The present disclosure is related to U.S. patent application entitled “Oxygen Storage Capacity and Thermal Stability of Synergized PGM Catalyst Systems”, and U.S. patent application entitled “Method for Improving Lean performance of PGM Catalyst Systems: Synergized PGM”, as well as U.S. patent application entitled “Systems and Methods for Managing a Synergistic Relationship between PGM and Copper-Manganese in a Three Way Catalyst Systems”, all filed Nov. 26, 2013, the entireties of which are incorporated by reference as if fully set forth herein.
1. Field of the Disclosure
This disclosure relates generally to three-way catalyst (TWC) systems and, more particularly, to the TWC property of synergized PGM catalysts.
2. Background Information
Many modern functional materials are made of multi-phase entities in which cooperative behavior between different components is required to obtain optimal performance. Typical situations of cooperative behavior are modern TWC systems utilized in vehicle exhausts to reduce exhaust gas emissions. TWC systems convert the three main pollutants in vehicle exhaust, carbon monoxide (CO), unburnt hydrocarbons (HC) and oxides of nitrogen (NOx), to H2O, CO2 and nitrogen. Typical TWC systems include a support of alumina upon which both platinum group metals (PGM) material and promoting oxides are deposited. Key to the desired catalytic conversions is the structure-reactivity interplay between the promoting oxide and the PGM metals, in particular regarding the storage/release of oxygen under process conditions.
Current TWCs are exposed to high operation temperatures due to the use of closed-loop coupled catalysts near the engine. Additionally, TWC's demand for PGM and rare earth metals continues to increase due to their efficiency in removing pollutants from internal combustion engine exhausts, placing at the same time a strain on the supply of PGM metals, which drives up their cost and the cost of catalysts applications.
As PGM catalysts usually work close to stoichiometric condition, it is desirable to increase their activity under lean condition close to stoichiometric condition. Under lean condition NOx conversion may be increased by synergizing PGM. This synergistic effect improves fuel consumption and provides fuel economy. For the foregoing reasons, there is a need for combined catalyst systems that may exhibit optimal synergistic behavior yielding enhanced activity and performance and up to the theoretical limit in real catalysts.
It is an object of the present disclosure to provide a PGM catalyst including palladium (Pd) which may be synergized adding a Cu1.0Mn2.0O4 spinel to increase TWC property of PGM catalysts specially under lean condition, and for optimal performance of catalyst systems in TWC condition.
According to one embodiment, a catalyst system may include a substrate, a washcoat (WC) layer, an overcoat (OC) layer, and an impregnation layer. The optimized catalyst system may be achieved after application of a Cu1.0Mn2.0O4 stoichiometric spinel with Niobium-Zirconia support oxide in a plurality of catalyst configurations including variations of washcoat (WC) layer, overcoat (OC) layer, or impregnation (IM) layer using PGM catalyst with an alumina-based support. Both, PGM catalyst on an alumina-based support and Cu1.0Mn2.0O4 spinel with Niobium-Zirconia support oxide, may be prepared using a suitable synthesis method as known in the art.
According to embodiments in the present disclosure, a synergized PGM (SPGM) catalyst system may be configured with a WC layer including Cu—Mn stoichiometric spinel with Niobium-Zirconia support oxide, an OC layer including PGM catalyst with alumina-based support, and suitable ceramic substrate; or a WC layer including PGM catalyst with alumina-based support, an OC layer including Cu—Mn stoichiometric spinel with Niobium-Zirconia support oxide, and suitable ceramic substrate; or a WC layer with alumina-based support only, an OC layer including Cu—Mn stoichiometric spinel with Niobium-Zirconia support oxide, an IM layer including PGM, Pd in present disclosure, and suitable ceramic substrate; or a WC layer only, including Cu—Mn stoichiometric spinel with Niobium-Zirconia support oxide co-milled with PGM/alumina and suitable ceramic substrate.
The optimal NO/CO cross over R-value of disclosed SPGM catalyst system may be determined by performing isothermal steady state sweep test, employing fresh and hydrothermally aged catalyst samples prepared according to embodiments in the present disclosure. The steady state test may be developed at a selected inlet temperature using an 11-point R-value from rich condition to lean condition at a plurality of space velocities. Results from isothermal steady state test may be compared to show the optimal composition and configuration of the disclosed SPGM catalyst system for optimal performance under TWC condition, particularly under lean condition to reduce fuel consumption using the disclosed SPGM catalyst system.
According to an embodiment, TWC standard light-off test may be performed, under steady state and oscillating condition, at selected R-value of NO/CO cross over which may produce enhanced catalytic performance in NO, CO, and HC conversion.
It may be found from the present disclosure that although the catalytic activity, and thermal stability of a catalyst during real use may be affected by factors such as the chemical composition of the catalyst, as PGM catalysts usually work close to stoichiometric condition, it is desirable to increase catalyst activity under lean condition close to stoichiometric condition. Under lean condition NOx conversion may be increased by synergizing PGM catalysts. This synergistic effect on PGM catalyst may improve fuel consumption and provide fuel economy. The TWC property of the disclosed SPGM catalyst system may provide an indication that for catalyst applications, and, more particularly, for catalyst systems operating under lean condition close to stoichiometric condition, the chemical composition of the disclosed SPGM catalyst system may be more efficient operationally-wise, and from a catalyst manufacturer's viewpoint, an essential advantage given the economic factors involved.
Numerous other aspects, features and benefits of the present disclosure may be made apparent from the following detailed description taken together with the drawing figures.
The present disclosure can be better understood by referring to the following figures. The components in the figures are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the disclosure. In the figures, reference numerals designate corresponding parts throughout the different views.
The present disclosure is here described in detail with reference to embodiments illustrated in the drawings, which form a part here. Other embodiments may be used and/or other changes may be made without departing from the spirit or scope of the present disclosure. The illustrative embodiments described in the detailed description are not meant to be limiting of the subject matter presented here.
As used here, the following terms may have the following definitions:
“Platinum group metal (PGM)” refers to platinum, palladium, ruthenium, iridium, osmium, and rhodium.
“Synergized platinum group metal (SPGM) catalyst” refers to a PGM catalyst system which is synergized by a non-PGM group metal compound under different configuration.
“Catalyst” refers to one or more materials that may be of use in the conversion of one or more other materials.
“Substrate” refers to any material of any shape or configuration that yields a sufficient surface area for depositing a washcoat and/or overcoat.
