1. Field of the Invention
The present invention relates to patient monitoring. Although embodiments make specific reference to monitoring impedance and electrocardiogram signals with an adherent patch, the system methods and device described herein may be applicable to many applications in which physiological monitoring is used, for example wireless physiological monitoring for extended periods.
Patients are often treated for diseases and/or conditions associated with a compromised status of the patient, for example a compromised physiologic status. In some instances, a patient may report symptoms that require diagnosis to determine the underlying cause. For example, a patient may report fainting or dizziness that requires diagnosis, in which long term monitoring of the patient can provide useful information as to the physiologic status of the patient. In some instances a patient may have suffered a heart attack and require care and/or monitoring after release from the hospital. One example of a device to provide long term monitoring of a patient is the Holter monitor, or ambulatory electrocardiography device.
In addition to measuring heart signals with electrocardiograms, known physiologic measurements include impedance measurements. For example, transthoracic impedance measurements can be used to measure hydration and respiration. Although transthoracic measurements can be useful, such measurements may use electrodes that are positioned across the midline of the patient, and may be somewhat uncomfortable and/or cumbersome for the patient to wear.
Work in relation to embodiments of the present invention suggests that known methods and apparatus for long term monitoring of patients, for example in-home monitoring, may be less than ideal. At least some of the known devices may not collect the right kinds of data to treat patients optimally. For example, although successful at detecting and storing electrocardiogram signals, devices such as the Holter monitor can be somewhat bulky and may not collect all of the kinds of data that would be ideal to diagnose and/or treat a patient. In at least some instances, devices that are worn by the patient may be somewhat larger than ideal and may be uncomfortable, which may lead to patients not wearing the devices and not complying with directions from the health care provider, such that data collected may be less than ideal. Further, in at least some instances the current devices may have less than ideal performance when the patient resumes a normal lifestyle and the device is exposed to environmental factors such as humidity or water, for example, when the patient takes a shower. Although implantable devices may be used in some instances, many of these devices can be invasive and/or costly, and may suffer at least some of the shortcomings of known wearable devices.
Current methodologies for measuring patient hydration with impedance may be less than ideal for remote patient monitoring, such as in-home monitoring for extended periods. At least some of the current devices that determine hydration with impedance, for example for hospital use, may use more current and may have more complex and bulky circuitry than would be ideal for in-home monitoring in at least some instances, for example where the patient is active and moves about the home. As noted above, the size and comfort of a remote patient monitor can affect the quality of the data received from the patient.
Therefore, a need exists for improved patient monitoring, for example improved in-home patient monitoring. Ideally, such improved patient monitoring would avoid at least some of the short-comings of the present methods and devices.
2. Description of the Background Art
The following patents and publications may describe background art relevant to the present application: U.S. Pat. No. 7,133,716 to Kraemer et al.; U.S. Pat. No. 6,906,530 to Geisel; U.S. Pat. No. 6,442,422 to Duckert; U.S. Pat. No. 6,050,267 to Nardella et al.; U.S. Pat. No. 5,935,079 to Swanson et al.; U.S. Pat. No. 5,836,990 to Li; U.S. Pat. No. 5,788,643 to Feldman; U.S. Pat. No. 5,738,107 to Martinsen et al.; U.S. Pat. No. 5,449,000 to Libke et al.; U.S. Pat. No. 4,966,158 to Honma et al.; U.S. Pat. No. 4,692,685 to Blaze; U.S. Patent App. Pub. No. 2007/0043301 to Martinsen et al.; U.S. Patent App. Pub. No. 2006/0281981 to Jang et al.; U.S. Patent App. Pub. No. 2006/0004300 to Kennedy; U.S. Patent App. Pub. No. 2005/0203435 to Nakada; and U.S. Patent App. Pub. No. 2005/0192488 to Bryenton et al.
The present invention relates to patient monitoring. Although embodiments make specific reference to monitoring impedance and electrocardiogram signals with an adherent patch, the system methods and device described herein may be applicable to any application in which physiological monitoring is used, for example wireless physiological monitoring for extended periods. Embodiments of the present invention use tissue resistance to determine patient hydration, such that the size, complexity and power consumption of the associated circuitry can be minimized. In many embodiments, tissue resistance alone is measured at a single frequency to determine patient hydration, such that the circuitry and battery size and power consumption of the device can be further minimized. In other embodiments, tissue resistance and tissue reactance are measured at a single frequency. In some embodiments, the quality of the coupling of the electrode to tissue can be determined, and such that the integrity of the measured patient data can be verified. The quality of the coupling of the electrodes to tissue can be quantified in many ways, for example with at least one of tissue resistance measured at an additional frequency, tissue reactance measured at the same frequency as the resistance, tissue impedance measured between any two electrodes, or a signal to noise ratio from electrocardiogram measurements. In many embodiments, the adherent device can be continuously worn by the patient for an extended period, for example at least one week, and reliable measurements obtained with the improved comfort and small size of the device.
In a first aspect, embodiments of the present invention provide an adherent device for heart failure patient monitoring. The device comprises an adhesive patch and at least two electrodes connected to the patch that are capable of electrically coupling to the skin of a patient. Circuitry coupled to the at least two electrodes measures a hydration signal of the patient. The hydration signal comprises bioimpedance data, for example tissue resistance, which is used to determine changes in patient body fluid. The device may use low measurement frequencies to minimize the capacitative effects and isolate the extracellular impedance. This can be beneficial for the detection of some patient conditions, for example heart failure decompensation, because the intracellular fluid does not change significantly over short periods of time, and the edema in heart failure may comprise extracellular edema.
In some embodiments, a single measurement frequency is used.
In some embodiments, multiple measurement frequencies are used to observe frequency dependent changes in the measured resistance. These observations may be used to determine the quality of the measurements taken or of the skin-electrode interface.
In some embodiments, the measured hydration signal comprises only tissue resistance.
In some embodiments, the measured hydration signal comprises tissue resistance and tissue reactance.
In another aspect, embodiments of the present invention provide a method of monitoring a patient for heart failure. An adhesive patch is adhered to a skin of the patient so as to couple at least two electrodes to the skin of the patient. Circuitry coupled to the at least two electrodes measures bioimpedance to determine changes in patient body fluid.
In another aspect, embodiments of the present invention provide an adherent device to monitor a tissue hydration of a patient. The device includes an adhesive patch that adheres to the skin of the patient and at least four electrodes connected to the patch and capable of electrically coupling to the patient. Circuitry is coupled to the at least four electrodes to measure a tissue resistance of the patient and is configured to determine the tissue hydration in response to the tissue resistance.
In some embodiments, the circuitry includes a processor system that is configured to determine the hydration of the patient in response to the tissue resistance.
In some embodiments, the impedance circuitry is configured to measure the tissue resistance at a single frequency without tissue reactance. The processor system is configured to determine the tissue hydration in response to the tissue resistance measured at the single frequency.
In some embodiments, the tissue resistance corresponds to a change in patient body fluid. A processor may be coupled to the impedance circuitry, such that the processor is configured to determine an amount of extracellular edema from the change in patient body fluid.
In some embodiments, the hydration signal of the patient comprises a measurement of extracellular fluid.
In some embodiments, the impedance circuitry is configured to measure the hydration signal using at least one low measurement frequency. The at least one low measurement frequency may be in the range of 5 to 15 kHz. The at least one low measurement frequency may comprise a single measurement frequency, which may be in the range of 0 to 10 kHz.
In other embodiments the at least one low measurement frequency may comprise multiple measurement frequencies. The hydration signal may comprise a tissue reactance measurement.
In another aspect, embodiments of the present invention provide an adherent device to monitor a patient. The device includes an adhesive patch to adhere to a skin of the patient and at least four electrodes connected to the patch and capable of electrically coupling to the patient at a skin-electrode interface. Impedance circuitry is coupled to the at least four electrodes to measure a hydration signal of the patient. The impedance circuitry is configured to measure multiple frequencies.
In some embodiments, the hydration signal comprises a tissue resistance measurement and a tissue reactance measurement.
In some embodiments, the device includes a processor coupled to the impedance circuitry, where the processor is configured to determine a quality of the skin-electrode interface from at least one of an ECG signal-to-noise ratio, a tissue reactance, tissue impedance measured between any two electrodes, or a second measurement frequency. The processor may be configured to determine the quality of the skin-electrode interface from a second measurement frequency and may be configured to measure a droop in the tissue resistance.
In another aspect, embodiments of the present invention provide a method of monitoring a patient. The method includes adhering an adhesive patch to a skin of the patient to couple at least four electrodes to the skin of the patient to form a skin-electrode interface and measuring a hydration signal of the patient with impedance circuitry that is coupled to the at least four electrodes. The hydration signal comprises a tissue resistance measurement.
