped into both fluid chamber C1 and C2. In one example gear, if fluid chamber C1 is selectively fluidically coupled to a source of hydraulic fluid at a working hydraulic pressure via one or both of the conduits 1095 and 1096, the net operating surface area Anet will be equal to (A1+A3−A2), and the resulting force will be in a direction to the right. If both the fluid chamber C1 and the fluid chamber C2 are selectively fluidically coupled to a source of hydraulic fluid at a working hydraulic pressure, the net operating surface area Anet will be equal to (A1+A3−A2−A4), and the resulting force will again be in a direction to the right.
When the hydraulic piston 1078 engages with and/or is disposed within the housing 1084 (as shown in
The number of possible gears can also be increased if a hydraulic cylinder(s) is operatively coupled to the other side of the working piston 1074. Thus, although not shown in
The housing 1084 defines within its interior region a hydraulic fluid chamber C1 and a hydraulic fluid chamber C2, and the housing 1085 defines within its interior region a hydraulic fluid chamber C3 and a hydraulic fluid chamber C4. The determination of gears and net operating surface areas associated with a particular gear can be determined in the same or similar manner as described above for previous embodiments, and is, therefore, not described in detail with reference to this embodiment. The hydraulic pistons 1178 and 1180 can be actuated to move within their respective housings 1184 and 1185 and move the working piston 1174 up and down within the housing 1182.
The housing 1284 defines within its interior region a hydraulic fluid chamber C1 and a hydraulic fluid chamber C2, and the housing 1285 defines within its interior region a hydraulic fluid chamber C3 and a hydraulic fluid chamber C4. The gears and net operating surface areas associated with a particular gear can be determined in the same or similar manner as described above for previous embodiments, and is, therefore, not described in detail with reference to this embodiment.
While various embodiments of the invention have been described above, it should be understood that they have been presented by way of example only, and not limitation. Where methods and steps described above indicate certain events occurring in certain order, those of ordinary skill in the art having the benefit of this disclosure would recognize that the ordering of certain steps may be modified and that such modifications are in accordance with the variations of the invention. Additionally, certain of the steps may be performed concurrently in a parallel process when possible, as well as performed sequentially as described above. The embodiments have been particularly shown and described, but it will be understood that various changes in form and details may be made.
For example, the sizes (e.g., diameters, lengths, etc.) of the various components can be varied to provide a desired output of the system. Although
Although the liquid in the compressor/expander devices was described above as including water, other liquids can be used, additionally or alternatively. As is to be appreciated, water may naturally condense out of air that is being compressed by the system, and in this respect, may combine with the liquid without adverse impact. Additionally, when used in embodiments of the expander/compressor devices, water may evaporate into air during expansion without having an adverse impact. Other types of liquids, however, may be used in addition to or in place of water. Some examples of such liquids may include additives or entire liquids formulated to prevent freezing, such as glycol, liquids that prevent evaporation, such as glycerin, and/or liquids to prevent foaming. Similarly, although the gas in the compressor/expander device was described above as being air (which is a convenient choice, so that ambient air can be used), other gases can be used, additionally or alternatively.
In addition, although the system 400 was described as having two stages each with two water pumps, and the water pumps are each actuated by two hydraulic cylinders (an upper and a lower hydraulic cylinder), in alternative embodiments, more hydraulic cylinders can be coupled to the top and bottom of a water pump, which can provide additional possible gear modes. In addition, in other embodiments, a system can be configured with a different number of water pumps and/or a different number of stages, which can provide additional possible gear modes. In addition, the systems and methods described herein can be controlled using known computer systems and control system used for such purposes.
Although in the embodiments described above, the driven member that is driven by (or that drives) the hydraulic actuator(s) is a piston that directly or indirectly applies pressure to (or receives pressure from) a gas to be compressed (or expanded), in alternative embodiments the driven member can be any member desired to be driven to supply mechanical power, or to receive mechanical power and be driven. Examples of other applications for the disclosed systems and methods include hydro-mechanical actuators such as those used on commercial aircraft, applications that have a widely varying force profile such as a hydraulic or pneumatic log splitter, lock gates and ocean weirs, and shock absorbers as used on cars and trucks.