“Washcoat” refers to at least one coating including at least one oxide solid that may be deposited on a substrate.
“Overcoat” refers to at least one coating that may be deposited on at least one washcoat or impregnation layer.
“Catalyst system” refers to a system of at least two layers including at least one substrate, a washcoat, and/or an overcoat.
“Milling” refers to the operation of breaking a solid material into a desired grain or particle size.
“Co-precipitation” refers to the carrying down by a precipitate of substances normally soluble under the conditions employed.
“Impregnation” refers to the process of imbuing or saturating a solid layer with a liquid compound or the diffusion of some element through a medium or substance.
“Treating, treated, or treatment” refers to drying, firing, heating, evaporating, calcining, or mixtures thereof.
“Calcination” refers to a thermal treatment process applied to solid materials, in presence of air, to bring about a thermal decomposition, phase transition, or removal of a volatile fraction at temperatures below the melting point of the solid materials.
“Air/Fuel ratio or A/F ratio” refers to the weight of air divided by the weight of fuel.
“R value” refers to the number obtained by dividing the reducing potential by the oxidizing potential of materials in a catalyst. The reaction may be considered as stoichiometric when R equals 1.
“Rich condition” refers to exhaust gas condition with an R value above 1.
“Lean condition” refers to exhaust gas condition with an R value below 1.
“Three-Way Catalyst” refers to a catalyst that may achieve three simultaneous tasks: reduce nitrogen oxides to nitrogen and oxygen, oxidize carbon monoxide to carbon dioxide, and oxidize unburnt hydrocarbons to carbon dioxide and water.
“T50” may refer to the temperature at which 50% of a material is converted.
“Conversion” refers to the chemical alteration of at least one material into one or more other materials.
The present disclosure may generally provide a synergized PGM (SPGM) catalyst system having enhanced catalytic performance and thermal stability, incorporating more active components into phase materials possessing three-way catalyst (TWC) properties, such as improved oxygen mobility, to enhance the catalytic activity of the disclosed SPGM catalyst system.
According to embodiments in the present disclosure, SPGM catalyst systems may be configured with a washcoat (WC) layer including Cu—Mn stoichiometric spinel with Niobium-Zirconia support oxide, an overcoat (OC) layer including a PGM catalyst of palladium (Pd) with alumina-based support, and suitable ceramic substrate, here referred as SPGM catalyst system Type 1; or a WC layer including PGM catalyst of Pd with alumina-based support, an OC layer including Cu—Mn stoichiometric spinel with Niobium-Zirconia support oxide, and suitable ceramic substrate, here referred as SPGM catalyst system Type 2; or a WC layer with alumina-based support only, an OC layer including Cu—Mn stoichiometric spinel with Niobium-Zirconia support oxide, an impregnation (IM) layer including PGM, Pd in present disclosure, and suitable ceramic substrate, here referred as SPGM catalyst system Type 3; or a WC layer only, including Cu—Mn stoichiometric spinel with Niobium-Zirconia support oxide milled with a slurry including Pd and alumina and suitable ceramic substrate, here referred as SPGM catalyst system Type 4.
SPGM Catalyst System Configuration, Material Composition, and Preparation
The preparation of WC layer 102 may begin by milling Nb2O5—ZrO2 support oxide to make aqueous slurry. The Nb2O5—ZrO2 support oxide may have Nb2O5 loadings of about 15% to about 30% by weight, preferably about 25% and ZrO2 loadings of about 70% to about 85% by weight, preferably about 75%.
The Cu—Mn solution may be prepared by mixing an appropriate amount of Mn nitrate solution (MnNO3) and Cu nitrate solution (CuNO3), where the suitable copper loadings may include loadings in a range of about 10% to about 15% by weight. Suitable manganese loadings may include loadings in a range of about 15% to about 25% by weight. The next step is precipitation of Cu—Mn nitrate solution on Nb2O5—ZrO2 support oxide aqueous slurry, which may have added thereto an appropriate base solution, such as in order to adjust the pH of the slurry to a suitable range. The precipitated slurry may be aged for a period of time of about 12 to 24 hours under continued stirring at room temperature.
Subsequently, the precipitated slurry may be coated on ceramic substrate 106, using a cordierite material with honeycomb structure, where ceramic substrate 106 may have a plurality of channels with suitable porosity. The aqueous slurry of Cu—Mn/Nb2O5—ZrO2 may be deposited on ceramic substrate 106 to form WC layer 102, employing vacuum dosing and coating systems. In the present disclosure, a plurality of capacities of WC loadings may be coated on ceramic substrate 106. The plurality of WC loading may vary from about 60 g/L to about 200 g/L, in this disclosure particularly about 120 g/L. Subsequently, after deposition on ceramic substrate 106 of suitable loadings of Cu—Mn/Nb2O5—ZrO2 slurry, WC layer 102 may be dried and subsequently calcined at suitable temperature within a range of about 550° C. to about 650° C., preferably at about 600° C. for about 5 hours. Treatment of WC layer 102 may be enabled employing suitable drying and heating processes. A commercially-available air knife drying systems may be employed for drying WC layer 102. Heat treatments (calcination) may be performed using commercially-available firing (furnace) systems.
WC layer 102 deposited on ceramic substrate 106 may have a chemical composition with a total loading of about 120 g/L, including a Cu—Mn spinel structure with copper loading of about 10 g/L to about 15 g/L and manganese loading of about 20 g/L to about 25 g/L. The Nb2O5—ZrO2 support oxide may have loadings of about 80 g/L to about 90 g/L.
OC layer 104 may include a combination of Pd on alumina-based support. The preparation of OC layer 104 may begin by milling the alumina-based support oxide separately to make an aqueous slurry. Subsequently, a solution of Pd nitrate may then be mixed with the aqueous slurry of alumina with a loading within a range from about 0.5 g/ft3 to about 10 g/ft3. In the present embodiment, Pd loading is about 6 g/ft3 and total loading of WC material is 120 g/L. After mixing of Pd and alumina slurry, Pd may be locked down with an appropriate amount of one or more base solutions, such as sodium hydroxide (NaOH) solution, sodium carbonate (Na2CO3) solution, ammonium hydroxide (NH4OH) solution, and tetraethyl ammonium hydroxide (TEAH) solution, amongst others. No pH adjustment may be required. In the present embodiment, Pd may be locked down using a base solution of tetraethyl ammonium hydroxide (TEAH). Then the resulting slurry may be aged from about 12 hours to about 24 hours for subsequent coating as an overcoat on WC layer 102, dry and fired at about 550° C. for about 4 hours.
