System and methods for tooth movement as a flock

Information

  • Patent Grant
  • 11583365
  • Patent Number
    11,583,365
  • Date Filed
    Friday, August 5, 2016
    8 years ago
  • Date Issued
    Tuesday, February 21, 2023
    a year ago
Abstract
A system includes a plurality of tooth models each including computer code controlling its movement. The system also includes a tooth movement control system (TMCS) with a processor executing a dental manager module and with memory scoring a different tooth movement plan for each of the tooth models. In practice, the tooth movement plans are stored in the memory of each of the tooth models (e.g., a different tooth movement plan for each tooth model). Then, during tooth movement operation, each of the local control modules independently controls the tooth model to execute the tooth movement plan stored in the memory of the tooth model.
Description
FIELD OF THE INVENTION

The present invention relates to methods and apparatus for computerized orthodontics. More particularly, the present invention relates to methods and apparatus for planning orthodontic treatments.


BACKGROUND OF THE INVENTION

Orthodontics is a specialty of dentistry that is concerned with the study and treatment of malocclusions which can result from tooth irregularities, disproportionate facial skeleton relationships, or both. Orthodontics treats malocclusion through the displacement of teeth via bony remodeling and control and modification of facial growth.


This process has been traditionally accomplished by using static mechanical force to induce bone remodeling, thereby enabling teeth to move. In this approach, braces having an archwire interface with brackets are affixed to each tooth. As the teeth respond to the pressure applied via the archwire by shifting their positions, the wires are again tightened to apply additional pressure. This widely accepted approach to treating malocclusions takes about twenty-four months on average to complete, and is used to treat a number of different classifications of clinical malocclusion. Treatment with braces is complicated by the fact that it is uncomfortable and/or painful for patients, and the orthodontic appliances are perceived as unaesthetic, all of which creates considerable resistance to use. Further, the treatment time cannot be shortened by increasing the force, because too high a force results in root resorption, as well as being more painful. The average treatment time of twenty-four months is very long, and further reduces usage. In fact, some estimates provide that less than half of the patients who could benefit from such treatment elect to pursue orthodontics.


Kesling introduced the tooth positioning appliance in 1945 as a method of refining the final stage of orthodontic finishing after removal of the braces (debanding). The positioner was a one-piece pliable rubber appliance fabricated on the idealized wax set-ups for patients whose basic treatment was complete. Kesling also predicted that certain major tooth movements could also be accomplished with a series of positioners fabricated from sequential tooth movements on the set-up as the treatment progressed. However, this idea did not become practical until the advent of three-dimensional (3D) scanning and use of computers by companies including Align Technologies and as well as OrthoClear, Elementrix, and ClearCorrect to provide greatly improved aesthetics since the devices are transparent.


However for traditional trim model to individual tooth, the gum geometry is lost and the fake gum is recreated, often remodeled by a technician. Hence, the gum geometry may not be accurate at first and an animation of gum changes over time due to lack of a physical model is even harder to model. Such inaccurate modeling causes the resulting aligner to be mismatched resulting in devices which are too large or too small resulting in patient discomfort.


Another problem is that without the real gum as the reference, some so-called modeled treatments cannot be achieved in reality resulting in potential errors, e.g., a tooth movement can occur within a mis-modeled gingival, however, the tooth movement may actually be moved exteriorly of a patient's real gingival.


Another problem of trimming and hole filling and creating an individual tooth and gum model is there is little information that can define the real boundary of two teeth. Such trim and fill models force the boundary surfaces to be defined even if they are arbitrary.


Depending on what boundary surface is defined, the movement can be restricted or relax, meaning some real life movement can be achieved; however, due to such inaccuracies, the modeling software is unable to model accurately due to models colliding into each other. This may cause the real treatment outcome to create gaps between teeth and further requiring final refinements which increase cost and patient dissatisfaction. On the other hand, if the modeled movement is relax, the software may enable movements which are physically impossible in reality and this may cause the modeled device to push teeth into one another unable to move. This may also cause the plastic shell of the aligner to sometimes stretch so much that the shell applies an uncomfortable amount of force, which could be painful, to a patient.


Another problem of trim and hole fill is the filling of the geometry like a real tooth, for below, the below lines are likely of boundary surfaces modeled, such models look like a real tooth; however, such sharp boundaries cause deeper undercuts which, once printed and thermal formed to have a plastic shell, make removal of the plastic shell from the printed model difficult due to the deep undercuts. To compensate for this, a bevel object is typically created to fill the clevis increasing inaccuracy and costs.


Another problem of trim and hole filling is the model size is too large to communicate between the user and manufacturer thus requiring that the model size be reduced resulting in missing model details. These inaccuracies could misguide professionals, e.g., the full complex model may not show a gap between two adjacent teeth however the reduced model may show one.


These 3D scanning and computerized planning treatments are cumbersome and time consuming. Accordingly, there exists a need for an efficient and cost effective procedure for planning the orthodontic treatment of a patient.


SUMMARY OF THE INVENTION

The following description provides a control method and system for controlling two or more tooth models during synchronized tooth movement. As an exemplary use, the control method and system may be used to provide orthodontic treatment.


The system is provided for controlling tooth movement of a plurality of biological objects (tooth models). The system includes a plurality of tooth models each including computer code controlling its movement. The system also includes a tooth movement control system (TMCS) with a processor executing a dental manager module and with memory scoring a different tooth movement plan for each of the tooth models. In practice, the tooth movement plans are stored in the memory of each of the tooth models (e.g., a different tooth movement plan for each tooth model). Then, during tooth movement operation, each of the local control modules independently controls the tooth model to execute the tooth movement plan stored in the memory of the tooth model.


In some cases, the local control module of each of the tooth models operates to periodically compare a present position of the tooth model with the tooth movement plan and, based on the comparing, modifying control of the tooth model. In these cases, modifying of the control may include altering a tooth movement speed or selecting a new way point for the tooth model in the tooth movement plan as a target. In other cases, the local control of each of the tooth models may operate to detect another one of the tooth models within a safety envelope about the tooth model and, in response, communicate a collision warning message to the detected one of the tooth models to cause the detected one of the tooth models to alter its course to move out of the safety envelope. In some specific implementations, the tooth models are teeth, and the local control module of each of the tooth models operates to detect pitch and roll of the tooth and, when the pitch or the roll exceeds a predefined maximum, switches operations of the tooth to a safe operating mode.


The description also teaches a tooth movement control method. In this control method, an initial step may be to receive a tooth movement plan unique to each of the teeth for a plurality of teeth. A next step may involve concurrently operating the teeth to execute the tooth movement plans. The method further includes providing a communications channel between pairs of the teeth with a first one of the teeth detecting a second one of the teeth in a predefined space proximal to the first one of the teeth. The method also includes, with the first one of the teeth, transmitting a message to the second tooth over the communication channel between the first and second teeth causing the second tooth to change position to avoid collision.


In some implementations of the method, the tooth movement plans may include a plurality of way points for each of the teeth. In such implementations, the method may further include, during the operating of the teeth to execute the tooth movement plans, adjusting tooth movement speed or course of one of the teeth based on comparison of a present position and one of the way points. The tooth movement plans may further include an elapsed time period for each of the way points, and then, the adjusting of the tooth movement speed or course may be performed when the elapsed time is exceeded by the one of the teeth.


In some implementations of the method, the teeth movements are decomposed to different movement metrics, e.g. a tooth movement can be decomposed to tip, rotation around long axis, bodily movement, etc. The artificial intelligence network, usually a neural network is built, such network having different neurons and weights can be adjusted, where treated cases are the learning set of such neural network. By inputting each case and adjusting the network weights to make the network more predictable to the treatment outcome, when a new case comes, the designed movement may be run through the network and an ideal and more predictable movement design is achieved. The more training cases are provided, the more robust network can be achieved.