In some embodiments, the tissue resistance measurement corresponds to a change in patient body fluid. The method may also include determining an amount of extracellular edema from the change in patient body fluid with a processor coupled to the impedance circuitry.
In some embodiments, the hydration signal is measured with at least one low measurement frequency. The at least one low measurement frequency may be between 0 and 10 kHz. The at least one low measurement frequency may comprise a single measurement frequency or multiple measurement frequencies.
In some embodiments, the hydration signal also includes a tissue reactance measurement. The method may also include determining a quality of the skin-electrode coupling from the tissue reactance measurement. The quality of the skin-electrode coupling may be determined by at least one of determining an ECG signal-to-noise ratio, determining a tissue reactance, measuring a tissue impedance between any two electrodes, or measuring resistance at a second measurement frequency.
In another aspect, embodiments of the present invention provide a method of monitoring a patient, where the method includes adhering an adhesive patch to the skin of the patient to couple at least four electrodes to the skin of the patient to form a skin-electrode interface. A hydration signal of the patient is measured with impedance circuitry coupled to the at least four electrodes, where the hydration signal comprises a tissue resistance measurement and a tissue reactance measurement. An amount of extracellular edema is determined from the tissue resistance measurement and a quality of skin-electrode coupling is determined from the tissue reactance measurement.
In some embodiments, the method also includes indicating a replacement status of the adhesive patch based on the quality of the skin-electrode coupling.
In another aspect, embodiments of the present invention provide an adherent device to monitor a patient. The device includes an adhesive patch to adhere to a skin of the patient and at least four electrodes mechanically coupled to the patch and capable of electrically coupling to the patient. The at least four electrodes comprise at least two force electrodes and at least two sense electrodes. Impedance circuitry is electrically coupled to the at least two force electrodes to force an electrical current and is coupled to the at least two sense electrodes to measure a hydration signal of the patient, where the hydration signal comprises a tissue resistance measurement. A processor system is coupled to the impedance circuitry and configured to determine an amount of extracellular edema from the hydration signal.
In some embodiments, the processor system is configured to calculate and report a patient risk of an adverse cardiac event to at least one of a remote center or a physician based on the amount of extracellular edema.
In another aspect, embodiments of the present invention provide a method of monitoring a patient. The method includes adhering an adhesive patch to the skin of the patient so as to couple at least four electrodes to the skin of the patient. The at least four electrodes comprise at least two force electrodes and at least two sense electrodes. A tissue resistance of the patient is measured with impedance circuitry electrically coupled to the at least two force electrodes and to the at least two sense electrodes, such that the force electrodes force an electrical current between the at least two force electrodes, wherein the impedance circuitry generates a hydration signal. An amount of extracellular edema is determined from the hydration signal.
In some embodiments, the electrical current is a low frequency current. The low frequency current may have a frequency from 0 to 10 kHz.
In some embodiments, the electrical current has a single measurement frequency.
Embodiments of the present invention relate to patient monitoring. Although embodiments make specific reference to monitoring impedance and electrocardiogram signals with an adherent patch, the system methods and device described herein may be applicable to any application in which physiological monitoring is used, for example wireless physiological monitoring for extended periods.
Decompensation is failure of the heart to maintain adequate blood circulation. Although the heart can maintain at least some pumping of blood, the quantity is inadequate to maintain healthy tissues. Several symptoms can result from decompensation including pulmonary congestion, breathlessness, faintness, cardiac palpitation, edema of the extremities, and enlargement of the liver. Cardiac decompensation can result in slow or sudden death. Sudden Cardiac Arrest (hereinafter “SCA”), also referred to as sudden cardiac death, is an abrupt loss of cardiac pumping function that can be caused by a ventricular arrhythmia, for example ventricular tachycardia and/or ventricular fibrillation. Although decompensation and SCA can be related in that patients with decompensation are also at an increased risk for SCA, decompensation is primarily a mechanical dysfunction caused by inadequate blood flow, and SCA is primarily an electrical dysfunction caused by inadequate and/or inappropriate electrical signals of the heart.
Embodiments may use bioimpedance to measure changes in patient body fluid to aid in heart failure patient monitoring, for example changes in resistance to detect an impending decompensation. Because intracellular fluid does not change significantly over short periods of time, and edema in heart failure comprises extracellular edema, the device can use low measurement frequencies, for example 0-10 kHz, to minimize capacitive effects and isolate extracellular impedance.
Although some embodiments may use a single measurement frequency, multiple measurement frequencies may also be used. Frequency-dependent changes in measured resistance may be used to determine the quality of the measurement and of the skin-electrode interface, such as with adherent and/or wearable embodiments. For example, wetting during showering can cause a low frequency droop in measured resistance, which may indicate that data collection should be temporarily suspended.
Bioimpedance comprises two components, tissue resistance and tissue reactance, and change in body fluid can be closely correlated with change in the tissue resistance. In many embodiments, tissue resistance is measured and tracked, such that it may not be necessary to measure the reactance. For example, relative body fluid change can be determined in a computationally efficient manner in response to the measured resistance, such that the relative change in body fluid can be determined without measurement of reactance and without a determination of absolute body fluid.
Although the quality of the skin electrode interface can be determined in many ways, in many embodiments, tissue reactance may be used to measure the quality of the skin-electrode coupling. For example, resistance may be used to track changes in body fluid, and reactance used to determine the quality of the skin-electrode interface. An increase in reactance may indicate a degradation of skin-electrode contact, and can be used as a replacement indicator.
In at least some embodiments, resistance at low frequencies, for example less than 10 kHz, can be used to determine the quality of impedance measurements. For example, when a shower is taken the resistance may decrease, or droop, at lower frequencies but remain consistent at higher frequencies, which indicates that the adherent device and/or patient are exposed to water. FIGS. 6A and 6B, described more fully herein below, illustrate the low frequency droop effect on the measured resistance.
In many embodiments, the adherent devices described herein may be used for 90 day monitoring, or more, and may comprise completely disposable components and/or reusable components, and can provide reliable data acquisition and transfer. In many embodiments, the patch is configured for patient comfort, such that the adherent patch can be worn and/or tolerated by the patient for extended periods, for example 90 days or more. The patch may be worn continuously for at least seven days, for example 14 days, and then replaced with another patch. Adherent devices with comfortable patches that can be worn for extended periods and in which patches can be replaced and the electronics modules reused are described in U.S. Pat. App. Nos. 60/972,537, entitled “Adherent Device with Multiple Physiological Sensors”; and 60/972,629, entitled “Adherent Device with Multiple Physiological Sensors”, both filed on Sep. 14, 2007, the full disclosures of which have been previously incorporated herein by reference. In many embodiments, the adherent patch comprises a tape, which comprises a material, preferably breathable, with an adhesive, such that trauma to the patient skin can be minimized while the patch is worn for the extended period. The printed circuit board may comprise a flex printed circuit board that can flex with the patient to provide improved patient comfort.
Monitoring system 10 includes components to transmit data to a remote center 106. Remote center 106 can be located in a different building from the patient, for example in the same town as the patient, and can be located as far from the patient as a separate continent from the patient, for example the patient located on a first continent and the remote center located on a second continent. Adherent device 100 can communicate wirelessly to an intermediate device 102, for example with a single wireless hop from the adherent device on the patient to the intermediate device. Intermediate device 102 can communicate with remote center 106 in many ways, for example with an internet connection and/or with a cellular connection. In many embodiments, monitoring system 10 comprises a distributed processing system with at least one processor comprising a tangible medium of device 100, at least one processor 102P of intermediate device 102, and at least one processor 106P at remote center 106, each of which processors can be in electronic communication with the other processors. At least one processor 102P comprises a tangible medium 102T, and at least one processor 106P comprises a tangible medium 106T. Remote processor 106P may comprise a backend server located at the remote center. Remote center 106 can be in communication with a health care provider 108A with a communication system 107A, such as the Internet, an intranet, phone lines, wireless and/or satellite phone. Health care provider 108A, for example a family member, can be in communication with patient P with a communication, for example with a two way communication system, as indicated by arrow 109A, for example by cell phone, email, landline. Remote center 106 can be in communication with a health care professional, for example a physician 108B, with a communication system 107B, such as the Internet, an intranet, phone lines, wireless and/or satellite phone. Physician 108B can be in communication with patient P with a communication, for example with a two way communication system, as indicated by arrow 109B, for example by cell phone, email, landline. Remote center 106 can be in communication with an emergency responder 108C, for example a 911 operator and/or paramedic, with a communication system 107C, such as the Internet, an intranet, phone lines, wireless and/or satellite phone. Emergency responder 108C can travel to the patient as indicated by arrow 109C. Thus, in many embodiments, monitoring system 10 comprises a closed loop system in which patient care can be monitored and implemented from the remote center in response to signals from the adherent device.