OC layer 204 may include Cu—Mn stoichiometric spinel structure, Cu1.0Mn2.0O4, supported on Nb2O5—ZrO2 by using co-precipitation method or any other preparation technique known in the art.
The preparation of OC layer 204 may begin by milling Nb2O5—ZrO2 support oxide to make aqueous slurry. The Nb2O5—ZrO2 support oxide may have Nb2O5 loadings of about 15% to about 30% by weight, preferably about 25% and ZrO2 loadings of about 70% to about 85% by weight, preferably about 75%.
The Cu—Mn solution may be prepared by mixing an appropriate amount of Mn nitrate solution (MnNO3) and Cu nitrate solution (CuNO3), where the suitable copper loadings may include loadings in a range of about 10% to about 15% by weight. Suitable manganese loadings may include loadings in a range of about 15% to about 25% by weight. The next step is precipitation of Cu—Mn nitrate solution on Nb2O5—ZrO2 support oxide aqueous slurry, which may have added thereto an appropriate base solution, such as in order to adjust the pH of the slurry to a suitable range. The precipitated slurry may be aged for a period of time of about 12 to 24 hours under continued stirring at room temperature.
Subsequently, the precipitated slurry may be coated on WC layer 202. The aqueous slurry of Cu—Mn/Nb2O5—ZrO2 may be deposited on WC layer 202, employing vacuum dosing and coating systems. In the present disclosure, a plurality of capacities of OC loadings may be coated on WC layer 202. The plurality of OC loading may vary from about 60 g/L to about 200 g/L, in this disclosure particularly about 120 g/L. Subsequently, after deposition on WC layer 202 of suitable loadings of Cu—Mn/Nb2O5—ZrO2 slurry, OC layer 204 may be dried and subsequently calcined at suitable temperature within a range of about 550° C. to about 650° C., preferably at about 600° C. for about 5 hours. Treatment of OC layer 204 may be enabled employing suitable drying and heating processes. A commercially-available air knife drying systems may be employed for drying OC layer 204. Heat treatments (calcination) may be performed using commercially-available firing (furnace) systems.
OC layer 204 deposited on WC layer 202 may have a chemical composition with a total loading of about 120 g/L, including a Cu—Mn spinel structure with copper loading of about 10 g/L to about 15 g/L and manganese loading of about 20 g/L to about 25 g/L. The Nb2O5—ZrO2 support oxide may have loadings of about 80 g/L to about 90 g/L.
OC layer 304 may include Cu—Mn stoichiometric spinel structure, Cu1.0Mn2.0O4, supported on Nb2O5—ZrO2 by using co-precipitation method or any other preparation technique known in the art.
The preparation of OC layer 304 may begin by milling Nb2O5—ZrO2 support oxide to make aqueous slurry. The Nb2O5—ZrO2 support oxide may have Nb2O5 loadings of about 15% to about 30% by weight, preferably about 25% and ZrO2 loadings of about 70% to about 85% by weight, preferably about 75%.
The Cu—Mn solution may be prepared by mixing an appropriate amount of Mn nitrate solution (MnNO3) and Cu nitrate solution (CuNO3), where the suitable copper loadings may include loadings in a range of about 10% to about 15% by weight. Suitable manganese loadings may include loadings in a range of about 15% to about 25% by weight. The next step is precipitation of Cu—Mn nitrate solution on Nb2O5—ZrO2 support oxide aqueous slurry, which may have added thereto an appropriate base solution, such as in order to adjust the pH of the slurry to a suitable range. The precipitated slurry may be aged for a period of time of about 12 to 24 hours under continued stirring at room temperature. After aging, Cu—Mn/Nb2O5—ZrO2 slurry may be coated as OC layer 304. In the present disclosure, a plurality of capacities of OC loadings may be coated on WC layer 302. The plurality of OC loading may vary from about 60 g/L to about 200 g/L, in this disclosure particularly about 120 g/L, to include the Cu—Mn spinel structure with copper loading of about 10 g/L to about 15 g/L and manganese loading of about 20 g/L to about 25 g/L. The Nb2O5—ZrO2 support oxide may have loadings of about 80 g/L to about 90 g/L.
OC layer 304 may be dried and subsequently calcined at suitable temperature within a range of about 550° C. to about 650° C., preferably at about 600° C. for about 5 hours. Treatment of OC layer 304 may be enabled employing suitable drying and heating processes. A commercially-available air knife drying systems may be employed for drying OC layer 304. Heat treatments (calcination) may be performed using commercially-available firing (furnace) systems.
Subsequently, IMP layer 306 may be prepared with a solution of Pd nitrate which may be wet impregnated on top of WC layer 302 and OC layer 304 for drying and firing at about 550° C. for about 4 hours to complete catalyst structure 300. The final loading of Pd in the catalyst system may be within a range from about 0.5 g/ft3 to about 10 g/ft3. In the present embodiment, Pd loading is about 6 g/ft3.
The preparation of WC layer 402 may begin by milling Nb2O5—ZrO2 support oxide to make aqueous slurry. The Nb2O5—ZrO2 support oxide may have Nb2O5 loadings of about 15% to about 30% by weight, preferably about 25% and ZrO2 loadings of about 70% to about 85% by weight, preferably about 75%.
The Cu—Mn solution may be prepared by mixing an appropriate amount of Mn nitrate solution (MnNO3) and Cu nitrate solution (CuNO3), where the suitable copper loadings may include loadings in a range of about 10% to about 15% by weight. Suitable manganese loadings may include loadings in a range of about 15% to about 25% by weight. The next step is precipitation of Cu—Mn nitrate solution on Nb2O5—ZrO2 support oxide aqueous slurry, which may have added thereto an appropriate base solution, such as in order to adjust the pH of the slurry to a suitable range. The precipitated slurry may be aged for a period of time of about 12 to 24 hours under continued stirring at room temperature.
After precipitation step, the Cu—Mn/Nb2O5—ZrO2 slurry may undergo filtering and washing, then the resulting material may be dried overnight at about 120° C. and subsequently calcined at suitable temperature within a range of about 550° C. to about 650° C., preferably at about 600° C. for about 5 hours. The prepared Cu—Mn/Nb2O5—ZrO2 powder may be ground to fine grain powder to be added to Pd and alumina included in WC layer 402.