In one embodiment, each tooth executes rules that as a group conforms to one or more of the following goals or objectives:


1. Adherence to Andrews' Six Keys To Occlusion;


2. Root cannot move more than 0.5 mm per month;


3. Conform to a U or V formation;


4. Open the bite;


5. No interproximal reduction;


6. Avoid moving any implant tooth;


7. Define sub-group of teeth that move together as a unit.


The system allows close control by the treating professional at each stage by allowing specific movements from one stage to the next stage. In one example, it is desirable in some settings to synchronize the movement and operation of the tooth models to have tooth models operate in a choreographed manner as dictated by a treating professional, which is not possible through manual control where the tooth models move randomly and independently.


The present control method and/or system may be ideal for use in moving a number of tooth models and to provide synchronized tooth movement. Such a method would be non-swarming since it is desirable to avoid collisions and to also avoid the appearance of merely random movement (at least in some applications) of the tooth models. Rather, it is desirable for the tooth models to each react safely to environmental conditions such as changes in bone structure and soft tissue during group tooth movement of choreographed tooth models.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is functional block diagram of a multiple tooth model system useful for implementing the tooth movement control techniques described herein.



FIG. 2 is a functional schematic or block diagram of a system for use in providing tooth movement management or tooth movement control over two or more moving objects such as tooth models.





DETAILED DESCRIPTION OF THE INVENTION

The present invention will be described with respect to particular embodiments but the invention is not limited thereto but only by the claims. Any reference signs in the claims shall not be construed as limiting the scope thereof.


As used herein, the singular forms “a”, “an”, and “the” include both singular and plural referents unless the context clearly dictates otherwise.


The terms “comprising”, “comprises” and “comprised of” as used herein are synonymous with “including”, “includes” or “containing”, “contains”, and are inclusive or open-ended and do not exclude additional, non-recited members, elements or method steps. The terms “comprising”, “comprises” and “comprised of” when referring to recited members, elements or method steps also include embodiments which “consist of” said recited members, elements or method steps.


Furthermore, the terms first, second, third and the like in the description and in the claims, are used for distinguishing between similar elements and not necessarily for describing a sequential or chronological order, unless specified. It is to be understood that the terms so used are interchangeable under appropriate circumstances and that the embodiments of the invention described herein are capable of operation in other sequences than described or illustrated herein.


The term “about” as used herein when referring to a measurable value such as a parameter, an amount, a temporal duration, and the like, is meant to encompass variations of +/−10% or less, preferably +/−5% or less, more preferably +/−1% or less, and still more preferably +/−0.1% or less of and from the specified value, insofar such variations are appropriate to perform in the disclosed invention. It is to be understood that the value to which the modifier “about” refers is itself also specifically, and preferably, disclosed.


The recitation of numerical ranges by endpoints includes all numbers and fractions subsumed within the respective ranges, as well as the recited endpoints.


All documents cited in the present specification are hereby incorporated by reference in their entirety.


Unless otherwise defined, all terms used in disclosing the invention, including technical and scientific terms, have the meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. By means of further guidance, definitions for the terms used in the description are included to better appreciate the teaching of the present invention. The terms or definitions used herein are provided solely to aid in the understanding of the invention.


Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment, but may. Furthermore, the particular features, structures or characteristics may be combined in any suitable manner, as would be apparent to a person skilled in the art from this disclosure, in one or more embodiments. Furthermore, while some embodiments described herein include some but not other features included in other embodiments, combinations of features of different embodiments are meant to be within the scope of the invention, and form different embodiments, as would be understood by those in the art. For example, in the following claims, any of the claimed embodiments can be used in any combination.


The treatment planning process may be implemented after receiving and analyzing the scanned dental model of a patient's dentition. The scanned dental model may be accordingly processed to enable the development of a treatment plan which can be readily implemented for fabricating one or more positioners for use in effecting sequential tooth movements. Generally, the tooth modeling process may be used in planning the treatment for correcting malocclusions in a patient and may involve initially acquiring a patient's dental record in the form of, e.g., lower arch and/or upper arch CAD files, intra oral photos, X-rays or 3D CT scans, etc. The lower arch and/or upper arch CAD files may be created, for instance, through a number of different methods, such as taking lower and upper impressions of the patient's dentition, X-rays, etc.


With the dental model, the present description is directed toward a control method and system (or multiple tooth model systems incorporating such control methods/systems) for use in controlling a flock of tooth models numbering from 2 to 10 or more tooth models (e.g., 10 to 100 or more teeth). That is, the method treats groups of teeth as a flock (e.g., such as a flock of birds which travel collectively) in planning the movements of the teeth for treatments to correct for malocclusions.


Briefly, the control method uses hierarchical-based supervisory control with multicasting techniques along with adaptive logic including onboard or local control modules provided on each tooth model to adjust tooth movement paths to safely avoid collisions based on communication with nearby tooth models. The result of the described control of the multiple tooth models in an oral cavity is a flocking behavior in which the tooth models appear to move in a synchronized manner with movements that are neither completely independent nor completely centrally controlled.


The control method in planning a treatment may be implemented in a system 10 generally having several components including a tooth movement manager module 12, collision manager module 14, and tooth manager module 16 for controlling the movement of tooth models. These components or aspects of the control method/system 10 communicate with a computer system 18 and are described below and as shown in FIG. 1.



FIG. 1 illustrates a tooth controller/computer or teeth movement control system (TMCS) 10 that may be used to control tooth movement in a safe and repeatable manner. The system 10 includes tooth movement manager module 12 which communicates with the computer system 18 (which includes one or more processors) upon which the digital tooth models of a patient's teeth 20 reside. As shown, the digital tooth models on the computer system 18 are configured for an inter-tooth model or tooth communications and, as explained herein, this intercommunication allows the teeth 20 to safely change its path for correcting malocclusions by determining whether particular teeth 22, 24 are in conflicting movement pathways to avoid collisions while generally remaining on a predefined tooth movement path.


During runtimes, the tooth movement manager 12 is programmed to send commands to the computer system 18 to monitor and maintain performance and quality and also to monitor safety of the teeth to be moved. The tooth movement manager 12 is further programmed to upload tooth movement requirements to the computer system 18 during downtimes, e.g., non-runtimes.


A second module, collision manager module 14, may be programmed to interact with the computer system 18 to handle collisions between teeth to be moved. The collision manager 14 may be programmed to perform the following logic: (a) calculate a “sphere of influence” on each tooth model, e.g., determine a proximity distance between each tooth model to trigger a collision event and if a tooth model enters this sphere of influence around a specific tooth model, a collision event is triggered; (b) determine through a nearest neighbor algorithm whether a possible conflicting pathway will occur; and (c) present to the operator on a user interface provided on the computer system 18 (e.g., via a monitor device) that a potential pathway conflict will occur between any two teeth. The collision module 14 may store the tooth movement paths in memory, e.g., within computer system 18.


Another module includes a tooth manager module 16 which is programmed to monitor the expected state and the actual state of each of the teeth 20. For example, the module 16 may compare a present position or traveling speed of, e.g., tooth 24, with its expected state which may be defined by a tooth movement path or a choreographed and/or time-synchronized movement of tooth models such as with a treatment animation. Based on this monitoring, the tooth manager module 16 may make adjustments such as using the following priorities: localization (e.g., position of the a tooth model with respect to another tooth model or teeth); environment (e.g., adjusting for bone conditions or the like); safety (e.g., returning the tooth model to a safe location or operating mode if the tooth model or other tooth models are not operating as expected); show performance (e.g., adjusting position, speed, or other operating parameters to meet show needs); tooth status; and operator convince/performance needs.


As discussed above, the tooth manager module 16, collision module 14, and tooth movement manager 12 are configured to work together to provide flocking-type control. In use, the inter-tooth model communications allows operational data to flow or spread hierarchically among each of the tooth models rather than relying upon centralized/tooth movement control alone. In other words, the tooth manager module 16 provides a level of centralized control or central logic that acts to control the movement of the tooth models/teeth such as by providing tooth movement paths provided by the tooth movement manager module 12 and/or making real-time adjustments based on a comparison of expected state and actual state (or for safety reasons) as provided by the collision manager module 14. With regard to inter-tooth model communications, it may be useful to note the following: (a) some units may be designated as master nodes talking with the tooth manager 16; and (b) the master nodes may operate to send out in-tooth movement calculated information or commands to remaining tooth models.