In many embodiments, the adherent device may continuously monitor physiological parameters, communicate wirelessly with a remote center, and provide alerts when necessary. The system may comprise an adherent patch, which attaches to the patient's thorax and contains sensing electrodes, battery, memory, logic, and wireless communication capabilities. In some embodiments, the patch can communicate with the remote center, via the intermediate device in the patient's home. In some embodiments, remote center 106 receives the patient data and applies a patient evaluation algorithm, for example the prediction algorithm to predict cardiac decompensation. In some embodiments, the algorithm may comprise an algorithm to predict impending cardiac decompensation is described in U.S. Pat. App. No. 60/972,512, the full disclosure of which has been previously incorporated herein by reference. When a flag is raised, the center may communicate with the patient, hospital, nurse, and/or physician to allow for therapeutic intervention, for example to prevent decompensation.
The adherent device may be affixed and/or adhered to the body in many ways. For example, with at least one of the following an adhesive tape, a constant-force spring, suspenders around shoulders, a screw-in microneedle electrode, a pre-shaped electronics module to shape fabric to a thorax, a pinch onto roll of skin, or transcutaneous anchoring. Patch and/or device replacement may occur with a keyed patch (e.g. two-part patch), an outline or anatomical mark, a low-adhesive guide (place guide|remove old patch|place new patch|remove guide), or a keyed attachment for chatter reduction. The patch and/or device may comprise an adhesiveless embodiment (e.g. chest strap), and/or a low-irritation adhesive for sensitive skin. The adherent patch and/or device can comprise many shapes, for example at least one of a dogbone, an hourglass, an oblong, a circular or an oval shape.
In many embodiments, the adherent device may comprise a reusable electronics module with replaceable patches, and each of the replaceable patches may include a battery. The module may collect cumulative data for approximately 90 days and/or the entire adherent component (electronics+patch) may be disposable. In a completely disposable embodiment, a “baton” mechanism may be used for data transfer and retention, for example baton transfer may include baseline information. In some embodiments, the device may have a rechargeable module, and may use dual battery and/or electronics modules, wherein one module 101A can be recharged using a charging station 103 while the other module 101B is placed on the adherent patch with connectors. In some embodiments, the intermediate device 102 may comprise the charging module, data transfer, storage and/or transmission, such that one of the electronics modules can be placed in the intermediate device for charging and/or data transfer while the other electronics module is worn by the patient.
System 10 can perform the following functions: initiation, programming, measuring, storing, analyzing, communicating, predicting, and displaying. The adherent device may contain a subset of the following physiological sensors: bioimpedance, respiration, respiration rate variability, heart rate (ave, min, max), heart rhythm, hear rate variability (HRV), heart rate turbulence (HRT), heart sounds (e.g. S3), respiratory sounds, blood pressure, activity, posture, wake/sleep, orthopnea, temperature/heat flux, and weight. The activity sensor may comprise one or more of the following: ball switch, accelerometer, minute ventilation, HR, bioimpedance noise, skin temperature/heat flux, BP, muscle noise, posture.
The adherent device can wirelessly communicate with remote center 106. The communication may occur directly (via a cellular or Wi-Fi network), or indirectly through intermediate device 102. Intermediate device 102 may consist of multiple devices, which can communicate wired or wirelessly to relay data to remote center 106.
In many embodiments, instructions are transmitted from remote site 106 to a processor supported with the adherent patch on the patient, and the processor supported with the patient can receive updated instructions for the patient treatment and/or monitoring, for example while worn by the patient.
Electronic components 130 comprise components to take physiologic measurements, transmit data to remote center 106 and receive commands from remote center 106. In many embodiments, electronics components 130 may comprise known low power circuitry, for example complementary metal oxide semiconductor (CMOS) circuitry components. Electronics components 130 comprise an activity sensor and activity circuitry 134, impedance circuitry 136 and electrocardiogram circuitry, for example ECG circuitry 136. In some embodiments, electronics circuitry 130 may comprise a microphone and microphone circuitry 142 to detect an audio signal from within the patient, and the audio signal may comprise a heart sound and/or a respiratory sound, for example an S3 heart sound and a respiratory sound with rales and/or crackles.
Electronics circuitry 130 may comprise a temperature sensor, for example a thermistor in contact with the skin of the patient, and temperature sensor circuitry 144 to measure a temperature of the patient, for example a temperature of the skin of the patient. A temperature sensor may be used to determine the sleep and wake state of the patient. The temperature of the patient can decrease as the patient goes to sleep and increase when the patient wakes up.
Work in relation to embodiments of the present invention suggests that skin temperature may effect impedance and/or hydration measurements, and that skin temperature measurements may be used to correct impedance and/or hydration measurements. In some embodiments, increase in skin temperature or heat flux can be associated with increased vaso-dilation near the skin surface, such that measured impedance measurement decreased, even through the hydration of the patient in deeper tissues under the skin remains substantially unchanged. Thus, use of the temperature sensor can allow for correction of the hydration signals to more accurately assess the hydration, for example extra cellular hydration, of deeper tissues of the patient, for example deeper tissues in the thorax.
Electronics circuitry 130 may comprise a processor 146. Processor 146 comprises a tangible medium, for example read only memory (ROM), electrically erasable programmable read only memory (EEPROM) and/or random access memory (RAM). Electronic circuitry 130 may comprise real time clock and frequency generator circuitry 148. In some embodiments, processor 136 may comprise the frequency generator and real time clock. The processor can be configured to control a collection and transmission of data from the impedance circuitry electrocardiogram circuitry and the accelerometer. In many embodiments, device 100 comprise a distributed processor system, for example with multiple processors on device 100.
In many embodiments, electronics components 130 comprise wireless communications circuitry 132 to communicate with remote center 106. The wireless communication circuitry can be coupled to the impedance circuitry, the electrocardiogram circuitry and the accelerometer to transmit to a remote center with a communication protocol at least one of the hydration signal, the electrocardiogram signal or the inclination signal. In specific embodiments, wireless communication circuitry is configured to transmit the hydration signal, the electrocardiogram signal and the inclination signal to the remote center with a single wireless hop, for example from wireless communication circuitry 132 to intermediate device 102. The communication protocol comprises at least one of Bluetooth, Zigbee, WiFi, WiMax, IR, amplitude modulation or frequency modulation. In many embodiments, the communications protocol comprises a two way protocol such that the remote center is capable of issuing commands to control data collection.
Intermediate device 102 may comprise a data collection system to collect and store data from the wireless transmitter. The data collection system can be configured to communicate periodically with the remote center. The data collection system can transmit data in response to commands from remote center 106 and/or in response to commands from the adherent device.
Activity sensor and activity circuitry 134 can comprise many known activity sensors and circuitry. In many embodiments, the accelerometer comprises at least one of a piezoelectric accelerometer, capacitive accelerometer or electromechanical accelerometer. The accelerometer may comprises a 3-axis accelerometer to measure at least one of an inclination, a position, an orientation or acceleration of the patient in three dimensions. Work in relation to embodiments of the present invention suggests that three dimensional orientation of the patient and associated positions, for example sitting, standing, lying down, can be very useful when combined with data from other sensors, for example ECG data and/or hydration data.
Impedance circuitry 136 can generate both hydration data and respiration data. In many embodiments, impedance circuitry 136 is electrically connected to electrodes 112A, 112B, 112C and 112D in a four pole configuration, such that electrodes 112A and 112D comprise outer electrodes that are driven with a current and comprise force electrodes that force the current through the tissue. The current delivered between electrodes 112A and 112D generates a measurable voltage between electrodes 112B and 112C, such that electrodes 112B and 112C comprise inner, sense, electrodes that sense and/or measure the voltage in response to the current from the force electrodes. In some embodiments, electrodes 112B and 112C may comprise force electrodes and electrodes 112A and 112B may comprise sense electrodes. The voltage measured by the sense electrodes can be used to measure the impedance of the patient and determine the respiration rate and/or hydration of the patient.