Fine grain powder of Cu—Mn/Nb2O5—ZrO2 may be subsequently added to a combination of Pd and alumina-based support oxide slurry. The preparation of the Pd and alumina slurry may begin by milling the alumina-based support oxide separately to make an aqueous slurry. Subsequently, a solution of Pd nitrate may then be mixed with the aqueous slurry of alumina with a loading within a range from about 0.5 g/ft3 to about 10 g/ft3. In the present embodiment, Pd loading is about 6 g/ft3 and total loading of WC material is 120 g/L. After mixing of Pd and alumina slurry, Pd may be locked down with an appropriate amount of one or more base solutions, such as sodium hydroxide (NaOH) solution, sodium carbonate (Na2CO3) solution, ammonium hydroxide (NH4OH) solution, tetraethyl ammonium hydroxide (TEAH) solution, amongst others. No pH adjustment is required. In the present embodiment, Pd may be locked down using a base solution of tetraethyl ammonium hydroxide (TEAH). Then the resulting slurry, including fine grain powder of Cu—Mn/Nb2O5—ZrO2, may be aged from about 12 hours to about 24 hours for subsequent coating as WC layer 402. The aged slurry may be coated on ceramic substrate 404, using a cordierite material with honeycomb structure, where ceramic substrate 404 may have a plurality of channels with suitable porosity. The aqueous slurry of Cu—Mn/Nb2O5—ZrO2 and Pd/Alumina may be deposited on ceramic substrate 404 to form WC layer 402, employing vacuum dosing and coating systems. In the present disclosure, a plurality of capacities of WC loadings may be coated on ceramic substrate 404. The plurality of WC loading may vary from about 60 g/L to about 200 g/L, in this disclosure particularly about 120 g/L.
Treatment of WC layer 402 may be enabled employing suitable drying and heating processes. A commercially-available air knife drying systems may be employed for drying WC layer 402. Heat treatments (calcination) may be performed using commercially-available firing (furnace) systems.
WC layer 402 deposited on ceramic substrate 404 may have a chemical composition with a total loading of about 120 g/L, including a Cu—Mn spinel structure with copper loading of about 10 g/L to about 15 g/L, manganese loading of about 20 g/L to about 25 g/L, and Pd loading of about 6 g/ft3.
According to principles in the present disclosure, the optimal NO/CO cross over R value of disclosed SPGM catalyst system may be determined by performing isothermal steady state sweep tests, employing fresh and hydrothermally aged catalyst samples prepared according to embodiments in the present disclosure, as described in
Isothermal Steady State Sweep Test Procedure
The isothermal steady state sweep test may be carried out employing a flow reactor at inlet temperature of about 450° C., and testing a gas stream at 11-point R values from about 2.0 (rich condition) to about 0.80 (lean condition) to measure the CO, NO, and HC conversions.
The space velocity (SV) in the isothermal steady state sweep test may be adjusted at about 40,000 h−1. The gas feed employed for the test may be a standard TWC gas composition, with variable O2 concentration in order to adjust R-value from rich condition to lean condition during testing. The standard TWC gas composition may include about 8,000 ppm of CO, about 400 ppm of C3H6, about 100 ppm of C3H8, about 1,000 ppm of NOx, about 2,000 ppm of H2, 10% of CO2, and 10% of H2O. The quantity of O2 in the gas mix may be varied to adjust Air/Fuel (A/F) ratio.
TWC Standard Light-Off Test Procedures
TWC steady state light-off test may be carried out employing a flow reactor in which temperature may be increased from about 100° C. to about 500° C. at a rate of about 40° C./min, feeding a gas composition of 8,000 ppm of CO, 400 ppm of C3H6, 100 ppm of C3H8, 1,000 ppm of NOx, 2,000 ppm of H2, 10% of CO2, 10% of H2O, and 0.7% of O2. The average R-value is 1.05 (stoichiometric), at SV of about 40,000 h−1.
TWC standard oscillating light-off test may be carried out employing a flow reactor in which temperature may be increased from about 100° C. to about 500° C. at a rate of about 40° C./min, feeding a gas composition of 8,000 ppm of CO, 400 ppm of C3H6, 100 ppm of C3H8, 1,000 ppm of NOx, 2,000 ppm of H2, 10% of CO2, 10% of H2O, and O2 quantity is variable between 0.3% to 0.45% for oscillating. The average R-value is 1.05 (stoichiometric) at SV of about 90,000 h−1. Oscillating light-off test may be conducted, under a frequency of about 1 Hz with ±0.4 A/F ratio span.
TWC Performance of SPGM Catalyst Systems
As may be seen in
As may be seen in
As may be seen in
As may be seen in
In present disclosure, the resulting respective R-values for SPGM catalyst systems under steady state sweep condition indicate that disclosed SPGM catalyst systems shows optimal performance because the NO/CO cross over R-value is very close to stoichiometric condition and in case of SPGM catalyst system Type 1, the R-value of 0.95 is indicative of 100% NO and CO conversions under lean condition.
TWC Performance Comparison of SPGM and PGM Catalyst Systems
The isothermal steady state sweep test may be carried out employing a flow reactor at the inlet temperature of about 450° C. to simulate exhaust of standard TWC gas composition with variable O2 to adjust A/F ratio, employing 11-point R values from about 2.0 (rich condition) to about 0.80 (lean condition), to measure NO conversion.
In this embodiment, the fresh sample of commercial PGM catalyst may be a catalyst including OC layer of Pd loading of about 6 g/ft3 and Rhodium (Rh) loading of about 6 g/ft3 with alumina based support oxide and about 30% to about 40% by weight of oxygen storage material. WC layer include only alumina based support oxide and oxygen storage material.
In performance comparison 900, NO conversion curve 902 shows performance of fresh sample of SPGM catalyst system Type 1, NO conversion curve 904 depicts performance of fresh sample of SPGM catalyst system Type 2, NO conversion curve 906 shows performance of fresh sample of SPGM catalyst system Type 3, NO conversion curve 908 depicts performance of fresh sample of SPGM catalyst system Type 4, and NO conversion curve 910 shows performance of fresh sample of commercial PGM catalyst, all under steady state sweep condition.