The system controller (e.g., 414, 814) can include, for example, a processor-readable medium storing code representing instructions to cause a processor to perform a process. The processor can be, for example, a commercially available personal computer, or other computing or processing device that is dedicated to performing one or more specific tasks. For example, the processor can be a terminal dedicated to providing an interactive graphical user interface (GUI). The processor, according to one or more embodiments, can be a commercially available microprocessor. Alternatively, the processor can be an application-specific integrated circuit (ASIC) or a combination of ASICs, which are designed to achieve one or more specific functions, or enable one or more specific devices or applications. In yet another embodiment, the processor can be an analog or digital circuit, or a combination of multiple circuits.
The processor can include a memory component. The memory component can include one or more types of memory. For example, the memory component can include a read only memory (ROM) component and a random access memory (RAM) component. The memory component can also include other types of memory that are suitable for storing data in a form retrievable by the processor. For example, electronically programmable read only memory (EPROM), erasable electronically programmable read only memory (EEPROM), flash memory, magnetic disk memory, as well as other suitable forms of memory can be included within the memory component. It is recognized than any and all of these memory components can be accessed by means of any form of communication network. The processor can also include a variety of other components, such as for example, co-processors, graphic processors, etc., depending upon the desired functionality of the code.
The processor can be in communication with the memory component, and can store data in the memory component or retrieve data previously stored in the memory component. The components of the processor can be configured to communicate with devices external to the processor by way of an input/output (I/O) component. According to one or more embodiments, the I/O component can include a variety of suitable communication interfaces. For example, the I/O component can include, for example, wired connections, such as standard serial ports, parallel ports, universal serial bus (USB) ports, S-video ports, local area network (LAN) ports, small computer system interface (SCCI) ports, analog to digital interface input devices, digital to analog interface output devices, and so forth. Additionally, the I/O component can include, for example, wireless connections, such as infrared ports, optical ports, Bluetooth® wireless ports, wireless LAN ports, or the like. The processor can also be connected to a network, which may be any form of interconnecting network including an intranet, such as a local or wide area network, or an extranet, such as the World Wide Web or the Internet. The network can be physically implemented on a wireless or wired network, on leased or dedicated lines, including a virtual private network (VPN).