The movement of the individual tooth models and control of the models are not swarm-based in part because swarming-based tooth models can collide with one another or have an inherent lack of safety. The system 10 is designed to avoid random movements as the digital tooth models are subject to moving as a flock having synchronized movements among the individual tooth models. However, the inter-tooth model communications as processed and generated by the local control modules allow for each tooth model to react safely to environment conditions such as direction-changing and the presence/movement of neighboring teeth as crossing tooth movement paths is allowed in the system 10. In other words, the onboard logic acts to control the tooth movements so as to avoid collisions while attempting to stay generally on the tooth movement path.



FIG. 2 illustrates a general system (or a tooth movement management control system) 30 generally for use in managing or controlling tooth models to provide for synchronized tooth movement by simulating flocking movement of the teeth to correct for malocclusions. As shown, a treatment plan for moving the one or more teeth 32 to correct for malocclusions may be initially developed. The system may include components used to perform off-line activity and used to perform on-line activity. The off-line activity may include designing or selecting a treatment concept or choreographed movement for a plurality of tooth models to achieve a particular effect or perform a task(s). The tooth movement concept (e.g., digital data stored in memory or the like) may be processed with a computer system 18 or other device.


Each tooth to be used may be modeled as a particle to simulate movement of the one or more teeth as a flock of teeth 34 (such as a flock of birds), as described herein. Accordingly, each digitized tooth model may be configured by the computer system 18 to define a three-dimensional space, such as a three-dimensional sphere with a predefined diameter, around each tooth model. This three-dimensional sphere may be used to define a safety envelope for the tooth model or flying object to reduce the risk of a collision between to individual tooth models. For instance, each of the tooth models may be created and create and choreographed by the system 18 to avoid collisions with one another and where two or more tooth models are prohibited from having their safety envelopes intersect or overlap as the tooth models move along their tooth movement paths.


The created tooth movement plan for the multiple tooth models is then exported to memory of computer system 18 or other devices for processing with this “treatment illustration” typically including a file per each tooth model. Each of these files is processed to generate real world coordinates for each tooth model to be achieved over time during an animation or performance of a choreographed task(s) to illustrate the movement of teeth 36, e.g., on a display, to the practitioner and/or patient. This processing creates individual tooth movement plans for each tooth model, and such processing or generating of the tooth movement plans may include processing the modeled animation based on specific logistical requirements. For example, these requirements may be modified, as needed, e.g., is the dental space the same size and shape as in the simulation and, if not, modification may be useful to change or set real world coordinates for one or more of the tooth models.


Once the treatment plan has been approved 38, the treatment plan may be used to fabricate one or more dental appliances or positioners using, e.g., three-dimensional printing 40, locally at the location of the treatment planning.


In planning the simulation of the movement of the individual tooth models as a flock of teeth 34 for working up a treatment plan, the tooth models may be manipulated using the TMCS 10 described herein. The logistical requirements may also include setting a tooth movement truth for the venue and adding safe or “home” points where each tooth can be safely positioned such as at the beginning and end of a treatment process or when a safety over-ride is imparted (e.g., “stop”). A treatment planning management component may he considered a component that translates central treatment plan controller commands where tooth actions are sent to the tooth management component either through scripts (e.g., data files), real time computer messages, and/or hardware triggers.


The tooth movement plans are provided to the TMCS 10, as described above, and the system further includes a number of tooth models shown in the form of teeth in this example. The teeth may be organized into groups or sets with a set shown to include, e.g., two molars, a set including one molars, and a set including cuspid teeth, among others. These sets may act or function together, at least for a portion of an animation or tooth movement path, to perform a particular display or task.


In other cases, all of the teeth may be considered part of large set that moves as a flock or otherwise has its movements time-synchronized and/or choreographed by tooth movement plans. A tooth in the group can communicate with its nearby or neighboring teeth so as to determine their presence, to determine their proximity, and when needed, to process the tooth movement plan, determine neighbor position, and other environmental data to modify their tooth movement plan to avoid collision and/or communicate with the neighboring tooth to instruct it to move or otherwise change its tooth movement plan/movement to avoid collision.


During pre-tooth movement, an operator uses the TMCS to load a tooth movement plan onto each tooth model. During a tooth movement sequence, the TMCS and its tooth manager module 16 acts to run the tooth movement plan previously loaded on the tooth model. During the tooth treatment, the TMCS actively monitors safety and a practitioner can initiate a TMCS user action. More typically, though, the TMCS monitors the operation of all the tooth models in the flock by processing telemetry data provided by each of the tooth models provided by each tooth model. In some embodiments, the tooth manager module 16 has software/logic that compares the actual state of each tooth model against the expected state at that particular time for the tooth model according to the presently enacted tooth movement plan.


After the “go” or start signal is issued by the tooth manager module/TMCS upon an operator input, the TMCS along with the local control software/hardware on each tooth model work to safely perform the preloaded tooth movement plan/show. As discussed above, the control method and system combines centralized, control (e.g., to allow manual override for safety or other reasons during a show/tooth movement-based task) with smart tooth models to more effectively provide flock-type movement of the tooth models. In other words, the tooth models may each be given a particular tooth movement plan that they work towards over time (e.g., during an animation period) while attempting to respond to the unexpected presence of another tooth model within or near to their safety window (or safe operating envelope surrounding each tooth model such as a sphere of, e.g., 1 to 3 mm or the like, in which no other tooth model typically will travel to avoid collisions).


During operations, the TMCS is used to trigger each of the tooth models to begin their stored tooth movement plan starting from an initial start point, e.g., each tooth model may be placed at differing starting points. In some cases after the “go” is received by a tooth model, each tooth model uses its local control module (or other software/programming) to attempt to follow the tooth movement plan but with no time constraints. In other words, the tooth movement plan may define a series of points or way points for the tooth model. In these embodiments, the tooth model is controlled in a relatively fluid manner and not tied to accomplishing specified movements in a certain amount of time, e.g., the tooth movement plan does not require the tooth model to be at a particular location at a particular time after the go signal is received hence allowing for planning flexibility.


In some implementations, the tooth movement plan may be built up assuming that each tooth model travels at a preset and constant tooth movement speed. This tooth movement speed may be set independently for each tooth model or may be the same (or within a relatively small range) for each of the tooth models. In other cases, though, the local control module may be adapted to adjust the tooth movement speed to suit the conditions in the mouth of the patient. The bone hardness may be determined at the tooth model with the local control module and/or via optical sensors for detecting actual tooth movement (rather than planned movement) may be provided by the TMCS to each of the tooth model. In some cases, flock control is preferred such that each tooth model has its speeds adjusted commonly, e.g., each tooth model runs at similar tooth movement speeds while moving in a similar direction so as to appear to have synchronized and non-random movement.


In some embodiment, each tooth model may act independently to try to continue to follow its own tooth movement plan. Each tooth movement plan may differ in that each tooth model begins at a different start point or home and moves toward its first way point. To this end, each tooth model is equipped, as needed, to determine its present three dimensional position along with its present height above the gum line. The local control module uses this present position data to determine or modify, if necessary, its present direction or heading to continue to move toward the next way point in its tooth movement plan. This may involve changing it course and also its angle to reach the desired height at the way point.


An operator may take steps to manually override a particular one of the many tooth models to provide better control of that tooth model. For example, the tooth control module of the TMCS 10 may operate to compare an expected position of the tooth model with its actual position (provided via back end channel in its telemetry or other data). A warning may be provided in a graphical user interface (GUI) that the tooth model is trending off course or is outside an accepted tolerance for reaching its next way point.