As may be observed in performance comparison 900, there is an improved performance in NO conversion for SPGM catalyst system Type 1 and SPGM catalyst system Type 4 under lean condition of stoichiometric as compared to PGM catalyst. This improved performance is the result of the synergistic effect between the PGM components and the Cu—Mn spinel components in the respective compositions of both SPGM catalyst systems, in which adding of Cu—Mn spinel components is responsible for the improved performance of NO conversion under lean condition compared with the level of NO conversion of the PGM catalyst shown in NO conversion curve 910. SPGM catalyst systems Type 1 and Type 4 may perform better than PGM catalyst because of their improved NO conversion under lean condition. For example, at R=0.9, while SPGM catalyst system Type 1 shows NO conversion of 96%, SPGM catalyst system Type 4 shows NO conversion of 82%, the PGM catalyst shows a NO conversion of 38%. In addition both SPGM catalyst system Type 1 and Type 4 presents NO conversion at R-value less than 1.00, which is the typical R-value for PGM catalysts.
In this embodiment, the fresh sample of commercial PGM catalyst may be a catalyst including OC layer of Pd loading of about 6 g/ft3 and Rhodium (Rh) loading of about 6 g/ft3 with alumina based support oxide and about 30% to 40% by weight of oxygen storage material. WC layer include only alumina based support oxide and oxygen storage material.
Samples of SPGM catalyst systems Type 1, Type 2, Type 3, Type 4, and commercial PGM catalyst may be hydrothermally aged employing about 10% steam/air or fuel flow at a plurality of temperatures within a range from about 800° C. to about 1,000° C. for about 4 hours. In this embodiment, all samples may be preferably aged at 900° C. for about 4 hours.
The isothermal steady state sweep test may be carried out employing a flow reactor at the inlet temperature of about 450° C. to simulate exhaust of standard TWC gas composition with variable O2 to adjust A/F ratio, employing 11-point R values from about 2.0 (rich condition) to about 0.80 (lean condition) to measure NO conversions.
In performance comparison 1000, NO conversion curve 1002 shows performance of fresh sample of SPGM catalyst system Type 1, NO conversion curve 1004 depicts performance of fresh sample of SPGM catalyst system Type 2, NO conversion curve 1006 shows performance of fresh sample of SPGM catalyst system Type 3, NO conversion curve 1008 depicts performance of fresh sample of SPGM catalyst system Type 4, and NO conversion curve 1010 shows performance of fresh sample of commercial PGM catalyst, all under steady state sweep condition.
As may be observed in performance comparison 1000, there is an improved performance in NO conversion for SPGM catalyst system Type 1 after aging under lean of stoichiometric as compared to PGM catalyst. This improved performance is the result of the synergistic effect between the PGM components and the Cu—Mn spinel components in the respective compositions of SPGM catalyst system Type 1, in which adding of Cu—Mn spinel is responsible for the improved performance of NO conversion when compared with the level of NO conversion of the PGM catalyst shown in NO conversion curve 1010. For example, at R-value=0.9, SPGM catalyst system Type 1 shows NO conversion of 95%, while PGM catalyst shows NO conversion of 35%.
In addition, as may be seen from performance comparison 900 and performance comparison 1000, the optimal performance in NO conversion was obtained with fresh and aged samples of SPGM catalyst system Type 1, showing improved NO conversion under lean region (R-value<1.00). NO/CO cross over R-values for SPGM catalyst system Type 1 are 0.950 and 0.965 for fresh and hydrothermally aged samples respectively indicating enhanced performance under lean condition when compared to PGM catalyst samples. NO/CO cross over R-values for PGM catalyst are 0.998 and 1.000 for fresh and hydrothermally aged samples respectively.
The NO/CO cross over R-values obtained under isothermal steady state sweep condition for fresh and hydrothermally aged samples of SPGM catalyst systems Type 1, Type 2, Type 3, and Type 4, and PGM catalyst may confirm the optimal performance of SPGM catalyst systems Type 1 when compared to the other SPGM catalyst systems and PGM catalyst in the present disclosure, since NO/CO cross over R-values for fresh and hydrothermally aged samples SPGM catalyst system Type 1 are below the NO/CO cross over R-values for fresh and hydrothermally aged samples of PGM catalyst, indicating that SPGM catalyst systems Type 1 is an improvement in which the synergistic effect, shown according to the principles of the present disclosure, is very relevant. Additionally, SPGM catalyst system Type 1 shows a significant improvement of NO conversion in lean condition compare to PGM catalyst.
As may be observed, SPGM catalyst systems Type 2, Type 3, and Type 4 show increasing R-value after aging. The R-values obtained indicate that they may perform under stoichiometric condition or slightly under rich condition cross over. However, SPGM catalyst system Type 1 shows significant improvement toward lean condition that surpasses performance of PGM catalyst because of high NO conversion realized under lean condition, which may also lead to lower fuel consumption.
TWC Standard Light-Off Test for SPGM Catalyst System Type 1
In
As may be seen, under steady state light-off test, in NO curve 1102, 50% conversion of NO occurs at T50 of about 211.9° C., in CO curve 1104, 50% conversion of CO occurs at T50 of about 228.1° C., and in HC curve 1106, 50% conversion of HC occurs at T50 of about 265.9° C. Under oscillating light-off test, in NO curve 1108, 50% conversion of NO occurs at T50 of about 295.4° C., in CO curve 1110, 50% conversion of CO occurs at T50 of about 257.3° C., and in HC curve 1112, 50% conversion of HC occurs at T50 of about 286.9° C.
Comparison of conversion results from
According to principles in the present disclosure, application of Pd on alumina-based support as overcoat and Cu—Mn stoichiometric spinel structure, Cu1.0Mn2.0O4, supported on Nb2O5—ZrO2 as washcoat on ceramic substrate, produced higher catalytic activity, efficiency, and better performance in TWC condition specially under same condition as compared with commercial PGM catalysts. The low level of temperatures T50 obtained and higher NO conversion under lean condition for fresh and aged SPGM samples may also show improved performance and thermal stability of SPGM catalyst system. The catalyst system configuration, material composition, and preparation of SPGM catalyst system Type 1 may be selected as an optimal catalyst system to be used in many TWC applications.
The catalyst system configuration, material composition, and preparation of SPGM catalyst system Type 1 may provide an optimal selection for lean performance as a result of the synergistic relation between Pd and Cu—Mn stoichiometric spinel structure, a cooperative behavior that produces higher catalytic activity.