This application is a continuation of U.S. patent application Ser. No. 12/977,724, filed Dec. 23, 2010, entitled “System and Methods for Optimizing Efficiency of a Hydraulically Actuated System,” which claims priority to and the benefit of U.S. Provisional Patent Application Ser. No. 61/290,107, filed Dec. 24, 2009, entitled “System and Methods for Optimizing Efficiency of a Hydraulically Actuated System,” the disclosures of which are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
114297 | Ivens et al. | May 1871 | A |
224081 | Eckart | Feb 1880 | A |
233432 | Pitchford | Oct 1880 | A |
320482 | Leavitt | Jun 1885 | A |
874140 | Valiquet | Dec 1907 | A |
943000 | Busby | Dec 1909 | A |
1045961 | Ferranti | Dec 1912 | A |
1147204 | Anheuser | Jul 1915 | A |
1230028 | Rardon | Jun 1917 | A |
1353216 | Carlson | Sep 1920 | A |
1369596 | Yanacopoulos | Feb 1921 | A |
1635524 | Aikman | Jul 1927 | A |
1681280 | Bruckner | Aug 1928 | A |
1918789 | Ttisworth | Jul 1933 | A |
1947304 | Morro | Feb 1934 | A |
2025142 | Zahm et al. | Dec 1935 | A |
2042991 | Harris, Jr. | Jun 1936 | A |
2141703 | Bays | Dec 1938 | A |
2150122 | Kollberg et al. | Mar 1939 | A |
2280100 | Singleton | Apr 1942 | A |
2280845 | Parker | Apr 1942 | A |
2339086 | Makaroff | Aug 1944 | A |
2404660 | Rouleau | Jul 1946 | A |
2420098 | Rouleau | May 1947 | A |
2454058 | Hays | Nov 1948 | A |
2479856 | Mitton | Aug 1949 | A |
2539862 | Rushing | Jan 1951 | A |
2628564 | Jacobs | Feb 1953 | A |
2683964 | Anxionnaz et al. | Jul 1954 | A |
2706077 | Searcy | Apr 1955 | A |
2712728 | Lewis et al. | Jul 1955 | A |
2813398 | Wilcox | Nov 1957 | A |
2824687 | Osterkamp | Feb 1958 | A |
2829501 | Walls | Apr 1958 | A |
2880759 | Wisman | Apr 1959 | A |
2898183 | Fauser | Aug 1959 | A |
3014639 | Boli | Dec 1961 | A |
3041842 | Heinecke | Jul 1962 | A |
3232524 | Rice at al. | Feb 1966 | A |
3236512 | Caslav et al. | Feb 1966 | A |
3269121 | Ludwig | Aug 1966 | A |
3355096 | Hornschuch | Nov 1967 | A |
3523192 | Lang | Aug 1970 | A |
3530681 | Dehne | Sep 1970 | A |
3538340 | Lang | Nov 1970 | A |
3608311 | Roesel, Jr. | Sep 1971 | A |
3618470 | Mueller et al. | Nov 1971 | A |
3648458 | McAlister | Mar 1972 | A |
3650636 | Eskeli | Mar 1972 | A |
3672160 | Kim | Jun 1972 | A |
3677008 | Koutz | Jul 1972 | A |
3704079 | Berlyn | Nov 1972 | A |
3757517 | Rigollot | Sep 1973 | A |
3792643 | Scheafer | Feb 1974 | A |
3793848 | Eskeli | Feb 1974 | A |
3796044 | Schwarz | Mar 1974 | A |
3801793 | Goebel | Apr 1974 | A |
3802795 | Nyeste | Apr 1974 | A |
3803847 | McAlister | Apr 1974 | A |
3806733 | Haanen | Apr 1974 | A |
3818801 | Kime | Jun 1974 | A |
3832851 | Kiernan | Sep 1974 | A |
3835918 | Pilarczyk | Sep 1974 | A |
3839863 | Frazier | Oct 1974 | A |
3847182 | Greer | Nov 1974 | A |
3854301 | Cytryn | Dec 1974 | A |
3895493 | Rigollot | Jul 1975 | A |
3903696 | Carman | Sep 1975 | A |
3935469 | Haydock | Jan 1976 | A |
3939356 | Loane | Feb 1976 | A |
3942323 | Maillet | Mar 1976 | A |
3945207 | Hyatt | Mar 1976 | A |
3948049 | Ohms et al. | Apr 1976 | A |
3952516 | Lapp | Apr 1976 | A |
3952723 | Browning | Apr 1976 | A |