For example, the GUI may show properly operating and positioned tooth models in a first color (e.g., green) and tooth models that are off course or out of position by a safe amount in a second color (e.g., yellow) and tooth models outside of a safe envelope in a third color (e.g., red). The red/unsafe tooth models may be handled automatically or manually to cause them to enter a safe mode of operation (e.g., return to home). The yellow tooth models that are operating outside of desired conditions may be manually operated to try to assist them in returning to their tooth movement path such as by manually changing speed, direction, angle of attack, or the like to more quickly bring the tooth model to a desired way point. After manual operations are complete, the control may be returned from the TMCS to the local control module for local control of the tooth model based on the tooth movement plan stored in its memory. The TMCS may be configured to evaluate collision issues and execute collision avoidance commands to preserve show quality (e.g., tooth movement performance) in degrading mouth conditions.


In other embodiments, a local control module of a tooth model may operate to adjust the tooth movement plan during tooth movement to better react to environmental conditions (such as toothache or temporarily gum discomfort, at least temporarily, off course). For example, a tooth movement plan may provide a time relative to a start time (when “go” was signaled by file TMCS to the tooth models) to reach each of its way points on the tooth movement plan. One embodiment may call for a tooth model to determine a distance to a next tooth model and its present estimated time of arrival. If the time of arrival is not within a window about a preset/goal arrival time, the local control module may act to increase the tooth movement speed of the tooth model such as by increasing the rate of rotation of a tooth. Likewise, if the tooth model is moving too quickly, the tooth model's local, control module may act to slow the tooth movement speed. In this manner, the movement of the tooth models may remain better synchronized to provide a flock control.


In other cases, though, the local control module of the tooth or other tooth models act to determine whether a way point was reached within a predefined time window with the tooth movement plan defining times for being at each way point relative to a start/go time. If not (e.g., the tooth model did not reach a way point at time “X” plus an allowable delay), the local control module may act to modify the tooth movement plan by directing the tooth model to skip the next way point and move directly to the way point within the mouth.


For example, a tooth movement plan may include way points A to Z. If a local control module determines that a predefined time window for way point C was not achieve, the local control module may skip or remove way point D from the tooth movement plan and cause the tooth model to take a direction/course (e.g., a straight line or other predefined path) to way point E. In this way, the tooth movement speed is maintained (e.g., all tooth models are moved at the same speed) while allowing the tooth model to “catch up” if they fall behind in their tooth movement plan (e.g., defining a set of way points to pass through or nearby within a predefined time period that may correspond with a time to perform a show/display or perform a task with the teeth).


With regard to safety and monitoring of operations, each tooth model may store a definition of a geofence that defines an outer perimeter (and an inner area in some cases) or boundary of a geographical area. The tooth models local control module compares the present position determined for the tooth model during a tooth movement and compares this position to the geofence. If this boundary is crossed (or is being approached such as within a preset distance from the geofence), the local control module may act to promptly return the tooth model back within the geofence boundaries. In other cases, the tooth model may be switched into a safe operating mode and this may cause the tooth model to return to a home position.


Further, regarding safe tooth model operations, some embodiments of tooth movement control may involve configuring the tooth models to have tooth model-to-tooth model (or tooth-to-tooth) communications to avoid collisions without reliance upon the TMCS to intervene. Each tooth model may use its local control module to operate on an ongoing basis to detect when another tooth model comes within a predefined distance from the tooth model such as within a sphere of 1 to 3 mm or the like. The first tooth model to detect such a condition (or both tooth models if a tie) generates a collision warning message and transmits this message to the offending/nearby tooth model to alter its course or present position to move out of the first tooth models dental space. For example, the tooth model receiving such a collision warning message may store an evasive action in its memory and initiate this action (a fixed movement such as angling to the right or left a preset angle). The evasion may be taken for a preset time period and then the tooth model may return to following its tooth movement plan (e.g., recalculate a course to the next way point from its new present location or the like).


In another example, the tooth models local control module monitors the present orientation of the tooth model and if the orientation is outside an acceptable range (e.g., tip or rotate exceeds 20 degrees or the like for a tooth) or if the bodily movement is too much, the local control module may also act to enter the tooth model into a safe operating mode (before or after attempting to correct the operating problem).


Although the invention has been described and illustrated with a certain degree of particularity, it is understood that the present disclosure has been made only by way of example, and that numerous changes in the combination and arrangement of parts can be resorted to by those skilled in the art without departing from the spirit and scope of the invention, as hereinafter claimed.


As will be apparent, the features and attributes of the specific embodiments disclosed herein may be combined in different ways to form additional embodiments, all of which fall within the scope of the present disclosure.


Conditional language used herein, such as, among others, “can,” “could,” “might,” “may,” “e.g.,” and the like, unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or states. Thus, such conditional language is not generally intended to imply that features, elements and/or states are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without author input or prompting, whether these features, elements and/or states are included or are to be performed in any particular embodiment.


Any process descriptions, elements, or blocks in the flow diagrams described herein and/or depicted in the attached figures should be understood as potentially representing modules, segments, or portions of code which include one or more executable instructions for implementing specific logical functions or steps in the process. Alternate implementations are included within the scope of the embodiments described herein in which elements or functions may be deleted, executed out of order from that shown or discussed, including substantially concurrently or in reverse order, depending on the functionality involved, as would be understood by those skilled in the art.


All of the methods and processes described herein may be embodied in, and fully automated via, software code modules executed by one or more general purpose computers or processors, such as those computer systems described herein. The code modules may be stored in any type of computer-readable medium or other computer storage device. Some or all of the methods may alternatively be embodied in specialized computer hardware.


It should be emphasized that many variations and modifications may be made to the herein-described embodiments, the elements of which are to be understood as being among other acceptable examples. All such modifications and variations are intended to be included herein within the scope of this disclosure and protected by the following claims.


The applications of the devices and methods discussed above are not limited to the one described but may include any number of further treatment applications. Modification of the above-described assemblies and methods for carrying out the invention, combinations between different variations as practicable, and variations of aspects of the invention that are obvious to those of skill in the art are intended to be within the scope of the claims.