While various aspects and embodiments have been disclosed, other aspects and embodiments may be contemplated. The various aspects and embodiments disclosed here are for purposes of illustration and are not intended to be limiting, with the true scope and spirit being indicated by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
3284370 | Alan et al. | Nov 1966 | A |
3473987 | Sowards | Oct 1969 | A |
3493325 | Roth | Feb 1970 | A |
3896616 | Keith et al. | Jul 1975 | A |
3904553 | Campbell et al. | Sep 1975 | A |
4029738 | Courty et al. | Jun 1977 | A |
4062810 | Vogt et al. | Dec 1977 | A |
4113921 | Goldstein et al. | Sep 1978 | A |
4188309 | Volker et al. | Feb 1980 | A |
4199328 | Cole et al. | Apr 1980 | A |
4261862 | Kinoshita et al. | Apr 1981 | A |
4274981 | Suzuki et al. | Jun 1981 | A |
4297150 | Sims et al. | Oct 1981 | A |
4297328 | Ritscher et al. | Oct 1981 | A |
4414023 | Aggen et al. | Nov 1983 | A |
4661329 | Suzuki et al. | Apr 1987 | A |
4673556 | McCabe et al. | Jun 1987 | A |
4790982 | Yoo et al. | Dec 1988 | A |
4797329 | Kilbane et al. | Jan 1989 | A |
4885269 | Cyron | Dec 1989 | A |
4906443 | Gandhi et al. | Mar 1990 | A |
5063193 | Bedford et al. | Nov 1991 | A |
5157007 | Domesle et al. | Oct 1992 | A |
5162284 | Soled et al. | Nov 1992 | A |
5175132 | Ketcham et al. | Dec 1992 | A |
5182249 | Wang et al. | Jan 1993 | A |
5238898 | Han et al. | Aug 1993 | A |
5364517 | Dieckmann et al. | Nov 1994 | A |
5371056 | Leyrer et al. | Dec 1994 | A |
5580553 | Nakajima | Dec 1996 | A |
5658543 | Yoshida et al. | Aug 1997 | A |
5708233 | Ochi et al. | Jan 1998 | A |
5721188 | Sung et al. | Feb 1998 | A |
5747410 | Muramatsu et al. | May 1998 | A |
5879645 | Park et al. | Mar 1999 | A |
5898015 | Yokoi et al. | Apr 1999 | A |
5965099 | Hartweg et al. | Oct 1999 | A |
5968462 | Suzuki | Oct 1999 | A |
6129834 | Peters et al. | Oct 2000 | A |
6232253 | Narula et al. | May 2001 | B1 |
6293096 | Khair et al. | Sep 2001 | B1 |
6372686 | Golden | Apr 2002 | B1 |
6395244 | Hartweg et al. | May 2002 | B1 |
6444178 | Haratweg et al. | Sep 2002 | B1 |
6468941 | Bortun | Oct 2002 | B1 |
6576587 | Labarge et al. | Jun 2003 | B2 |
6605264 | Bortun | Aug 2003 | B2 |
6624113 | Labarge et al. | Sep 2003 | B2 |
6632557 | Curelop et al. | Oct 2003 | B1 |
6652829 | Barnes et al. | Nov 2003 | B2 |
6696389 | Boegner et al. | Feb 2004 | B1 |
6747180 | Ostgard et al. | Jun 2004 | B2 |
6774080 | LaBarge et al. | Aug 2004 | B2 |
6858193 | Ruwisch et al. | Feb 2005 | B2 |
6915629 | Szymkowics | Jul 2005 | B2 |
6938411 | Hoffmann et al. | Sep 2005 | B2 |
7129194 | Baca et al. | Oct 2006 | B2 |
7374729 | Chen et al. | May 2008 | B2 |
7393809 | Kim | Jul 2008 | B2 |
7485273 | Gandhi et al. | Feb 2009 | B2 |
7563744 | Klein et al. | Jul 2009 | B2 |
7576029 | Saito et al. | Aug 2009 | B2 |
7641875 | Golden | Jan 2010 | B1 |
7749472 | Chen et al. | Jul 2010 | B2 |
7772147 | Collier et al. | Aug 2010 | B2 |
7785544 | Alward et al. | Aug 2010 | B2 |
7803338 | Socha et al. | Sep 2010 | B2 |
7875250 | Nunan | Jan 2011 | B2 |
7875573 | Beutel et al. | Jan 2011 | B2 |
7943104 | Kozlov et al. | May 2011 | B2 |
8080494 | Yasuda et al. | Dec 2011 | B2 |
8148295 | Augustine | Apr 2012 | B2 |
8158551 | Verdier et al. | Apr 2012 | B2 |
8168125 | Choi | May 2012 | B2 |
8242045 | Kulkarni et al. | Aug 2012 | B2 |
8318629 | Alive et al. | Nov 2012 | B2 |
8845987 | Nazarpoor et al. | Sep 2014 | B1 |
8853121 | Nazarpoor et al. | Oct 2014 | B1 |
8858903 | Nazarpoor | Oct 2014 | B2 |
8969228 | Nazarpoor et al. | Mar 2015 | B2 |
20020042341 | Golden | Apr 2002 | A1 |
20020114746 | Roark et al. | Aug 2002 | A1 |
20020131914 | Sung | Sep 2002 | A1 |
20030092566 | Inoue et al. | May 2003 | A1 |
20030221360 | Brown et al. | Dec 2003 | A1 |
20040018939 | Chigapov et al. | Jan 2004 | A1 |
20040033175 | Ohno et al. | Feb 2004 | A1 |
20040048125 | Curlop et al. | Mar 2004 | A1 |
20040087439 | Hwang et al. | May 2004 | A1 |
20040151647 | Wanninger et al. | Aug 2004 | A1 |
20040166035 | Noda et al. | Aug 2004 | A1 |
20040254062 | Crocker et al. | Dec 2004 | A1 |
20050095188 | Matsumoto et al. | May 2005 | A1 |
20050145827 | McCabe et al. | Jul 2005 | A1 |
20050197244 | L'vovich et al. | Sep 2005 | A1 |
20050207956 | Vierheilig | Sep 2005 | A1 |
20050227867 | Chen et al. | Oct 2005 | A1 |
20050265920 | Ercan et al. | Dec 2005 | A1 |
20060100097 | Chigapov et al. | May 2006 | A1 |
20060120936 | Alive et al. | Jun 2006 | A1 |
20060223694 | Gandhi et al. | Oct 2006 | A1 |
20060228283 | Malyala et al. | Oct 2006 | A1 |
20060292342 | Ohno et al. | Dec 2006 | A1 |
20080072705 | Chaumonnot et al. | Mar 2008 | A1 |
20080075646 | Mussmann et al. | Mar 2008 | A1 |
20080119353 | Jia et al. | May 2008 | A1 |
20080125308 | Fujdala et al. | May 2008 | A1 |
20080166282 | Golden et al. | Jul 2008 | A1 |
20080190099 | Yezerets et al. | Aug 2008 | A1 |