3958899 | Coleman, Jr. et al. | May 1976 | A |
3968732 | Fitzgerald | Jul 1976 | A |
3986354 | Erb | Oct 1976 | A |
3988592 | Porter | Oct 1976 | A |
3988897 | Strub | Nov 1976 | A |
3990246 | Wilmers | Nov 1976 | A |
3991574 | Frazier | Nov 1976 | A |
3996741 | Herberg | Dec 1976 | A |
3998049 | McKinley et al. | Dec 1976 | A |
4008006 | Bea | Feb 1977 | A |
4009587 | Robinson, Jr. et al. | Mar 1977 | A |
4027993 | Wolff | Jun 1977 | A |
4030303 | Kraus et al. | Jun 1977 | A |
4031702 | Burnett et al. | Jun 1977 | A |
4031704 | Moore et al. | Jun 1977 | A |
4041708 | Wolff | Aug 1977 | A |
4050246 | Bourquardez | Sep 1977 | A |
4053395 | Switzgable | Oct 1977 | A |
4055950 | Grossman | Nov 1977 | A |
4058979 | Germain | Nov 1977 | A |
4079586 | Kincaid, Jr. | Mar 1978 | A |
4079591 | Derby | Mar 1978 | A |
4089744 | Cahn | May 1978 | A |
4090940 | Switzgable | May 1978 | A |
4095118 | Rathbun | Jun 1978 | A |
4100745 | Gyarmathy et al. | Jul 1978 | A |
4104955 | Murphy | Aug 1978 | A |
4108077 | Laing | Aug 1978 | A |
4109465 | Plen | Aug 1978 | A |
4110987 | Cahn et al. | Sep 1978 | A |
4112311 | Theyse | Sep 1978 | A |
4117342 | Melley, Jr. | Sep 1978 | A |
4117343 | Hoffelns | Sep 1978 | A |
4117696 | Fawcett et al. | Oct 1978 | A |
4118637 | Tackett | Oct 1978 | A |
4124182 | Loeb | Nov 1978 | A |
4124805 | Jacoby | Nov 1978 | A |
4126000 | Funk | Nov 1978 | A |
4136432 | Melley, Jr. | Jan 1979 | A |
4137015 | Grossman | Jan 1979 | A |
4142368 | Mantegani | Mar 1979 | A |
4143522 | Hamrick | Mar 1979 | A |
4147204 | Pfenninger | Apr 1979 | A |
4149092 | Cros | Apr 1979 | A |
4150547 | Hobson | Apr 1979 | A |
4154292 | Herrick | May 1979 | A |
4167372 | Tackett | Sep 1979 | A |
4170878 | Jahnig | Oct 1979 | A |
4173431 | Smith | Nov 1979 | A |
4189925 | Long | Feb 1980 | A |
4197700 | Jahnig | Apr 1980 | A |
4197715 | Fawcett et al. | Apr 1980 | A |
4201514 | Huetter | May 1980 | A |
4204126 | Diggs | May 1980 | A |
4206601 | Eberle | Jun 1980 | A |
4206608 | Bell | Jun 1980 | A |
4209982 | Pitts | Jul 1980 | A |
4215548 | Beremand | Aug 1980 | A |
4220006 | Kindt | Sep 1980 | A |
4229143 | Pucher | Oct 1980 | A |
4229661 | Mead et al. | Oct 1980 | A |
4232253 | Mortelmans | Nov 1980 | A |
4236083 | Kenney | Nov 1980 | A |
4237692 | Ahrens et al. | Dec 1980 | A |
4242878 | Brinkerhoff | Jan 1981 | A |
4246978 | Schulz et al. | Jan 1981 | A |
4262735 | Courrege | Apr 1981 | A |
4265599 | Morton | May 1981 | A |
4273514 | Shore et al. | Jun 1981 | A |
4274010 | Lawson-Tancred | Jun 1981 | A |
4275310 | Summers et al. | Jun 1981 | A |
4281256 | Ahrens | Jul 1981 | A |
4293323 | Cohen | Oct 1981 | A |
4299198 | Woodhull | Nov 1981 | A |
4302684 | Gogins | Nov 1981 | A |
4304103 | Hamrick | Dec 1981 | A |
4311011 | Lewis | Jan 1982 | A |
4316096 | Syverson | Feb 1982 | A |
4317439 | Emmerling | Mar 1982 | A |
4329842 | Hoskinson | May 1982 | A |
4335093 | Salomon | Jun 1982 | A |
4335867 | Bihlmaier | Jun 1982 | A |
4340822 | Gregg | Jul 1982 | A |
4341072 | Clyne | Jul 1982 | A |
4348863 | Taylor et al. | Sep 1982 | A |
4353214 | Gardner | Oct 1982 | A |
4354420 | Bianchetta | Oct 1982 | A |