FIG. 1D1 shows an equivalent circuit 152 that can be used to determine optimal frequencies for measuring patient hydration. Work in relation to embodiments of the present invention indicates that the frequency of the current and/or voltage at the force electrodes can be selected so as to provide impedance signals related to the extracellular and/or intracellular hydration of the patient tissue. Equivalent circuit 152 comprises an intracellular resistance 156, or R(ICW) in series with a capacitor 154, and an extracellular resistance 158, or R(ECW). Extracellular resistance 158 is in parallel with intracellular resistance 156 and capacitor 154 related to capacitance of cell membranes. In many embodiments, impedances can be measured and provide useful information over a wide range of frequencies, for example from about 0.5 kHz to about 200 KHz. Work in relation to embodiments of the present invention suggests that extracellular resistance 158 can be significantly related extracellular fluid and to cardiac decompensation, and that extracellular resistance 158 and extracellular fluid can be effectively measured with frequencies in a range from about 0.5 kHz to about 20 kHz, for example from about 1 kHz to about 10 kHz. In some embodiments, a single frequency can be used to determine the extracellular resistance and/or fluid. As sample frequencies increase from about 10 kHz to about 20 kHz, capacitance related to cell membranes decrease the impedance, such that the intracellular fluid contributes to the impedance and/or hydration measurements. Thus, many embodiments of the present invention measure hydration with frequencies from about 0.5 kHz to about 20 kHz to determine patient hydration.
In many embodiments, impedance circuitry 136 can be configured to determine respiration of the patient. In specific embodiments, the impedance circuitry can measure the hydration at 25 Hz intervals, for example at 25 Hz intervals using impedance measurements with a frequency from about 0.5 kHz to about 20 kHz.
ECG circuitry 138 can generate electrocardiogram signals and data from two or more of electrodes 112A, 112B, 112C and 112D in many ways. In some embodiments, ECG circuitry 138 is connected to inner electrodes 112B and 122C, which may comprise sense electrodes of the impedance circuitry as described above. In some embodiments, ECG circuitry 138 can be connected to electrodes 112A and 112D so as to increase spacing of the electrodes. The inner electrodes may be positioned near the outer electrodes to increase the voltage of the ECG signal measured by ECG circuitry 138. In many embodiments, the ECG circuitry may measure the ECG signal from electrodes 112A and 112D when current is not passed through electrodes 112A and 112D, for example with switches as described in U.S. App. No. 60/972,527, the full disclosure of which has been previously incorporated herein by reference.
Cover 162 may comprise many known biocompatible cover, casing and/or housing materials, such as elastomers, for example silicone. The elastomer may be fenestrated to improve breathability. In some embodiments, cover 162 may comprise many known breathable materials, for example polyester, polyamide, and/or elastane (Spandex). The breathable fabric may be coated to make it water resistant, waterproof, and/or to aid in wicking moisture away from the patch.
A gel cover 180, or gel cover layer, for example a polyurethane non-woven tape, can be positioned over patch 110 comprising the breathable tape. A PCB layer, for example flex printed circuit board 120, or flex PCB layer, can be positioned over gel cover 180 with electronic components 130 connected and/or mounted to flex printed circuit board 120, for example mounted on flex PCB so as to comprise an electronics layer disposed on the flex PCB layer. In many embodiments, the adherent device may comprise a segmented inner component, for example the PCB may be segmented to provide at least some flexibility. In many embodiments, the electronics layer may be encapsulated in electronics housing 160 which may comprise a waterproof material, for example silicone or epoxy. In many embodiments, the electrodes are connected to the PCB with a flex connection, for example trace 123A of flex printed circuit board 120, so as to provide strain relive between the electrodes 112A, 112B, 112C and 112D and the PCB.
Gel cover 180 can inhibit flow of gel 114A and liquid. In many embodiments, gel cover 180 can inhibit gel 114A from seeping through breathable tape 110T to maintain gel integrity over time. Gel cover 180 can also keep external moisture, for example liquid water, from penetrating though the gel cover into gel 114A while allowing moisture vapor from the gel, for example moisture vapor from the skin, to transmit through the gel cover.
In many embodiments, cover 162 can encase the flex PCB and/or electronics and can be adhered to at least one of the electronics, the flex PCB or adherent patch 110, so as to protect at least the electronics components and the PCB. Cover 162 can attach to adherent patch 110 with adhesive 116B. Cover 162 can comprise many known biocompatible cover materials, for example silicone. Cover 162 can comprise an outer polymer cover to provide smooth contour without limiting flexibility. In many embodiments, cover 162 may comprise a breathable fabric. Cover 162 may comprise many known breathable fabrics, for example breathable fabrics as described above. In some embodiments, the breathable cover may comprise a breathable water resistant cover. In some embodiments, the breathable fabric may comprise polyester, nylon, polyamide, and/or elastane (Spandex) to allow the breathable fabric to stretch with body movement. In some embodiments, the breathable tape may contain and elute a pharmaceutical agent, such as an antibiotic, anti-inflammatory or antifungal agent, when the adherent device is placed on the patient.
The breathable cover 162 and adherent patch 110 comprise breathable tape can be configured to couple continuously for at least one week the at least one electrode to the skin so as to measure breathing of the patient. The breathable tape may comprise the stretchable breathable material with the adhesive and the breathable cover may comprises a stretchable water resistant material connected to the breathable tape, as described above, such that both the adherent patch and cover can stretch with the skin of the patient. Arrows 182 show stretching of adherent patch 110, and the stretching of adherent patch can be at least two dimensional along the surface of the skin of the patient. As noted above, connectors 122A, 122B, 122C and 122D between PCB 130 and electrodes 112A, 112B, 112C and 112D may comprise insulated wires that provide strain relief between the PCB and the electrodes, such that the electrodes can move with the adherent patch as the adherent patch comprising breathable tape stretches. Arrows 184 show stretching of cover 162, and the stretching of the cover can be at least two dimensional along the surface of the skin of the patient. Cover 162 can be attached to adherent patch 110 with adhesive 116B such that cover 162 stretches and/or retracts when adherent patch 110 stretches and/or retracts with the skin of the patient. For example, cover 162 and adherent patch 110 can stretch in two dimensions along length 170 and width 174 with the skin of the patient, and stretching along length 170 can increase spacing between electrodes. Stretching of the cover and adherent patch 110, for example in two dimensions, can extend the time the patch is adhered to the skin as the patch can move with the skin such that the patch remains adhered to the skin Electronics housing 160 can be smooth and allow breathable cover 162 to slide over electronics housing 160, such that motion and/or stretching of cover 162 is slidably coupled with housing 160. The printed circuit board can be slidably coupled with adherent patch 110 that comprises breathable tape 110T, such that the breathable tape can stretch with the skin of the patient when the breathable tape is adhered to the skin of the patient, for example along two dimensions comprising length 170 and width 174. Electronics components 130 can be affixed to printed circuit board 120, for example with solder, and the electronics housing can be affixed over the PCB and electronics components, for example with dip coating, such that electronics components 130, printed circuit board 120 and electronics housing 160 are coupled together. Electronics components 130, printed circuit board 120, and electronics housing 160 are disposed between the stretchable breathable material of adherent patch 110 and the stretchable water resistant material of cover 160 so as to allow the adherent patch 110 and cover 160 to stretch together while electronics components 130, printed circuit board 120, and electronics housing 160 do not stretch substantially, if at all. This decoupling of electronics housing 160, printed circuit board 120 and electronic components 130 can allow the adherent patch 110 comprising breathable tape to move with the skin of the patient, such that the adherent patch can remain adhered to the skin for an extended time of at least one week, for example two or more weeks.
An air gap 169 may extend from adherent patch 110 to the electronics module and/or PCB, so as to provide patient comfort. Air gap 169 allows adherent patch 110 and breathable tape 110T to remain supple and move, for example bend, with the skin of the patient with minimal flexing and/or bending of printed circuit board 120 and electronic components 130, as indicated by arrows 186. Printed circuit board 120 and electronics components 130 that are separated from the breathable tape 110T with air gap 169 can allow the skin to release moisture as water vapor through the breathable tape, gel cover, and breathable cover. This release of moisture from the skin through the air gap can minimize, and even avoid, excess moisture, for example when the patient sweats and/or showers.
The breathable tape of adherent patch 110 may comprise a first mesh with a first porosity and gel cover 180 may comprise a breathable tape with a second porosity, in which the second porosity is less than the first porosity to minimize, and even inhibit, flow of the gel through the breathable tape. The gel cover may comprise a polyurethane film with the second porosity.
In many embodiments, the adherent device comprises a patch component and at least one electronics module. The patch component may comprise adherent patch 110 comprising the breathable tape with adhesive coating 116A, at least one electrode, for example electrode 114A and gel 114. The at least one electronics module can be separable from the patch component. In many embodiments, the at least one electronics module comprises the flex printed circuit board 120, electronic components 130, electronics housing 160 and cover 162, such that the flex printed circuit board, electronic components, electronics housing and cover are reusable and/or removable for recharging and data transfer, for example as described above. In many embodiments, adhesive 116B is coated on upper side 110A of adherent patch 110B, such that the electronics module can be adhered to and/or separated from the adhesive component. In specific embodiments, the electronic module can be adhered to the patch component with a releasable connection, for example with Velcro™, a known hook and loop connection, and/or snap directly to the electrodes. In many embodiments, two electronics modules can be provided, such that one electronics module can be worn by the patient while the other is charged, as described above. Monitoring with multiple adherent patches for an extended period is described in U.S. Pat. App. No. 60/972,537, the full disclosure of which has been previously incorporated herein by reference. Many patch components can be provided for monitoring over the extended period. For example, about 12 patches can be used to monitor the patient for at least 90 days with at least one electronics module, for example with two reusable electronics modules.