20090134365 | Sasaki et al. | May 2009 | A1 |
20090220697 | Addiego | Sep 2009 | A1 |
20090274903 | Addiego | Nov 2009 | A1 |
20090324468 | Golden et al. | Dec 2009 | A1 |
20090324469 | Golden et al. | Dec 2009 | A1 |
20090324470 | Alamdari et al. | Dec 2009 | A1 |
20100062293 | Triantafyllopoulous et al. | Mar 2010 | A1 |
20100081563 | Edgar-Beltran et al. | Apr 2010 | A1 |
20100111796 | Caudle et al. | May 2010 | A1 |
20100152032 | Galligan | Jun 2010 | A1 |
20100168449 | Grey et al. | Jul 2010 | A1 |
20100180581 | Grubert et al. | Jul 2010 | A1 |
20100184590 | Althofer et al. | Jul 2010 | A1 |
20100193104 | Ryu et al. | Aug 2010 | A1 |
20100229533 | Li et al. | Sep 2010 | A1 |
20100233045 | Kim et al. | Sep 2010 | A1 |
20100240525 | Golden et al. | Sep 2010 | A1 |
20100266473 | Chen et al. | Oct 2010 | A1 |
20100290964 | Southward et al. | Nov 2010 | A1 |
20100293929 | Zhan et al. | Nov 2010 | A1 |
20110053763 | Verdier et al. | Mar 2011 | A1 |
20110150742 | Han et al. | Jun 2011 | A1 |
20110239626 | Makkee et al. | Oct 2011 | A1 |
20120015801 | Deprez et al. | Jan 2012 | A1 |
20120039775 | Schirmeister et al. | Feb 2012 | A1 |
20130012378 | Meyer et al. | Jan 2013 | A1 |
20130058848 | Nunan et al. | Mar 2013 | A1 |
20130115144 | Golden et al. | May 2013 | A1 |
20130130032 | Kuo et al. | May 2013 | A1 |
20130172177 | Domke et al. | Jul 2013 | A1 |
20130189173 | Hilgendorff | Jul 2013 | A1 |
20130323145 | Tran et al. | Dec 2013 | A1 |
20140271384 | Nazarpoor et al. | Sep 2014 | A1 |
20140271387 | Nazarpoor | Sep 2014 | A1 |
20140271388 | Nazarpoor et al. | Sep 2014 | A1 |
20140271390 | Nazarpoor | Sep 2014 | A1 |
20140271391 | Nazarpoor | Sep 2014 | A1 |
20140271392 | Nazarpoor | Sep 2014 | A1 |
20140271393 | Nazarpoor | Sep 2014 | A1 |
20140271425 | Nazarpoor | Sep 2014 | A1 |
20140274662 | Nazarpoor | Sep 2014 | A1 |
20140274674 | Nazarpoor et al. | Sep 2014 | A1 |
20140274675 | Nazarpoor | Sep 2014 | A1 |
20140274677 | Nazarpoor | Sep 2014 | A1 |
20140274678 | Nazarpoor | Sep 2014 | A1 |
20140301909 | Nazarpoor | Oct 2014 | A1 |
20140301931 | Nazarpoor | Oct 2014 | A1 |
20140302983 | Nazarpoor | Oct 2014 | A1 |
20140334989 | Nazarpoor et al. | Nov 2014 | A1 |
20140334990 | Nazarpoor | Nov 2014 | A1 |
20140336038 | Nazarpoor et al. | Nov 2014 | A1 |
20140336044 | Nazarpoor et al. | Nov 2014 | A1 |
20140336045 | Nazarpoor et al. | Nov 2014 | A1 |
20140356243 | Nazarpoor | Dec 2014 | A1 |
20140357475 | Nazarpoor et al. | Dec 2014 | A1 |
20140357479 | Nazarpoor et al. | Dec 2014 | A1 |
20150005157 | Nazarpoor et al. | Jan 2015 | A1 |
20150005158 | Nazarpoor et al. | Jan 2015 | A1 |
20150018202 | Nazarpoor et al. | Jan 2015 | A1 |
20150018203 | Nazarpoor et al. | Jan 2015 | A1 |
20150018204 | Nazarpoor et al. | Jan 2015 | A1 |
20150018205 | Nazarpoor et al. | Jan 2015 | A1 |
20150051067 | Nazarpoor et al. | Feb 2015 | A1 |
20150105242 | Nazarpoor et al. | Apr 2015 | A1 |
20150105243 | Nazarpoor et al. | Apr 2015 | A1 |
20150105245 | Nazarpoor et al. | Apr 2015 | A1 |
20150105246 | Nazarpoor et al. | Apr 2015 | A1 |
20150105247 | Nazarpoor et al. | Apr 2015 | A1 |
20150147239 | Launois et al. | May 2015 | A1 |
20150147251 | Nazarpoor et al. | May 2015 | A1 |
20150148215 | Nazarpoor | May 2015 | A1 |
20150148216 | Nazarpoor et al. | May 2015 | A1 |
20150148220 | Nazarpoor | May 2015 | A1 |
20150148222 | Nazarpoor | May 2015 | A1 |
20150148223 | Nazarpoor et al. | May 2015 | A1 |
20150148224 | Nazarpoor et al. | May 2015 | A1 |
20150148225 | Nazarpoor et al. | May 2015 | A1 |
20150238940 | Nazarpoor et al. | Aug 2015 | A1 |
20150238941 | Nazarpoor et al. | Aug 2015 | A1 |
20150290627 | Nazarpoor et al. | Oct 2015 | A1 |
Number | Date | Country |
---|---|---|
644637 | Aug 1984 | CH |
102172527 | Sep 2011 | CN |
102371153 | Mar 2012 | CN |
0022349 | Jan 1981 | EP |
0450897 | Oct 1991 | EP |
0541271 | May 1993 | EP |
0605142 | Jul 1994 | EP |
0 814 241 | Dec 1997 | EP |
1121981 | Aug 2001 | EP |
1 232 790 | Aug 2002 | EP |
1 256 382 | Nov 2002 | EP |
1 656 993 | May 2006 | EP |
2441510 | Apr 2012 | EP |
62-20613 | Jan 1987 | JP |
4-215853 | Aug 1992 | JP |
09-271665 | Oct 1997 | JP |
4144174 | Sep 2008 | JP |
2013-27858 | Feb 2013 | JP |
404146 | Dec 2014 | PL |
WO 2008099847 | Aug 2008 | WO |
WO 2010029431 | Mar 2010 | WO |
WO 2012166514 | Dec 2012 | WO |
WO 2013004814 | Jan 2013 | WO |
WO 2013028575 | Feb 2013 | WO |
WO 2013044115 | Mar 2013 | WO |
WO 2013068243 | May 2013 | WO |
WO 2013121112 | Aug 2013 | WO |
WO 2013153081 | Oct 2013 | WO |
Entry |
---|
Alini, S. et al., Development of new catalysts for N2O-decomposition from adipic acid plant, Applied Catalysis B: Environmental, 70, (2007) 323-329. |
Azad et al. Examining the Cu—Mn—O Spinel System as an Oxygen Carrier in Chemical Looping Combustion, Energy Technology, vol. 1, Issue 1, (2013) 59-69. |