4355956 | Ringrose et al. | Oct 1982 | A |
4358250 | Payne | Nov 1982 | A |
4362462 | Blotenberg | Dec 1982 | A |
4363703 | ElDifrawi | Dec 1982 | A |
4367786 | Hafner et al. | Jan 1983 | A |
4368692 | Kita | Jan 1983 | A |
4368775 | Ward | Jan 1983 | A |
4370559 | Langley, Jr. | Jan 1983 | A |
4372114 | Burnham | Feb 1983 | A |
4372332 | Mast | Feb 1983 | A |
4375387 | deFilippi et al. | Mar 1983 | A |
4380419 | Morton | Apr 1983 | A |
4393752 | Meier | Jul 1983 | A |
4411136 | Funk | Oct 1983 | A |
4421661 | Claar et al. | Dec 1983 | A |
4426846 | Bailey | Jan 1984 | A |
4428711 | Archer | Jan 1984 | A |
4435131 | Ruben | Mar 1984 | A |
4466244 | Wu | Aug 1984 | A |
4478556 | Gozzi | Oct 1984 | A |
4537558 | Tsunoda et al. | Aug 1985 | A |
4585039 | Hamilton | Apr 1986 | A |
4593202 | Dickinson | Jun 1986 | A |
4603551 | Wood | Aug 1986 | A |
4610369 | Mercier | Sep 1986 | A |
4706685 | Jones, Jr. et al. | Nov 1987 | A |
4714411 | Searle | Dec 1987 | A |
4761118 | Zanarini et al. | Aug 1988 | A |
4765225 | Birchard | Aug 1988 | A |
4784579 | Gazzera | Nov 1988 | A |
4849648 | Longardner | Jul 1989 | A |
4959958 | Nishikawa et al. | Oct 1990 | A |
5099648 | Angle | Mar 1992 | A |
5138936 | Kent | Aug 1992 | A |
5142870 | Angle | Sep 1992 | A |
5161865 | Higashimate et al. | Nov 1992 | A |
5169295 | Stogner et al. | Dec 1992 | A |
5179837 | Sieber | Jan 1993 | A |
5184936 | Nojima | Feb 1993 | A |
5253619 | Richeson et al. | Oct 1993 | A |
5259738 | Salter et al. | Nov 1993 | A |
5322418 | Comer | Jun 1994 | A |
5387089 | Stogner et al. | Feb 1995 | A |
5394695 | Sieber | Mar 1995 | A |
5537822 | Shnaid et al. | Jul 1996 | A |
5564912 | Peck et al. | Oct 1996 | A |
5584664 | Elliott et al. | Dec 1996 | A |
5622478 | Elliott et al. | Apr 1997 | A |
5634340 | Grennan | Jun 1997 | A |
5674053 | Paul et al. | Oct 1997 | A |
5716197 | Paul et al. | Feb 1998 | A |
5769610 | Paul et al. | Jun 1998 | A |
5771693 | Coney | Jun 1998 | A |
5782612 | Margardt | Jul 1998 | A |
5807083 | Tomoiu | Sep 1998 | A |
5839270 | Jirnov et al. | Nov 1998 | A |
5863186 | Green et al. | Jan 1999 | A |
5993170 | Stevens et al. | Nov 1999 | A |
6026349 | Heneman | Feb 2000 | A |
6052992 | Eroshenko | Apr 2000 | A |
6113357 | Dobbs | Sep 2000 | A |
6145311 | Cyphelly | Nov 2000 | A |
6206660 | Coney et al. | Mar 2001 | B1 |
RE37603 | Coney | Mar 2002 | E |
6371145 | Bardon | Apr 2002 | B1 |
6371733 | Renfro | Apr 2002 | B1 |
6397794 | Sanderson et al. | Jun 2002 | B1 |
6446587 | Sanderson et al. | Sep 2002 | B1 |
6460450 | Sanderson et al. | Oct 2002 | B1 |
6499288 | Knight | Dec 2002 | B1 |
6558134 | Serafin et al. | May 2003 | B2 |
6568169 | Conde et al. | May 2003 | B2 |
6568911 | Brightwell et al. | May 2003 | B1 |
6638024 | Hancock | Oct 2003 | B1 |
6652241 | Alder | Nov 2003 | B1 |
6652243 | Krasnov | Nov 2003 | B2 |
6655155 | Bishop | Dec 2003 | B2 |
6695591 | Grimmer et al. | Feb 2004 | B2 |
6711984 | Tagge et al. | Mar 2004 | B2 |
6725671 | Bishop | Apr 2004 | B2 |
6733253 | Vockroth | May 2004 | B2 |
6817185 | Coney et al. | Nov 2004 | B2 |
6829978 | Sanderson et al. | Dec 2004 | B2 |
6854377 | Sanderson et al. | Feb 2005 | B2 |