At least one electrode 112A can extend through at least one aperture 180A in the breathable tape 110 and gel cover 180.
In some embodiments, the adhesive patch may comprise a medicated patch that releases a medicament, such as antibiotic, beta-blocker, ACE inhibitor, diuretic, or steroid to reduce skin irritation. The adhesive patch may comprise a thin, flexible, breathable patch with a polymer grid for stiffening. This grid may be anisotropic, may use electronic components to act as a stiffener, may use electronics-enhanced adhesive elution, and may use an alternating elution of adhesive and steroid.
Alternatively or in combination with batteries 216, each of the plurality of disposable patch components may comprise a disposable battery. For example first disposable patch component 220A may comprise a disposable battery 214A; second disposable patch component 220B may comprise a disposable battery 214B; third disposable patch component 220C may comprise a disposable battery 214C; and a fourth disposable patch component 220D may comprise a disposable battery 214D. Each of the disposable batteries, 214A, 214B, 214C and 214D may be affixed to each of disposable patches 220A, 220B, 220C and 220D, respectively, such that the batteries are adhered to the disposable patch component before, during and after the respective patch component is adhered to the patient. Each of the disposable batteries, 214A, 214B, 214C and 214D may be coupled to connectors 215A, 215B, 215C and 215D, respectively. Each of connectors 215A, 215B, 215C and 215D can be configured to couple to a connector of the reusable module 220, so as to power the reusable module with the disposable battery coupled thereto. Each of the disposable batteries, 214A, 214B, 214C and 214D may be coupled to connectors 215A, 215B, 215C and 215D, respectively, such that the batteries are not coupled to the electrodes of the respective patch component, so as to minimize, and even avoid, degradation of the electrodes and/or gel during storage when each disposable battery is adhered to each respective disposable patch component.
In many embodiments, physiologic signals, for example ECG, hydration impedance, respiration impedance and accelerometer impedance are measured when the adherent patch component is adhered to the patient, for example when any of the first, second, third or fourth disposable adherent patches is adhered to the patient.
In many embodiments each patch comprises at least four electrodes configured to measure an ECG signal and impedance, for example hydration and/or respiration impedance. In many embodiments, the patient comprises a midline 304, with first side, for example right side 302, and second side, for example left side 306, symmetrically disposed about the midline. A step 310 adheres a first adherent patch 312 to at a first location 314 on a first side 302 of the patient for a first period of time, for example about 1 week. While the adherent patch 312 is position at first location 314 on the first side of the patient, the electrodes of the patch are coupled to the skin of the patient to measure the ECG signal and impedance signals.
A step 320 removes patch 312 and adheres a second adherent patch 322 at a second location 324 on a second side 206 of the patient for a second period of time, for example about 1 week. In many embodiments, second location 324 can be symmetrically disposed opposite first location 314 across midline 304, for example so as to minimize changes in the sequential impedance signals measured from the second side and first side. While adherent patch 322 is position at second location 324 on the second side of the patient, the electrodes of the patch are coupled to the skin of the patient to measure the ECG signal and impedance signals. In many embodiments, while adherent patch 322 is positioned at second location 324, skin at first location 314 can heal and recover from adherent coverage of the first patch. In many embodiments, second location 324 is symmetrically disposed opposite first location 314 across midline 304, for example so as to minimize changes in the impedance signals measured between the first side and second side. In many embodiments, the duration between removal of one patch and placement of the other patch can be short, such that any differences between the signals may be assumed to be related to placement of the patch, and these differences can be removed with signal processing.
A step 330 removes second patch 322 and adheres a third adherent patch 332 at a third location 334 on the first side, for example right side 302, of the patient for a third period of time, for example about 1 week. In many embodiments, third location 334 can be symmetrically disposed opposite second location 324 across midline 304, for example so as to minimize changes in the sequential impedance signals measured from the third side and second side. In many embodiments, third location 334 substantially overlaps with first location 314, so as to minimize differences in measurements between the first adherent patch and third adherent patch that may be due to patch location. While adherent patch 332 is positioned at third location 334 on the first side of the patient, the electrodes of the patch are coupled to the skin of the patient to measure the ECG signal and impedance signals. In many embodiments, while adherent patch 332 is positioned at third location 334, skin at second location 324 can heal and recover from adherent coverage of the second patch. In many embodiments, the duration between removal of one patch and placement of the other patch can be short, such that any differences between the signals may be assumed to be related to placement of the patch, and these differences can be removed with signal processing.
A step 340 removes third patch 332 and adheres a fourth adherent patch 342 at a fourth location 344 on the second side, for example left side 306, of the patient for a fourth period of time, for example about 1 week. In many embodiments, fourth location 344 can be symmetrically disposed opposite third location 334 across midline 304, for example so as to minimize changes in the sequential impedance signal measured from the fourth side and third side. In many embodiments, fourth location 344 substantially overlaps with second location 324, so as to minimize differences in measurements between the second adherent patch and fourth adherent patch that may be due to patch location. While adherent patch 342 is positioned at fourth location 344 on the second side of the patient, the electrodes of the patch are coupled to the skin of the patient to measure the ECG signal and impedance signals. In many embodiments, while adherent patch 342 is positioned at fourth location 324, skin at third location 334 can heal and recover from adherent coverage of the third patch. In many embodiments, the duration between removal of one patch and placement of the other patch can be short, such that any differences between the signals may be assumed to be related to placement of the patch, and these differences can be removed with signal processing.
It should be appreciated that the specific steps illustrated in
Adherent device 410 comprises impedance circuitry 420 that can be used to measure hydration and respiration of the patient, and ECG circuitry 430 that is used to measure an electrocardiogram signal of the patient. Impedance circuitry 420 comprises force circuitry connected to the outer electrodes to drive a current between the electrodes. Impedance circuitry 420 comprises sense circuitry to measure a voltage between the inner electrodes resulting from the current passed between the outer force electrodes, such that the impedance of the tissue can be determined. Impedance circuitry 420 may comprise known 4-pole, or quadrature, low power circuitry. ECG circuitry 430 can be connected to the outer electrodes, or force electrodes, to measure an ECG signal. Work in relation to embodiments of the present invention suggests that this use of the outer electrodes can increase the ECG signal as compared to the inner electrodes, in some embodiments, that may be due to the increased distance between the outer electrodes. ECG circuitry 430 may comprise known ECG circuitry and components, for example low power instrumentation and/or operational amplifiers.
In many embodiments, electronic switch 432A and electronic switch 432D are connected in series between impedance circuitry 420 and electrode 412A and 412D, respectively. In many embodiments, electronic switch 432A and electronic switch 432D open such that the outer electrodes can be isolated from the impedance circuitry when the ECG circuitry measures ECG signals. When electronic switch 432A and electronic switch 432D are closed, impedance circuitry 420 can force electrical current through the outer electrodes to measure impedance. In many embodiments, electronic switch 432A and electronic switch 432D can be located in the same packaging, and may comprise CMOS, precision, analog switches with low power consumption, low leakage currents, and fast switching speeds.
A processor 440 can be connected to electronic switch 423A, electronic switch 432D, impedance circuitry 420 and ECG circuitry 430 to control measurement of the ECG and impedance signals. Processor 430 comprises a tangible medium, for example read only memory (ROM), electrically erasable programmable read only memory (EEPROM) and/or random access memory (RAM). In many embodiments, processor 440 controls the measurements such that the measurements from impedance circuitry 420 and ECG circuitry 430 are time division multiplexed in response to control signals from processor 440.
It should be appreciated that the specific steps illustrated in
The signals can be combined in many ways. In some embodiments, the signals can be used simultaneously to determine the impending cardiac decompensation.
In some embodiments, the signals can be combined by using the at least two of the electrocardiogram signal, the respiration signal or the activity signal to look up a value in a previously existing array.
Table 1 shows combination of the electrocardiogram signal with the respiration signal to look up a value in a pre-existing array. For example, at a heart rate in the range from A to B bpm and a respiration rate in the range from U to V per minute triggers a response of N. In some embodiments, the values in the table may comprise a tier or level of the response, for example four tiers. In specific embodiments, the values of the look up table can be determined in response to empirical data measured for a patient population of at least about 100 patients, for example measurements on about 1000 to 10,000 patients. The look up table shown in Table 1 illustrates the use of a look up table according to one embodiment, and one will recognize that many variables can be combined with a look up table.