Barrett, E. P. et al., The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms, J. A. Chem. Soc. (1951) 73, 373-380. |
Brunaubr, S. et al., Adsorption of Gases in Multimolecular Layers, J. Am. Chem. Soc. 1938, 60, 309-319. |
Bugarski, Aleksandar, Exhaust Aftertreatment Technologies for Curtailment of Diesel Particulate Matter and Gaseous Emissions, Disesel Aerosols and Gases in Underground Metal and Nonmetal Mines. Power Point Presentation. 14th U.S./North American Mine Ventilation Symposium, Salt Lake City, Utah, Jun. 17, 2012. Slides 1-44. http://www.cdc.gov/niosh/mining/use. |
D. Panayotov, “Interaction Between NO, Co and O2 ON gamma-Al203-Supported Copper-Manganese Oxides”, 1996, React.Kinet.Catal.Lett. vol. 58, No. 1, 73-78. |
Extended European Search Report for corresponding European Application No. 09770546.1 dated Sep. 26, 2012, 6 pages. |
Extended European Search Report for corresponding European Application No. 09770547.9 dated Dec. 7, 2012, 5 pages. |
Hayes et al., “Introduction to Catalytic Combustion”, pp. 310-313, 1997 OPA (Overseas Publishers Association). |
He, H. et al., An investigation of NO/Co reaction over perovskite-type oxide La0.8Ce0.2B0.4Mn0.6O3 (B=Cu or Ag) catalysts synthesized by reverse microemulsion, Catalysis Today, vol. 126 (2007) 290-295. |
International Preliminary Report on Patentability (Chapter II) from International Application No. PCT/US2009/003800, dated May 11, 2010. |
International Search Report and Written Opinion for corresponding International Application No. PCT/US2009/003799, dated Oct. 8, 2009. |
International Search Report and Written Opinion for corresponding International Application No. PCT/US2009/003800 dated Oct. 22, 2009. |
International Search Report and Written Opinion for corresponding International Application No. PCT/US2014/030597 dated Aug. 13, 2014. |
International Search Report and Written Opinion for corresponding International Application No. PCT/US2014/033041 dated Aug. 20, 2014. |
International Search Report and Written Opinion for corresponding International Application No. PCT/US2014/037452 dated Sep. 15, 2014. |
International Search Report and Written Opinion for corresponding International Application No. PCT/US2014/044221, dated Oct. 3, 2014. |
International Search Report and Written Opinion for corresponding International Application No. PCT/US2014/044222 dated Oct. 3, 2014. |
International Search Report and Written Opinion for corresponding International Application No. PCT/US2014/046512 dated Apr. 6, 2015. |
International Search Report and Written Opinion for corresponding International Application No. PCT/US2014/054874, dated Nov. 13, 2014. |
International Search Report and Written Opinion for corresponding International Application No. PCT/US2014/055063 dated Nov. 24, 2014. |
International Search Report and Written Opinion for corresponding International Application No. PCT/US2014/067541 dated Feb. 4, 2015. |
International Search Report and Written Opinion for corresponding International Application No. PCT/US2014/067569, dated Apr. 3, 2015. |
International Search Report and Written Opinion for corresponding International Application No. PCT/US2014/067589, dated Feb. 10, 2015. |
International Search Report and Written Opinion for corresponding International Application No. PCT/US2015/025267 dated Jul. 2, 2015. |
International Search Report and Written Opinion for corresponding International Application No. PCT/US2015/025299 dated Jul. 2, 2015. |
K. S. Abdel Halim et al. “Catalytic Oxidation of Co Gas over Nanocrystallite CuxMn1—xFe2O4”, Feb. 26, 2008, Top Catalyst (2008) 47:66-72. |
Kucharczyk, B. et al., Partial substitution of lanthanum with silver in the LaMnO3 perovskite: Effect of the modification on the activity of monolithic catalysts in the reactions of methane and carbon oxide oxidation, Applied Catalysis A: General, vol. 335 (2008) 28-36. |
Mestres, L. et al., Phase Diagram at Low Temperature of the System ZrO2/Nb2O5, Z.Anorg. Alig. Chem., vol. 627 (2001) 294-298. |
Papavasilious et al., “Combined Steam reforming of methanol over Cu—Mn spinel oxide catalysts”, Journal of Catalysis 251 (2007) 7-20. |
Reddy et al., Selective Ortho-Methylation of Phenol with Methanol over Copper Manganese Mixed-Oxide Spinel Catalysts, Journal of Catalysis, vol. 243 (2006) 278-291. |
Suh, J. K. et al., Characterization of transition metal-impregnated La—Al complex oxides for catalytic combustion, Microporous Materials (1995) 657-664. |
Tanaka et al., “Influence of preparation method and additive for Cu—Mn spinel oxide catalyst on water gas shift reaction of reformed fuels”, Applied Catalysis A: General 279 (2005) 59-66. |
Wei, P. et al., In situ high-temperature X-ray and neutron diffraction of Cu—Mn oxide phases, J. Mater Sci. (2010) 45: 1056-1064. |
Number | Date | Country | |
---|---|---|---|
20150148223 A1 | May 2015 | US |