Claims
  • 1. A computer-assisted method of controlling tooth movements for correcting malocclusions, comprising: receiving a plurality of digital tooth models of a subject having one or more malocclusions;determining a movement for each of the digital tooth models for correcting the malocclusions via a tooth movement manager module;assigning a three-dimensional sphere of influence having a predefined diameter assigned to each of the tooth models to define a safety envelope which surrounds each of the tooth models and to set a proximity distance between each tooth model via a collision manager module;monitoring an actual state of each tooth of the subject;comparing the actual state of each tooth against an expected state of each tooth model via a tooth manager module; andadjusting the movement of one or more teeth such that the movement of each of the one or more teeth is not tied to a specified movement within a predetermined number of stages over a specified period of time, and wherein the movement is based on a comparison of the actual state and the expected state showing the movement as trending off course.
  • 2. The method of claim 1 wherein receiving a plurality of digital tooth models comprises scanning a dentition of the subject.
  • 3. The method of claim 1 wherein determining a movement comprises independently executing a tooth movement plan for each of the tooth models.
  • 4. The method of claim 3 wherein independently executing comprises concurrently triggering initiation of the treatment plans by the multiple tooth models.
  • 5. The method of claim 1 wherein determining a movement comprises assigning one or more way points between an initial way point to a target way point.
  • 6. The method of claim 5 wherein comparing the actual state comprises periodically comparing the actual state against the expected state at each of the one or more way points.
  • 7. The method of claim 6 wherein adjusting the movement comprises assigning a new way point to one or more of the tooth models.
  • 8. The method of claim 1 wherein adjusting the movement comprises adjusting a speed or course of the movement of the one or more teeth.
  • 9. The method of claim 1 wherein adjusting the movement comprises adjusting based on interrelationships of skeletal and soft tissue.
  • 10. The method of claim 1 wherein assigning a sphere of influence comprises assigning a space of 1 to 3 mm around each of the tooth models.
  • 11. The method of claim 1 wherein assigning a sphere of influence further comprises monitoring for a collision between tooth models.
  • 12. The method of claim 11 further comprising communicating a collision warning to an adjacent tooth model such that one or more of the tooth models alter their movement to avoid the collision.
  • 13. The method of claim 1 further comprising determining if the one or more tooth models require a restart.
  • 14. The method of claim 1 further comprising fabricating a plurality of dental appliances where each of the dental appliances is based on the movement of the one or more teeth.
  • 15. The method of claim 14 wherein fabricating comprises fabricating via three-dimensional print.
  • 16. A computer-implemented method of controlling tooth movements for correcting malocclusions, comprising: receiving a plurality of digital tooth models of a subject having one or more malocclusions;determining a movement for each of the digital tooth models for correcting the malocclusions via a tooth movement manager module;assigning a three-dimensional sphere of influence having a predefined diameter assigned to each of the tooth models to define a safety envelope which surrounds each of the tooth models and to set a proximity distance between each tooth model via a collision manager module;monitoring an actual state of each tooth of the subject;comparing the actual state of each tooth against an expected state of each tooth model via a tooth manager module, wherein each tooth communicates with one or more neighboring teeth to determine relative proximity to one another;if necessary, adjusting a tooth movement plan for each tooth based on a communication between each tooth and the one or more neighboring teeth so as to avoid a collision such that the movement of each of the one or more teeth is not tied to a specified movement within a predetermined number of stages over a specified period of time; andadjusting the movement of the one or more teeth, wherein the movement is based on a comparison of the actual state and the expected state.
  • 17. The method of claim 16 wherein receiving a plurality of digital tooth models comprises scanning a dentition of the subject.
  • 18. The method of claim 16 wherein determining a movement comprises independently executing the tooth movement plan for each of the tooth models.
  • 19. The method of claim 16 wherein determining a movement comprises assigning one or more way points between an initial way point to a target way point.
  • 20. The method of claim 19 wherein comparing the actual state comprises periodically comparing the actual state against the expected state at each of the one or more way points.
  • 21. The method of claim 20 wherein adjusting the movement comprises assigning a new way point to one or more of the tooth models.
  • 22. The method of claim 16 wherein assigning a sphere of influence comprises assigning a space of 1 to 3 mm around each of the tooth models.
  • 23. The method of claim 16 wherein assigning a sphere of influence further comprises monitoring for a collision between tooth models.
  • 24. The method of claim 23 further comprising communicating a collision warning to an adjacent tooth model such that one or more of the tooth models alter their movement to avoid the collision.
  • 25. The method of claim 16 wherein each tooth communications with one or more neighboring teeth to further determine environmental data for adjusting the tooth movement plan.
  • 26. The method of claim 16 further comprising fabricating a plurality of dental appliances where each of the dental appliances is based on the movement of the one or more teeth.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of priority to U.S. Provisional Application No. 62/238,560 filed Oct. 7, 2015, which is incorporated herein by reference in its entirety.