In some embodiments, the table may comprise a three or more dimensional look up table, and the look up table may comprises a tier, or level, of the response, for example an alarm.
In some embodiments, the signals may be combined with at least one of adding, subtracting, multiplying, scaling or dividing the at least two of the electrocardiogram signal, the respiration signal or the activity signal. In specific embodiments, the measurement signals can be combined with positive and or negative coefficients determined in response to empirical data measured for a patient population of at least about 100 patients, for example data on about 1000 to 10,000 patients.
In some embodiments, a weighted combination may combine at least two measurement signals to generate an output value according to a formula of the general form
OUTPUT=aX+bY
where a and b comprise positive or negative coefficients determined from empirical data and X, and Z comprise measured signals for the patient, for example at least two of the electrocardiogram signal, the respiration signal or the activity signal. While two coefficients and two variables are shown, the data may be combined with multiplication and/or division. One or more of the variables may be the inverse of a measured variable.
In some embodiments, the ECG signal comprises a heart rate signal that can be divided by the activity signal. Work in relation to embodiments of the present invention suggests that an increase in heart rate with a decrease in activity can indicate an impending decompensation. The signals can be combined to generate an output value with an equation of the general form
OUTPUT=aX/Y+bZ
where X comprise a heart rate signal, Y comprises an activity signal and Z comprises a respiration signal, with each of the coefficients determined in response to empirical data as described above.
In some embodiments, the data may be combined with a tiered combination. While many tiered combinations can be used a tiered combination with three measurement signals can be expressed as
OUTPUT=(ΔX)+(ΔY)+(ΔZ)
where (ΔX), (ΔY), (ΔZ) may comprise change in heart rate signal from baseline, change in respiration signal from baseline and change in activity signal from baseline, and each may have a value of zero or one, based on the values of the signals. For example if the heart rate increase by 10%, (ΔX) can be assigned a value of 1. If respiration increases by 5%, (ΔY) can be assigned a value of 1. If activity decreases below 10% of a baseline value (ΔZ) can be assigned a value of 1. When the output signal is three, a flag may be set to trigger an alarm.
In some embodiments, the data may be combined with a logic gated combination. While many logic gated combinations can be used, a logic gated combination with three measurement signals can be expressed as
OUTPUT=(ΔX) AND (ΔY) AND (ΔZ)
where (ΔX), (ΔY), (ΔZ) may comprise change in heart rate signal from baseline, change in respiration signal from baseline and change in activity signal from baseline, and each may have a value of zero or one, based on the values of the signals. For example if the heart rate increase by 10%, (ΔX) can be assigned a value of 1. If respiration increases by 5%, (ΔY) can be assigned a value of 1. If activity decreases below 10% of a baseline value (ΔZ) can be assigned a value of 1. When each of (ΔX), (ΔY), (ΔZ) is one, the output signal is one, and a flag may be set to trigger an alarm. If any one of (ΔX), (ΔY) or (ΔZ) is zero, the output signal is zero and a flag may be set so as not to trigger an alarm. While a specific example with AND gates has been shown the data can be combined in many ways with known gates for example NAND, NOR, OR, NOT, XOR, XNOR gates. In some embodiments, the gated logic may be embodied in a truth table.
The processor system, as described above, performs the methods 500, including many of the steps described above. It should be appreciated that the specific steps illustrated in
In step 558, the processor determines whether the tissue resistance measurements exhibit a “low frequency droop.” A threshold decline in the measured resistance may be selected in order to identify a low frequency droop. For example, a decline of over 10% from the nominal value of the measurements, or over 15 or 20%, may indicate an irregular or anomalous skin-electrode coupling. Wetting of the skin, such as while showering or from sweating during physical exercise, can cause a low frequency droop. To verify that an abnormal reading is caused by a wetting of the skin, a second measurement can be taken at an additional low frequency, as in step 568. The additional frequency is preferably lower than the frequency of the regular measurements. In a particularly preferred embodiment, the additional frequency is about 2 kHz. If the low frequency droop is determined to be caused by wetting of the skin, measurements can be temporarily suspended, or affected data points can be disregarded, if necessary. In step 570, the quality of the skin-electrode interface is determined, and in step 572, the adhesive patch and electrodes are replaced when necessary.
When the tissue resistance measurements do not show a low frequency droop, the processor efficiently calculates a change in the patient body fluid in step 560. As described above, the change in body fluid is related to the amount of extracellular edema, which is determined in step 562. In step 564, the amount of edema is used to calculate the patient's risk of an adverse cardiac event. An alert is transmitted in step 566 when the patient's risk exceeds a preset level.
In step 666, the processor uses the tissue reactance measurements to determine the quality of the skin-electrode interface. A threshold value for the reactance may be selected such that a reactance value in excess of the threshold indicates that the quality of the skin-electrode interface is poor. For example, the reactance threshold may be set at between approximately 8 and 15 ohms, such as 10 ohms. As described above, the quality of the interface can be affected by wetting of the skin or by degradation of the adhesive strength of the adhesive patch. If the processor determines that the adhesive patch requires replacement in step 668, then it is replaced in step 670. If the adhesive patch does not require replacement, then further measurements of the tissue resistance and tissue reactance are taken.
In step 766, an impedance measurement is taken between any two of the electrodes coupled to the skin. The processor uses the impedance measurements to determine the quality of the skin-electrode coupling in step 768. A poor connection at the skin-electrode interface, such as when the adhesive patch begins to lose its adhesive strength, will cause the impedance measured between any two electrodes to increase. A threshold for the impedance increase may be selected, such that when the impedance measured between two electrodes exceeds the threshold, a poor skin-electrode coupling is indicated. For example, a threshold may be selected between 4 and 6 kΩ, such as 5 kΩ. If the impedance measurements indicate that the coupling is poor, then the patch and electrodes will be replaced, as in steps 770 and 772. If the patch does not require replacement, then measurements will continue to be taken.
The processor system, as described above, can perform many of the above described methods, including many of the steps described above. It should be appreciated that the specific steps illustrated above provide a particular methods of monitoring a patient, according to some embodiments of the present invention. Other sequences of steps may also be performed according to alternative embodiments. For example, alternative embodiments of the present invention may perform the steps outlined above in a different order. Moreover, the individual steps illustrated may include multiple sub-steps that may be performed in various sequences as appropriate to the individual step. Furthermore, additional steps may be added or removed depending on the particular applications. One of ordinary skill in the art would recognize many variations, modifications, and alternatives.
Electrode-to-skin coupling can affect the quality of the measurements. For example, in addition to showering, the size of the electrode can affect coupling. For example, a variation in measured resistance taken over 10 days may occur with a range of about of about 5 ohms for a patch having hydrogels 23 mm by 23 mm in size, whereas the variation in measured resistance taken over 10 days may occur with a range of about 15 ohms for a patch having hydrogels 18 mm×18 mm in size. Such a difference in variability may be due to the larger gel area providing more robust contact and coupling to the skin of the patient.
While the exemplary embodiments have been described in some detail, by way of example and for clarity of understanding, those of skill in the art will recognize that a variety of modifications, adaptations, and changes may be employed. Hence, the scope of the present invention should be limited solely by the appended claims.
The present application claims the benefit under 35 USC 119(e) of U.S. Provisional Application Nos. 60/972,512 and 60/972,537 both filed Sep. 14, 2007, and 61/055,666 filed May 23, 2008; the full disclosures of which are incorporated herein by reference in their entirety. The subject matter of the present application is related to the following applications: 60/972,329; 60/972,354; 60/972,616; 60/972,363; 60/972,343; 60/972,581; 60/972,629; 60/972,316; 60/972,333; 60/972,359; 60/972,336; and 60/972,340 all of which were filed on Sep. 14, 2007; 61/046,196 filed Apr. 18, 2008; 61/047,875 filed Apr. 25, 2008; 61/055,645, 61/055,656, and 61/055,662 all filed May 23, 2008; and 61/079,746 filed Jul. 10, 2008. The following applications are being filed concurrently with the present application, on Sep. 12, 2008: entitled “Multi-Sensor Patient Monitor to Detect Impending Cardiac Decompensation Prediction”; entitled “Adherent Device with Multiple Physiological Sensors”; entitled “Injectable Device for Physiological Monitoring”; entitled “Delivery System for Injectable Physiological Monitoring System”; entitled “Adherent Device for Cardiac Rhythm Management”; entitled “Adherent Device for Respiratory Monitoring”; entitled “Adherent Athletic Monitor”; entitled “Adherent Emergency Monitor”; entitled “Adherent Device with Physiological Sensors”; entitled “Medical Device Automatic Start-up upon Contact to Patient Tissue”; entitled “Adherent Cardiac Monitor with Advanced Sensing Capabilities”; entitled “Adherent Device for Sleep Disordered Breathing”; entitled “Dynamic Pairing of Patients to Data Collection Gateways”; entitled “Adherent Multi-Sensor Device with Implantable Device Communications Capabilities”; entitled “Data Collection in a Multi-Sensor Patient Monitor”; entitled “Adherent Multi-Sensor Device with Empathic Monitoring”; entitled “Energy Management for Adherent Patient Monitor”; and entitled “Tracking and Security for Adherent Patient Monitor.”