6913447 | Fox et al. | Jul 2005 | B2 |
6915765 | Sanderson et al. | Jul 2005 | B1 |
6925973 | Sanderson et al. | Aug 2005 | B1 |
6957632 | Carlson et al. | Oct 2005 | B1 |
6959546 | Corcoran | Nov 2005 | B2 |
6994104 | Bishop et al. | Feb 2006 | B2 |
6997685 | Lemmen | Feb 2006 | B2 |
7001158 | Dunn | Feb 2006 | B2 |
7007589 | Sanderson | Mar 2006 | B1 |
7011469 | Sanderson et al. | Mar 2006 | B2 |
7021602 | Davis et al. | Apr 2006 | B2 |
RE39249 | Link, Jr. | Aug 2006 | E |
7210496 | Suzuki | May 2007 | B2 |
7219682 | Agnew et al. | May 2007 | B2 |
7257952 | Bishop et al. | Aug 2007 | B2 |
7308361 | Enis et al. | Dec 2007 | B2 |
7377492 | Vrana et al. | May 2008 | B2 |
7395748 | Krimbacher | Jul 2008 | B2 |
7488159 | Bhatt et al. | Feb 2009 | B2 |
7527482 | Ursan et al. | May 2009 | B2 |
7530300 | Hornstein | May 2009 | B2 |
7543668 | Schechter | Jun 2009 | B1 |
7604064 | Irwin, Jr. | Oct 2009 | B2 |
7610955 | Irwin, Jr. | Nov 2009 | B2 |
7640736 | Arbel et al. | Jan 2010 | B2 |
7656055 | Torres et al. | Feb 2010 | B2 |
7663255 | Kim et al. | Feb 2010 | B2 |
7696632 | Fuller | Apr 2010 | B1 |
7802426 | Bollinger | Sep 2010 | B2 |
7832207 | McBride et al. | Nov 2010 | B2 |
7874155 | McBride et al. | Jan 2011 | B2 |
7900444 | McBride et al. | Mar 2011 | B1 |
8037678 | McBride et al. | Oct 2011 | B2 |
8161741 | Ingersoll et al. | Apr 2012 | B2 |
20030180155 | Coney et al. | Sep 2003 | A1 |
20050180864 | Ursan et al. | Aug 2005 | A1 |
20060078445 | Carter, III et al. | Apr 2006 | A1 |
20060218908 | Abou-Raphael | Oct 2006 | A1 |
20060248886 | Ma | Nov 2006 | A1 |
20070187918 | Mizuno | Aug 2007 | A1 |
20080060862 | Schlele et al. | Mar 2008 | A1 |
20080163618 | Paul | Jul 2008 | A1 |
20090260361 | Prueitt | Oct 2009 | A1 |
20090282822 | McBride et al. | Nov 2009 | A1 |
20090301089 | Bollinger | Dec 2009 | A1 |
20100018196 | Li et al. | Jan 2010 | A1 |
20100089063 | McBride et al. | Apr 2010 | A1 |
20100139277 | McBride et al. | Jun 2010 | A1 |
20100205960 | McBride et al. | Aug 2010 | A1 |
20100229544 | Bollinger et al. | Sep 2010 | A1 |
20100307156 | Bollinger et al. | Dec 2010 | A1 |
20100326062 | Fong et al. | Dec 2010 | A1 |
20100326064 | Fong et al. | Dec 2010 | A1 |
20100326066 | Fong et al. | Dec 2010 | A1 |
20100326068 | Fong et al. | Dec 2010 | A1 |
20100326069 | Fong et al. | Dec 2010 | A1 |
20100326075 | Fong et al. | Dec 2010 | A1 |
20100329891 | Fong et al. | Dec 2010 | A1 |
20100329903 | Fong et al. | Dec 2010 | A1 |
20100329909 | Fong et al. | Dec 2010 | A1 |
20110023488 | Fong et al. | Feb 2011 | A1 |
20110023977 | Fong et al. | Feb 2011 | A1 |
20110030359 | Fong et al. | Feb 2011 | A1 |
20110030552 | Fong et al. | Feb 2011 | A1 |
20110056193 | McBride et al. | Mar 2011 | A1 |
20110056368 | McBride et al. | Mar 2011 | A1 |
20110061741 | Ingersoll et al. | Mar 2011 | A1 |
20110061836 | Ingersoll et al. | Mar 2011 | A1 |
20110062166 | Ingersoll et al. | Mar 2011 | A1 |
20110079010 | McBride et al. | Apr 2011 | A1 |
20110083438 | McBride et al. | Apr 2011 | A1 |
20110131966 | McBride et al. | Jun 2011 | A1 |
20110167813 | McBride et al. | Jul 2011 | A1 |
20110258999 | Ingersoll et al. | Oct 2011 | A1 |