US Referenced Citations (505)
Number Name Date Kind
3521355 Pearlman Jul 1970 A
4068379 Miller et al. Jan 1978 A
4889485 Iida Dec 1989 A
4983334 Adell Jan 1991 A
5055039 Abbatte et al. Oct 1991 A
5186623 Breads et al. Feb 1993 A
5259762 Farrell Nov 1993 A
5506607 Sanders et al. Apr 1996 A
5691905 Dehoff et al. Nov 1997 A
5863198 Doyle Jan 1999 A
5975893 Chishti et al. Nov 1999 A
6183248 Chishti et al. Feb 2001 B1
6210162 Chishti et al. Apr 2001 B1
6217325 Chishti et al. Apr 2001 B1
6227850 Chishti et al. May 2001 B1
6227851 Chishti et al. May 2001 B1
6250918 Sachdeva et al. Jun 2001 B1
6293790 Hilliard Sep 2001 B1
6299440 Phan et al. Oct 2001 B1
6309215 Phan et al. Oct 2001 B1
6315553 Sachdeva et al. Nov 2001 B1
6386878 Pavlovskaia et al. May 2002 B1
6390812 Chishti et al. May 2002 B1
6394801 Chishti et al. May 2002 B2
6398548 Chishti et al. Jun 2002 B1
6454565 Phan et al. Sep 2002 B2
6463344 Pavloskaia Oct 2002 B1
6471511 Chishti Oct 2002 B1
6485298 Chishti et al. Nov 2002 B2
6488499 Miller Dec 2002 B1
6524101 Phan et al. Feb 2003 B1
6554611 Chishti Apr 2003 B2
6572372 Phan et al. Jun 2003 B1
6582227 Phan et al. Jun 2003 B2
6602070 Miller et al. Aug 2003 B2
6607382 Kuo et al. Aug 2003 B1
6626666 Chishti et al. Sep 2003 B2
6629840 Chishti et al. Oct 2003 B2
6682346 Chishti et al. Jan 2004 B2
6688885 Sachdeva et al. Feb 2004 B1
6699037 Chishti et al. Mar 2004 B2
6702575 Hilliard Mar 2004 B2
6705861 Chishti et al. Mar 2004 B2
6705863 Phan et al. Mar 2004 B2
6722880 Chishti et al. Apr 2004 B2
6729876 Chishti et al. May 2004 B2
6761560 Miller Jul 2004 B2
6783360 Chishti Aug 2004 B2
6786721 Chishti et al. Sep 2004 B2
6802713 Chishti et al. Oct 2004 B1
6830450 Knopp et al. Dec 2004 B2
6846179 Chapouland et al. Jan 2005 B2
6857429 Eubank Feb 2005 B2
6886566 Eubank May 2005 B2
6964564 Phan et al. Nov 2005 B2
7011517 Nicozisis Mar 2006 B2
7029275 Rubber et al. Apr 2006 B2
7037108 Chishti et al. May 2006 B2
7040896 Pavlovskaia et al. May 2006 B2
7056115 Phan et al. Jun 2006 B2
7059850 Phan et al. Jun 2006 B1
7063533 Phan et al. Jun 2006 B2
7074038 Miller Jul 2006 B1
7077647 Choi et al. Jul 2006 B2
7092784 Simkins Aug 2006 B1
7104790 Cronauer Sep 2006 B2
7121825 Chishti et al. Oct 2006 B2
7125248 Phan et al. Oct 2006 B2
7134874 Chishti et al. Nov 2006 B2
7156661 Choi et al. Jan 2007 B2
7160110 Imgrund et al. Jan 2007 B2
7172417 Sporbert et al. Feb 2007 B2
7192275 Miller Mar 2007 B2
7220122 Chishti May 2007 B2
7320592 Chishti et al. Jan 2008 B2
7326051 Miller Feb 2008 B2
7331783 Chishti et al. Feb 2008 B2
7347688 Kopelman et al. Mar 2008 B2
7416407 Cronauer Aug 2008 B2
7434582 Eubank Oct 2008 B2
7435083 Chishti et al. Oct 2008 B2
7442041 Imgrund et al. Oct 2008 B2
7458812 Sporbert et al. Dec 2008 B2
7476100 Kuo Jan 2009 B2
7553157 Abolfathi et al. Jun 2009 B2
7559328 Eubank Jul 2009 B2
7578673 Wen et al. Aug 2009 B2
7590462 Rubbert et al. Sep 2009 B2
7637262 Bailey Dec 2009 B2
7641828 Desimone et al. Jan 2010 B2
7658610 Knopp Feb 2010 B2
7689398 Cheng et al. Mar 2010 B2
7717708 Sachdeva et al. May 2010 B2
7771195 Knopp et al. Aug 2010 B2
7802987 Phan et al. Sep 2010 B1
7824180 Abolfathi et al. Nov 2010 B2
7826646 Pavlovskaia et al. Nov 2010 B2
7840247 Liew et al. Nov 2010 B2
7841858 Knopp et al. Nov 2010 B2
7845938 Kim et al. Dec 2010 B2
7854609 Chen et al. Dec 2010 B2
7878801 Abolfathi et al. Feb 2011 B2
7878804 Korytov et al. Feb 2011 B2
7878805 Moss et al. Feb 2011 B2
7883334 Li et al. Feb 2011 B2
7901207 Knopp et al. Mar 2011 B2
7905724 Kuo et al. Mar 2011 B2
7914283 Kuo Mar 2011 B2
7942672 Kuo May 2011 B2
7943079 Desimone et al. May 2011 B2
7957824 Boronvinskih et al. Jun 2011 B2
7987099 Kuo et al. Jul 2011 B2
8001972 Eubank Aug 2011 B2
8002543 Kang et al. Aug 2011 B2
8021147 Sporbert et al. Sep 2011 B2
8033282 Eubank Oct 2011 B2
8038444 Kitching Oct 2011 B2
8070487 Chishti et al. Dec 2011 B2
8075306 Kitching et al. Dec 2011 B2
8099268 Kitching et al. Jan 2012 B2
8099305 Kuo et al. Jan 2012 B2
8105080 Chishti et al. Jan 2012 B2
8123519 Schultz Feb 2012 B2
8152518 Kuo Apr 2012 B2
8152523 Sporbert et al. Apr 2012 B2
8177551 Sachdeva et al. May 2012 B2
8235713 Phan et al. Aug 2012 B2
8272866 Chun et al. Sep 2012 B2
8275180 Kuo et al. Sep 2012 B2
8292617 Brandt et al. Oct 2012 B2
8303302 Teasdale Nov 2012 B2
8348665 Kuo Jan 2013 B2
8356993 Marston Jan 2013 B1
8401686 Moss et al. Mar 2013 B2
8401826 Cheng et al. Mar 2013 B2
8439672 Matov et al. May 2013 B2
8439673 Korytov et al. May 2013 B2
8444412 Baughman et al. May 2013 B2
8465280 Sachdeva et al. Jun 2013 B2
8469705 Sachdeva et al. Jun 2013 B2
8469706 Kuo Jun 2013 B2
8496474 Chishti et al. Jul 2013 B2
8512037 Andreiko Aug 2013 B2
8517726 Kakavand et al. Aug 2013 B2
8535580 Puttler et al. Sep 2013 B2
8562337 Kuo et al. Oct 2013 B2
8562338 Kitching et al. Oct 2013 B2
8562340 Chishti et al. Oct 2013 B2
8636509 Miller Jan 2014 B2
8636510 Kitching et al. Jan 2014 B2
8690568 Chapoulaud et al. Apr 2014 B2
8708697 Li et al. Apr 2014 B2
8734149 Phan et al. May 2014 B2
8734150 Chishti et al. May 2014 B2
8738165 Cinader, Jr. et al. May 2014 B2
8765031 Li et al. Jul 2014 B2
8777611 Cios Jul 2014 B2
8780106 Chishti et al. Jul 2014 B2
8807999 Kuo et al. Aug 2014 B2
8858226 Phan et al. Oct 2014 B2
8864493 Leslie-Martin et al. Oct 2014 B2
8899976 Chen et al. Dec 2014 B2
8899978 Kitching et al. Dec 2014 B2
8930219 Trosien et al. Jan 2015 B2
8936464 Kopelman Jan 2015 B2
8998608 Trosien et al. Jan 2015 B2
8944812 Kuo Feb 2015 B2
8961173 Miller Feb 2015 B2
8986003 Valoir Mar 2015 B2
8992215 Chapoulaud et al. Mar 2015 B2
9004915 Moss et al. Apr 2015 B2
9022781 Kuo et al. May 2015 B2
9026238 Kraemer et al. May 2015 B2
9060829 Sterental et al. Jun 2015 B2
9107722 Matov et al. Aug 2015 B2
9119691 Namiranian et al. Sep 2015 B2
9161823 Morton Oct 2015 B2
9161824 Chishti et al. Oct 2015 B2
9204942 Phan et al. Dec 2015 B2
9211166 Kuo et al. Dec 2015 B2
9241774 Li et al. Jan 2016 B2
9301814 Kaza et al. Apr 2016 B2
9320575 Chishti et al. Apr 2016 B2
9326830 Kitching et al. May 2016 B2
9326831 Cheang May 2016 B2
9333052 Miller May 2016 B2
9345557 Anderson et al. May 2016 B2
9351809 Phan et al. May 2016 B2
9364297 Kitching et al. Jun 2016 B2
9375300 Matov et al. Jun 2016 B2
9414897 Wu et al. Aug 2016 B2
9433476 Khardekar et al. Sep 2016 B2
9492245 Sherwood et al. Nov 2016 B2
9820829 Kuo Nov 2017 B2
9844420 Cheang Dec 2017 B2
9917868 Ahmed Mar 2018 B2
9922170 Trosien et al. Mar 2018 B2
10011050 Kitching et al. Jul 2018 B2