Number | Name | Date | Kind |
---|---|---|---|
834261 | Chambers | Oct 1906 | A |
2087124 | Smith et al. | Jul 1937 | A |
2184511 | Bagno et al. | Dec 1939 | A |
3170459 | Phipps et al. | Feb 1965 | A |
3232291 | Parker | Feb 1966 | A |
3370459 | Cescati | Feb 1968 | A |
3517999 | Weaver | Jun 1970 | A |
3620216 | Szymanski | Nov 1971 | A |
3677260 | Funfstuck et al. | Jul 1972 | A |
3805769 | Sessions | Apr 1974 | A |
3845757 | Weyer | Nov 1974 | A |
3874368 | Asrican | Apr 1975 | A |
3882853 | Gofman et al. | May 1975 | A |
3942517 | Bowles et al. | Mar 1976 | A |
3972329 | Kaufman | Aug 1976 | A |
4008712 | Nyboer | Feb 1977 | A |
4024312 | Korpman | May 1977 | A |
4077406 | Sandhage et al. | Mar 1978 | A |
4121573 | Crovella et al. | Oct 1978 | A |
4141366 | Cross, Jr. et al. | Feb 1979 | A |
RE30101 | Kubicek et al. | Sep 1979 | E |
4185621 | Morrow | Jan 1980 | A |
4216462 | McGrath et al. | Aug 1980 | A |
4300575 | Wilson | Nov 1981 | A |
4308872 | Watson et al. | Jan 1982 | A |
4358678 | Lawrence | Nov 1982 | A |
4409983 | Albert | Oct 1983 | A |
4450527 | Sramek | May 1984 | A |
4451254 | Dinius et al. | May 1984 | A |
4478223 | Allor | Oct 1984 | A |
4498479 | Martio et al. | Feb 1985 | A |
4522211 | Bare et al. | Jun 1985 | A |
4661103 | Harman | Apr 1987 | A |
4664129 | Helzel et al. | May 1987 | A |
4669480 | Hoffman | Jun 1987 | A |
4673387 | Phillips et al. | Jun 1987 | A |
4681118 | Asai et al. | Jul 1987 | A |
4692685 | Blaze | Sep 1987 | A |
4699146 | Sieverding | Oct 1987 | A |
4721110 | Lampadius | Jan 1988 | A |
4730611 | Lamb | Mar 1988 | A |
4733107 | O'Shaughnessy et al. | Mar 1988 | A |
4781200 | Baker | Nov 1988 | A |
4793362 | Tedner | Dec 1988 | A |
4838273 | Cartmell | Jun 1989 | A |
4838279 | Fore | Jun 1989 | A |
4850370 | Dower | Jul 1989 | A |
4880004 | Baker, Jr. et al. | Nov 1989 | A |
4895163 | Libke et al. | Jan 1990 | A |
4911175 | Shizgal | Mar 1990 | A |
4945916 | Kretschmer et al. | Aug 1990 | A |
4955381 | Way et al. | Sep 1990 | A |
4966158 | Honma et al. | Oct 1990 | A |
4981139 | Pfohl | Jan 1991 | A |
4988335 | Prindle et al. | Jan 1991 | A |
4989612 | Fore | Feb 1991 | A |
5001632 | Hall-Tipping | Mar 1991 | A |
5012810 | Strand et al. | May 1991 | A |
5025791 | Niwa | Jun 1991 | A |
5027824 | Dougherty et al. | Jul 1991 | A |
5050612 | Matsumura | Sep 1991 | A |
5063937 | Ezenwa et al. | Nov 1991 | A |
5080099 | Way et al. | Jan 1992 | A |
5083563 | Collins | Jan 1992 | A |
5086781 | Bookspan | Feb 1992 | A |
5113869 | Nappholz et al. | May 1992 | A |
5125412 | Thornton | Jun 1992 | A |
5133355 | Strand et al. | Jul 1992 | A |
5140985 | Schroeder et al. | Aug 1992 | A |
5150708 | Brooks | Sep 1992 | A |
5168874 | Segalowitz | Dec 1992 | A |
5226417 | Swedlow et al. | Jul 1993 | A |
5241300 | Buschmann | Aug 1993 | A |
5257627 | Rapoport | Nov 1993 | A |
5271411 | Ripley et al. | Dec 1993 | A |
5273532 | Niezink et al. | Dec 1993 | A |
5282840 | Hudrlik | Feb 1994 | A |
5291013 | Nafarrate et al. | Mar 1994 | A |
5297556 | Shankar | Mar 1994 | A |
5301677 | Hsung | Apr 1994 | A |
5319363 | Welch et al. | Jun 1994 | A |
5331966 | Bennett et al. | Jul 1994 | A |
5335664 | Nagashima | Aug 1994 | A |
5343869 | Pross et al. | Sep 1994 | A |
5353793 | Bornn | Oct 1994 | A |
5362069 | Hall-Tipping | Nov 1994 | A |
5375604 | Kelly et al. | Dec 1994 | A |
5411530 | Akhtar | May 1995 | A |
5437285 | Verrier et al. | Aug 1995 | A |
5443073 | Wang et al. | Aug 1995 | A |
5450845 | Axelgaard | Sep 1995 | A |
5454377 | Dzwonczyk et al. | Oct 1995 | A |
5464012 | Falcone | Nov 1995 | A |
5469859 | Tsoglin et al. | Nov 1995 | A |
5482036 | Diab et al. | Jan 1996 | A |
5496361 | Moberg et al. | Mar 1996 | A |
5503157 | Sramek | Apr 1996 | A |
5511548 | Riazzi et al. | Apr 1996 | A |
5511553 | Segalowitz | Apr 1996 | A |
5518001 | Snell | May 1996 | A |
5523742 | Simkins et al. | Jun 1996 | A |
5529072 | Sramek | Jun 1996 | A |
5544661 | Davis et al. | Aug 1996 | A |
5558638 | Evers et al. | Sep 1996 | A |
5560368 | Berger | Oct 1996 | A |
5564429 | Bornn et al. | Oct 1996 | A |
5564434 | Halperin et al. | Oct 1996 | A |
5566671 | Lyons | Oct 1996 | A |
5575284 | Athan et al. | Nov 1996 | A |
5607454 | Cameron et al. | Mar 1997 | A |
5632272 | Diab et al. | May 1997 | A |
5634468 | Platt et al. | Jun 1997 | A |
5642734 | Ruben et al. | Jul 1997 | A |
5673704 | Marchlinski et al. | Oct 1997 | A |
5678562 | Sellers | Oct 1997 | A |
5687717 | Halpern et al. | Nov 1997 | A |
5710376 | Weber | Jan 1998 | A |
5718234 | Warden et al. | Feb 1998 | A |
5724025 | Tavori | Mar 1998 | A |
5738107 | Martinsen et al. | Apr 1998 | A |
5748103 | Flach et al. | May 1998 | A |
5767791 | Stoop et al. | Jun 1998 | A |
5769793 | Pincus et al. | Jun 1998 | A |
5772508 | Sugita et al. | Jun 1998 | A |
5772586 | Heinonen et al. | Jun 1998 | A |
5778882 | Raymond et al. | Jul 1998 | A |
5788643 | Feldman | Aug 1998 | A |
5788682 | Maget | Aug 1998 | A |
5803915 | Kremenchugsky et al. | Sep 1998 | A |
5807272 | Kun et al. | Sep 1998 | A |
5814079 | Kieval et al. | Sep 1998 | A |
5817035 | Sullivan | Oct 1998 | A |
5833603 | Kovacs et al. | Nov 1998 | A |
5836990 | Li | Nov 1998 | A |
5855614 | Stevens et al. | Jan 1999 | A |
5860860 | Clayman | Jan 1999 | A |
5862802 | Bird | Jan 1999 | A |
5862803 | Besson et al. | Jan 1999 | A |
5865733 | Malinouskas et al. | Feb 1999 | A |
5876353 | Riff | Mar 1999 | A |
5904708 | Goedeke | May 1999 | A |
5935079 | Swanson et al. | Aug 1999 | A |
5941831 | Turcott | Aug 1999 | A |
5944659 | Flach et al. | Aug 1999 | A |
5949636 | Johnson et al. | Sep 1999 | A |