20110259001 | McBride et al. | Oct 2011 | A1 |
20110259442 | McBride et al. | Oct 2011 | A1 |
Number | Date | Country |
---|---|---|
2013318 | Aug 1979 | GB |
WO 9003516 | Apr 1990 | WO |
WO 9306367 | Apr 1993 | WO |
WO 9817492 | Apr 1998 | WO |
WO 2005069847 | Aug 2005 | WO |
WO 2008139267 | Nov 2008 | WO |
WO 2009034548 | Mar 2009 | WO |
WO 2010135658 | Nov 2010 | WO |
WO 2011079267 | Jun 2011 | WO |
WO 2011079271 | Jun 2011 | WO |
Entry |
---|
Ahrens, F. W., “Preliminary Evaluation of the Use of Hydraulic Air Compressors in Water-Compensated Reservoir Compressed Air Storage Power Plants,” NTIS, Prepared for CAES Technology Symposium 1978, May 15-17, 1978, Pacific Grove, CA, Argonne National Laboratory, Argonne, Illinois, 24 pages. |
Berghmans, J. A. et al., “Performance of a Hydraulic Air Compressor for Use in Compressed Air Energy Storage Power Systems,” Smithsonian/NASA ADS Physics Abstract Service, Presented at Symp. on Fluids Eng. in Advanced Energy Conversion Systems, ASME Winter Ann. Meeting, San Francisco, Dec. 10-15. |
Carbon Trust, “Hydraulic Transmission System for Large Wind Turbines,” Jan. 2007, 1 page. |
Erbe, R., “Water Works: Less Expensive Than Oil and Environmentally Friendly, Water-Based Hydraulics Deserve a Closer Look,” Machine Design, Sep. 13, 2007, vol. 116, 5 pages. |
Hydraulics & Pneumatics, Piston Pumps [online], [retrieved on Oct. 17, 2007]. Retrieved from the Internet: <URL: http://www.hydraulicspneumatics.com/200/FPE/pumps/article/true/6402>, 2007, Penton Media, Inc., 4 pages. |
Hydraulics & Pneumatics, Wobble-Plate Piston Pump [online], [retrieved on Oct. 18, 2007]. Retrieved from the Internet: <URL: http://www.hydraulicspneumatics.com/200/issue/article/true/43640>, 2007, Penton Media, Inc., 13 pages. |
Moore, J. J. et al., “Conceptual Design Study of Hydraulic Compression for Wind Turbine Driven Air Compression,” Final Report, SwRI Project No. 18.18094.01.016, Jun. 6, 2008, Southwest Research institute, 50 pages. |
Sanderson, A. E., “Hydraulic System for Control of Power Windmills,” undated, 11 pages. |
Sanderson Engine Development, “Application of Sanderson Mechanism for Conversion Between Linear and Rotary Motion,” [online], [retrieved on May 8, 2008]. Retrieved from the Internet: <URL: http://www.sandersonengine.com/html/projects.html>, 2 pages. |
Simetric, “Mass, Weight, Density or Specific Gravity of Liquids,” [online], [retrieved on Jan. 2, 2008]. Retrieved from the Internet: <URL: http://www.simetric.co.uk/si—liquids.htm>, 5 pages. |
“Swash-plate Type Axial Piston Pumps for Open Circuits in General Industrial Machinery,” Kawasaki K3VG, Kawasaki Motor Corp., USA, 2006, 24 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2010/062016, mailed Jan. 19, 2012. |
Cyphelly et al., “Usage of Compressed Air Storage Systems,” Program Elektricity, Final Report May 2004, Ordered by the Swiss Federal Office of Energy. |
Number | Date | Country | |
---|---|---|---|
20120057998 A1 | Mar 2012 | US |
Number | Date | Country | |
---|---|---|---|
61290107 | Dec 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12977724 | Dec 2010 | US |
Child | 13294660 | US |