10022204 Cheang Jul 2018 B2
10335250 Wen Jul 2019 B2
10357336 Wen Jul 2019 B2
10357342 Wen Jul 2019 B2
10548690 Wen Feb 2020 B2
10588723 Falkel Mar 2020 B2
10631953 Wen Apr 2020 B2
10642717 Wen Apr 2020 B2
10881486 Wen Jan 2021 B2
10925698 Falkel Feb 2021 B2
10952821 Falkel Mar 2021 B2
11051913 Wen Jul 2021 B2
11207161 Brant Dec 2021 B2
11348257 Lang May 2022 B2
11364098 Falkel Jun 2022 B2
11553989 Wen et al. Jan 2023
20010002310 Chishti et al. May 2001 A1
20020010568 Rubbert et al. Jan 2002 A1
20020025503 Chapoulaud Feb 2002 A1
20020042038 Miller et al. Apr 2002 A1
20020072027 Chisti Jun 2002 A1
20020094503 Chishti et al. Jul 2002 A1
20020110776 Abels et al. Aug 2002 A1
20020150859 Imgrund et al. Nov 2002 A1
20020177108 Pavlovskaia et al. Nov 2002 A1
20030003416 Chishti et al. Jan 2003 A1
20030008259 Kuo et al. Jan 2003 A1
20030039940 Miller Feb 2003 A1
20030190576 Phan et al. Oct 2003 A1
20030207224 Lotte Nov 2003 A1
20040023188 Pavlovskaia et al. Feb 2004 A1
20040029068 Sachdeva et al. Feb 2004 A1
20040038168 Choi et al. Feb 2004 A1
20040134599 Wang et al. Jul 2004 A1
20040142299 Miller Jul 2004 A1
20040152036 Abolfathi Aug 2004 A1
20040166456 Chishti et al. Aug 2004 A1
20040166462 Phan et al. Aug 2004 A1
20040166463 Wen et al. Aug 2004 A1
20040197728 Abolfathi et al. Oct 2004 A1
20040202983 Tricca et al. Oct 2004 A1
20040242987 Liew et al. Dec 2004 A1
20040253562 Knopp Dec 2004 A1
20050010450 Hultgren et al. Jan 2005 A1
20050019721 Chishti Jan 2005 A1
20050048432 Choi et al. Mar 2005 A1
20050095552 Sporbert et al. May 2005 A1
20050095562 Sporbert et al. May 2005 A1
20050118555 Sporbert et al. Jun 2005 A1
20050153255 Sporbert et al. Jul 2005 A1
20050192835 Kuo et al. Sep 2005 A1
20050238967 Rogers et al. Oct 2005 A1
20050244781 Abels et al. Nov 2005 A1
20050244782 Chishti et al. Nov 2005 A1
20050271996 Sporbert et al. Dec 2005 A1
20060003283 Miller et al. Jan 2006 A1
20060035197 Hishimoto Feb 2006 A1
20060068353 Abolfathi et al. Mar 2006 A1
20060078840 Robson Apr 2006 A1
20060078841 Desimone et al. Apr 2006 A1
20060084030 Phan et al. Apr 2006 A1
20060093982 Wen May 2006 A1
20060099546 Bergersen May 2006 A1
20060115785 Li et al. Jun 2006 A1
20060147872 Andreiko Jul 2006 A1
20060177789 O'Bryan Aug 2006 A1
20060188834 Hilliard Aug 2006 A1
20060199142 Liu Sep 2006 A1
20060223022 Solomon Oct 2006 A1
20060223023 Lai et al. Oct 2006 A1
20060275731 Wen et al. Dec 2006 A1
20060275736 Wen et al. Dec 2006 A1
20070003907 Chishti et al. Jan 2007 A1
20070238065 Sherwood et al. Oct 2007 A1
20070264606 Muha et al. Nov 2007 A1
20070283967 Bailey Dec 2007 A1
20080032248 Kuo Feb 2008 A1
20080044786 Kailli Feb 2008 A1
20080050692 Hilliard Feb 2008 A1
20080051650 Massie et al. Feb 2008 A1
20080057461 Cheng et al. Mar 2008 A1
20080057462 Kitching Mar 2008 A1
20080076086 Kitching Mar 2008 A1
20080085487 Kuo et al. Apr 2008 A1
20080118882 Su May 2008 A1
20080141534 Hilliard Jun 2008 A1
20080182220 Chishti Jul 2008 A1
20080206702 Hedge et al. Aug 2008 A1
20080215176 Borovinskih et al. Sep 2008 A1
20080233530 Cinader Sep 2008 A1
20080248438 Desimone et al. Oct 2008 A1
20080248443 Chishti Oct 2008 A1
20080261165 Steingart et al. Oct 2008 A1
20080268400 Moss et al. Oct 2008 A1
20080280247 Sachdeva et al. Nov 2008 A1
20080305451 Kitching et al. Dec 2008 A1
20080305453 Kitching et al. Dec 2008 A1
20090081604 Fisher Mar 2009 A1
20090117510 Minium May 2009 A1
20090191502 Cao Jul 2009 A1
20090269714 Knopp Oct 2009 A1
20090280450 Kuo Nov 2009 A1
20090291407 Kuo Nov 2009 A1
20090291408 Stone-Collonge et al. Nov 2009 A1
20100036682 Trosien et al. Feb 2010 A1
20100055635 Kakavand Mar 2010 A1
20100086890 Kuo Apr 2010 A1
20100138025 Morton et al. Jun 2010 A1
20100167225 Kuo Jul 2010 A1
20100173266 Lu et al. Jul 2010 A1
20100179789 Sachdeva et al. Jul 2010 A1
20100280798 Pattijn et al. Nov 2010 A1
20110005527 Andrew et al. Jan 2011 A1
20110015591 Hanson et al. Jan 2011 A1
20110020761 Kailli Jan 2011 A1
20110039223 Li et al. Feb 2011 A1
20110114100 Alvarez et al. May 2011 A1
20110123944 Knopp et al. May 2011 A1
20110129786 Chun et al. Jun 2011 A1
20110159451 Kuo et al. Jun 2011 A1
20110165533 Li et al. Jul 2011 A1
20110269092 Kuo et al. Nov 2011 A1
20110269097 Sporbert et al. Nov 2011 A1
20110270588 Kuo et al. Nov 2011 A1
20110281229 Abolfathi Nov 2011 A1
20120035901 Kitching et al. Feb 2012 A1
20120123577 Chapoulaud et al. May 2012 A1
20120150494 Anderson et al. Jun 2012 A1
20120186589 Singh Jul 2012 A1
20120199136 Urbano Aug 2012 A1
20120214121 Greenberg Aug 2012 A1
20120225399 Teasdale Sep 2012 A1
20120225400 Chishti et al. Sep 2012 A1
20120225401 Kitching et al. Sep 2012 A1
20120227750 Tucker Sep 2012 A1
20120244488 Chishti et al. Sep 2012 A1
20120270173 Pumphrey et al. Oct 2012 A1
20120288818 Vendittelli Nov 2012 A1
20130004634 McCaskey et al. Jan 2013 A1
20130022255 Chen et al. Jan 2013 A1
20130052625 Wagner Feb 2013 A1
20130078593 Andreiko Mar 2013 A1
20130081271 Farzin-Nia et al. Apr 2013 A1
20130085018 Jensen et al. Apr 2013 A1
20130095446 Andreiko et al. Apr 2013 A1
20130122445 Marston May 2013 A1
20130122448 Kitching May 2013 A1
20130157213 Arruda Jun 2013 A1
20130201450 Bailey et al. Aug 2013 A1
20130204583 Matov et al. Aug 2013 A1
20130230819 Arruda Sep 2013 A1
20130231899 Khardekar et al. Sep 2013 A1
20130236848 Arruda Sep 2013 A1
20130266906 Soo Oct 2013 A1
20130302742 Li et al. Nov 2013 A1
20130308846 Chen et al. Nov 2013 A1
20130317800 Wu et al. Nov 2013 A1
20130323665 Dinh et al. Dec 2013 A1
20130325431 See Dec 2013 A1
20140023980 Kitching et al. Jan 2014 A1
20140072926 Valoir Mar 2014 A1
20140073212 Lee Mar 2014 A1
20140076332 Luco Mar 2014 A1
20140122027 Andreiko et al. May 2014 A1
20140124968 Kim May 2014 A1
20140167300 Lee Jun 2014 A1
20140172375 Grove Jun 2014 A1
20140178830 Widu Jun 2014 A1
20140193765 Kitching et al. Jul 2014 A1
20140193767 Li et al. Jul 2014 A1
20140229878 Wen et al. Aug 2014 A1
20140242532 Arruda Aug 2014 A1
20140255864 Machata et al. Sep 2014 A1
20140272757 Chishti Sep 2014 A1
20140287376 Hultgren et al. Sep 2014 A1
20140288894 Chishti et al. Sep 2014 A1
20140315153 Kitching Oct 2014 A1
20140315154 Jung et al. Oct 2014 A1
20140067335 Andreiko et al. Nov 2014 A1
20140329194 Sachdeva et al. Nov 2014 A1
20140349242 Phan et al. Nov 2014 A1
20140358497 Kuo et al. Dec 2014 A1
20140363779 Kopelman Dec 2014 A1
20140370452 Tseng Dec 2014 A1
20150004553 Li et al. Jan 2015 A1
20150004554 Cao et al. Jan 2015 A1
20150018956 Steinmann et al. Jan 2015 A1
20150025907 Trosien et al. Jan 2015 A1
20150044623 Rundlett Feb 2015 A1
20150044627 German Feb 2015 A1
20150057983 See et al. Feb 2015 A1
20150064641 Gardner Mar 2015 A1
20150093713 Chen et al. Apr 2015 A1
20150093714 Kopelman Apr 2015 A1
20150125802 Tal May 2015 A1
20150128421 Mason et al. May 2015 A1
20150157421 Martz et al. Jun 2015 A1
20150182303 Abraham et al. Jul 2015 A1
20150182321 Karazivan et al. Jul 2015 A1
20150216626 Ranjbar Aug 2015 A1
20150216627 Kopelman Aug 2015 A1
20150238280 Wu et al. Aug 2015 A1
20150238282 Kuo et al. Aug 2015 A1
20150238283 Tanugula et al. Aug 2015 A1
20150238284 Wu et al. Aug 2015 A1
20150245887 Izugami et al. Sep 2015 A1
20150254410 Sterental et al. Sep 2015 A1
20150265376 Kopelman Sep 2015 A1
20150289949 Moss et al. Oct 2015 A1
20150289950 Khan Oct 2015 A1
20150305830 Howard et al. Oct 2015 A1
20150305831 Cosse Oct 2015 A1
20150305919 Stubbs et al. Oct 2015 A1
20150313687 Blees et al. Nov 2015 A1
20150320518 Namiranian Nov 2015 A1
20150320532 Matty et al. Nov 2015 A1
20150335399 Caraballo Nov 2015 A1
20150335404 Webber et al. Nov 2015 A1
20150336299 Tanugula et al. Nov 2015 A1
20150342464 Wundrak Dec 2015 A1
20150351871 Chishti et al. Dec 2015 A1
20150359609 Khan Dec 2015 A1
20150366638 Kopelman et al. Dec 2015 A1
20150368637 Kopelman et al. Dec 2015 A1
20160000527 Arruda Jan 2016 A1
20160008095 Matov et al. Jan 2016 A1
20160008097 Chen et al. Jan 2016 A1
20160051341 Webber Feb 2016 A1
20160051342 Phan et al. Feb 2016 A1
20160051348 Boerjes et al. Feb 2016 A1
20160067013 Morton et al. Mar 2016 A1
20160067014 Kottemann et al. Mar 2016 A1
20160074137 Kuo et al. Mar 2016 A1
20160074138 Kitching et al. Mar 2016 A1
20160095668 Kuo et al. Apr 2016 A1
20160095670 Witte et al. Apr 2016 A1
20160106521 Tanugula et al. Apr 2016 A1
20160120617 Lee May 2016 A1
20160120621 Li et al. May 2016 A1
20160128803 Webber et al. May 2016 A1
20160135924 Choi May 2016 A1
20160135925 Mason et al. May 2016 A1
20160135926 Djamchidi May 2016 A1
20160135927 Boltunov et al. May 2016 A1
20160157981 Lee Jun 2016 A1
20160166363 Varsano Jun 2016 A1
20160175068 Cal et al. Jun 2016 A1
20160175069 Korytov et al. Jun 2016 A1
20160184129 Liptak et al. Jun 2016 A1
20160193014 Morton et al. Jul 2016 A1
20160199216 Cam et al. Jul 2016 A1
20160203604 Gupta et al. Jul 2016 A1
20160206402 Kitching et al. Jul 2016 A1
20160220200 Sanholm et al. Aug 2016 A1
20160256240 Shivapuja et al. Sep 2016 A1
20160310235 Derakhshan et al. Oct 2016 A1
20160338799 Wu et al. Nov 2016 A1
20160367339 Khardekar et al. Dec 2016 A1
20170007359 Kopelman et al. Jan 2017 A1
20170079748 Andreiko Mar 2017 A1
20170100207 Wen Apr 2017 A1
20170100209 Wen Apr 2017 A1
20170100210 Wen Apr 2017 A1
20170100211 Wen Apr 2017 A1
20170100214 Wen Apr 2017 A1
20170325911 Marshall Nov 2017 A1
20180014912 Radmand Jan 2018 A1
20180028065 Elbaz et al. Feb 2018 A1
20180042708 Caron et al. Feb 2018 A1
20180055611 Sun et al. Mar 2018 A1
20180078335 Falkel Mar 2018 A1
20180078343 Falkel Mar 2018 A1
20180078344 Falkel Mar 2018 A1
20180078347 Falkel Mar 2018 A1
20180092714 Kitching et al. Apr 2018 A1
20180092715 Kitching et al. Apr 2018 A1
20180158544 Trosien et al. Jun 2018 A1
20180168781 Kopelman et al. Jun 2018 A1
20180344431 Kuo et al. Dec 2018 A1
20190008612 Kitching et al. Jan 2019 A1
20190046297 Kopelman et al. Feb 2019 A1
20190090987 Hung Mar 2019 A1
20190231478 Kopelman Aug 2019 A1
20190321135 Wen Oct 2019 A1
20190343602 Wen Nov 2019 A1
20190358002 Falkel Nov 2019 A1
20190388189 Shivapuja et al. Dec 2019 A1
20200000552 Mednikov et al. Jan 2020 A1
20200047868 Young et al. Feb 2020 A1
20200081413 Georg et al. Mar 2020 A1
20200146775 Wen May 2020 A1
20200170762 Falkel Jun 2020 A1
20200205936 Wen Jul 2020 A1
20200253693 Wen Aug 2020 A1
20200316856 Mojdeh et al. Oct 2020 A1
20200345459 Schueller et al. Nov 2020 A1
20200357186 Pokotilov et al. Nov 2020 A1
20210153981 Falkel May 2021 A1
20210186668 Falkel Jun 2021 A1
20210244518 Ryu et al. Aug 2021 A1
20210282899 Wen Sep 2021 A1
20210369417 Wen et al. Dec 2021 A1
20210393376 Wu et al. Dec 2021 A1
20220054232 Wen et al. Feb 2022 A1
20220265395 Falkel Aug 2022 A1
20220266577 Sharma et al. Aug 2022 A1
20220409338 Cao et al. Dec 2022 A1
Foreign Referenced Citations (61)
Number Date Country
2557573 Jul 2012 CA
1575782 Feb 2005 CN
1997324 Jul 2007 CN
101427256 May 2009 CN
101636122 Jan 2010 CN
1973291 Sep 2010 CN
102438545 May 2012 CN
101528152 Dec 2012 CN
103932807 Jul 2014 CN
105748163 Jul 2016 CN
1474062 Apr 2011 EP
2056734 Sep 2015 EP
2957252 Dec 2015 EP
40004866 Aug 2022 HK
2005-515826 Jun 2005 JP
2006-500999 Jan 2006 JP
2008-532563 Aug 2008 JP
2009-202031 Sep 2009 JP
4323322 Sep 2009 JP
2010-502246 Jan 2010 JP
2010-528748 Aug 2010 JP
4566746 Oct 2010 JP
2012-139540 Jul 2012 JP
5015197 Aug 2012 JP
5015765 Aug 2012 JP
5149898 Feb 2013 JP
2013-081785 May 2013 JP
5291218 Sep 2013 JP
2007-525289 Sep 2017 JP
2004-46323 Oct 2009 KR
10-1450866 Oct 2014 KR
2018-0090481 Aug 2018 KR
WO 2001082192 Nov 2001 WO
WO 2002047571 Jun 2002 WO
WO 2003063721 Aug 2003 WO
WO 2004028391 Apr 2004 WO
WO 2005086058 Sep 2005 WO
WO 2004098379 Nov 2005 WO
WO 2006050452 May 2006 WO
WO 2006096558 Sep 2006 WO
WO 2008026064 Mar 2008 WO
WO 2008102132 Aug 2008 WO
WO 2008118546 Oct 2008 WO
WO 2008149222 Dec 2008 WO
WO 2009057937 May 2009 WO
WO 2009068892 Jun 2009 WO
WO 2016004415 Jan 2016 WO
WO 2016100577 Jun 2016 WO
WO 2017062207 Apr 2017 WO
WO 2017062208 Apr 2017 WO
WO 2017062209 Apr 2017 WO
WO 2017062210 Apr 2017 WO
WO 2018057622 Mar 2018 WO
WO 2018112273 Jun 2018 WO
WO 2018118200 Jun 2018 WO
WO 2020222905 Nov 2020 WO
WO 2020223384 Nov 2020 WO
WO 2021105878 Jun 2021 WO
WO 2021247145 Dec 2021 WO
WO 2022040671 Feb 2022 WO
WO 2022178514 Aug 2022 WO
Non-Patent Literature Citations (10)
Entry
US. Appl. No. 15/230,139, filed Aug. 5, 2016.
US. Appl. No. 15/230,193, filed Aug. 5, 2016.
US. Appl. No. 15/230,216, filed Aug. 5, 2016.
US. Appl. No. 15/230,251, filed Aug. 5, 2016.
US. Appl. No. 15/386,280, filed Dec. 21, 2016.
US. Appl. No. 15/710,469, filed Sep. 20, 2017.
US. Appl. No. 15/710,604, filed Sep. 20, 2017.
US. Appl. No. 15/710,666, filed Sep. 20, 2017.
US. Appl. No. 15/710,703, filed Sep. 20, 2017.
Kovach, I. V. et al., “Clinic, diagnosis, treatment, prevention, prosthetics various dentofacial anomalies and deformities,” DMA, 2018.
Related Publications (1)
Number Date Country
20170100208 A1 Apr 2017 US
Provisional Applications (1)
Number Date Country
62238560 Oct 2015 US