5957854 | Besson et al. | Sep 1999 | A |
5957861 | Combs et al. | Sep 1999 | A |
5964703 | Goodman et al. | Oct 1999 | A |
5970986 | Bolz et al. | Oct 1999 | A |
5984102 | Tay | Nov 1999 | A |
5987352 | Klein et al. | Nov 1999 | A |
6007532 | Netherly | Dec 1999 | A |
6027523 | Schmieding | Feb 2000 | A |
6045513 | Stone et al. | Apr 2000 | A |
6047203 | Sackner et al. | Apr 2000 | A |
6047259 | Campbell et al. | Apr 2000 | A |
6049730 | Kristbjarnarson | Apr 2000 | A |
6050267 | Nardella et al. | Apr 2000 | A |
6050951 | Friedman et al. | Apr 2000 | A |
6052615 | Feild et al. | Apr 2000 | A |
6067467 | John | May 2000 | A |
6080106 | Lloyd et al. | Jun 2000 | A |
6081735 | Diab et al. | Jun 2000 | A |
6095991 | Krausman et al. | Aug 2000 | A |
6102856 | Groff et al. | Aug 2000 | A |
6104949 | Pitts Crick et al. | Aug 2000 | A |
6112224 | Peifer et al. | Aug 2000 | A |
6117077 | Del Mar et al. | Sep 2000 | A |
6125297 | Siconolfi | Sep 2000 | A |
6129744 | Boute | Oct 2000 | A |
6141575 | Price | Oct 2000 | A |
6144878 | Schroeppel et al. | Nov 2000 | A |
6164284 | Schulman et al. | Dec 2000 | A |
6181963 | Chin et al. | Jan 2001 | B1 |
6185452 | Schulman et al. | Feb 2001 | B1 |
6190313 | Hinkle | Feb 2001 | B1 |
6190324 | Kieval et al. | Feb 2001 | B1 |
6198394 | Jacobsen et al. | Mar 2001 | B1 |
6198955 | Axelgaard et al. | Mar 2001 | B1 |
6208894 | Schulman et al. | Mar 2001 | B1 |
6212427 | Hoover | Apr 2001 | B1 |
6213942 | Flach et al. | Apr 2001 | B1 |
6225901 | Kail, IV | May 2001 | B1 |
6245021 | Stampfer | Jun 2001 | B1 |
6259939 | Rogel | Jul 2001 | B1 |
6267730 | Pacunas | Jul 2001 | B1 |
6272377 | Sweeney et al. | Aug 2001 | B1 |
6277078 | Porat et al. | Aug 2001 | B1 |
6287252 | Lugo | Sep 2001 | B1 |
6289238 | Besson et al. | Sep 2001 | B1 |
6290646 | Cosentino et al. | Sep 2001 | B1 |
6295466 | Ishikawa et al. | Sep 2001 | B1 |
6305943 | Pougatchev et al. | Oct 2001 | B1 |
6306088 | Krausman et al. | Oct 2001 | B1 |
6308094 | Shusterman et al. | Oct 2001 | B1 |
6312378 | Bardy | Nov 2001 | B1 |
6315721 | Schulman et al. | Nov 2001 | B2 |
6327487 | Stratbucker | Dec 2001 | B1 |
6330464 | Colvin et al. | Dec 2001 | B1 |
6336903 | Bardy | Jan 2002 | B1 |
6339722 | Heethaar et al. | Jan 2002 | B1 |
6343140 | Brooks | Jan 2002 | B1 |
6347245 | Lee et al. | Feb 2002 | B1 |
6358208 | Lang et al. | Mar 2002 | B1 |
6385473 | Haines et al. | May 2002 | B1 |
6398727 | Bui et al. | Jun 2002 | B1 |
6400982 | Sweeney et al. | Jun 2002 | B2 |
6409674 | Brockway et al. | Jun 2002 | B1 |
6411853 | Millot et al. | Jun 2002 | B1 |
6416471 | Kumar et al. | Jul 2002 | B1 |
6440069 | Raymond et al. | Aug 2002 | B1 |
6442422 | Duckert | Aug 2002 | B1 |
6450820 | Palsson et al. | Sep 2002 | B1 |
6450953 | Place et al. | Sep 2002 | B1 |
6453186 | Lovejoy et al. | Sep 2002 | B1 |
6454707 | Casscells, III et al. | Sep 2002 | B1 |
6454708 | Ferguson et al. | Sep 2002 | B1 |
6459930 | Takehara et al. | Oct 2002 | B1 |
6463328 | John | Oct 2002 | B1 |
6473640 | Erlebacher | Oct 2002 | B1 |
6480733 | Turcott | Nov 2002 | B1 |
6480734 | Zhang et al. | Nov 2002 | B1 |
6485461 | Mason et al. | Nov 2002 | B1 |
6490478 | Zhang et al. | Dec 2002 | B1 |
6491647 | Bridger et al. | Dec 2002 | B1 |
6494829 | New, Jr. et al. | Dec 2002 | B1 |
6496715 | Lee et al. | Dec 2002 | B1 |
6512949 | Combs et al. | Jan 2003 | B1 |
6520967 | Cauthen | Feb 2003 | B1 |
6527711 | Stivoric et al. | Mar 2003 | B1 |
6527729 | Turcott | Mar 2003 | B1 |
6528960 | Roden et al. | Mar 2003 | B1 |
6544173 | West et al. | Apr 2003 | B2 |
6544174 | West et al. | Apr 2003 | B2 |
6551251 | Zuckerwar et al. | Apr 2003 | B2 |
6551252 | Sackner et al. | Apr 2003 | B2 |
6569160 | Goldin et al. | May 2003 | B1 |
6572557 | Tchou et al. | Jun 2003 | B2 |
6572636 | Hagen et al. | Jun 2003 | B1 |
6577139 | Cooper | Jun 2003 | B2 |
6577893 | Besson et al. | Jun 2003 | B1 |
6577897 | Shurubura et al. | Jun 2003 | B1 |
6579231 | Phipps | Jun 2003 | B1 |
6580942 | Willshire | Jun 2003 | B1 |
6584343 | Ransbury et al. | Jun 2003 | B1 |
6587715 | Singer | Jul 2003 | B2 |
6589170 | Flach et al. | Jul 2003 | B1 |
6595927 | Pitts-Crick et al. | Jul 2003 | B2 |
6595929 | Stivoric et al. | Jul 2003 | B2 |
6600949 | Turcott | Jul 2003 | B1 |
6602201 | Hepp et al. | Aug 2003 | B1 |
6605038 | Teller et al. | Aug 2003 | B1 |
6611705 | Hopman et al. | Aug 2003 | B2 |
6611783 | Kelly et al. | Aug 2003 | B2 |
6616606 | Petersen et al. | Sep 2003 | B1 |
6622042 | Thacker | Sep 2003 | B1 |
6636754 | Baura et al. | Oct 2003 | B1 |
6641542 | Cho et al. | Nov 2003 | B2 |
6645153 | Kroll et al. | Nov 2003 | B2 |
6649829 | Garber et al. | Nov 2003 | B2 |
6650917 | Diab et al. | Nov 2003 | B2 |
6658300 | Govari et al. | Dec 2003 | B2 |
6659947 | Carter et al. | Dec 2003 | B1 |
6659949 | Lang et al. | Dec 2003 | B1 |
6687540 | Marcovecchio | Feb 2004 | B2 |
6697658 | Al-Ali | Feb 2004 | B2 |
RE38476 | Diab et al. | Mar 2004 | E |
6699200 | Cao et al. | Mar 2004 | B2 |
6701271 | Willner et al. | Mar 2004 | B2 |
6714813 | Ishigooka et al. | Mar 2004 | B2 |
RE38492 | Diab et al. | Apr 2004 | E |
6721594 | Conley et al. | Apr 2004 | B2 |
6728572 | Hsu et al. | Apr 2004 | B2 |
6748269 | Thompson et al. | Jun 2004 | B2 |
6749566 | Russ | Jun 2004 | B2 |
6751498 | Greenberg et al. | Jun 2004 | B1 |
6760617 | Ward et al. | Jul 2004 | B2 |
6773396 | Flach et al. | Aug 2004 | B2 |
6775566 | Nissila | Aug 2004 | B2 |
6790178 | Mault et al. | Sep 2004 | B1 |
6795722 | Sheraton et al. | Sep 2004 | B2 |
6814706 | Barton et al. | Nov 2004 | B2 |
6816744 | Garfield et al. | Nov 2004 | B2 |
6821249 | Casscells, III et al. | Nov 2004 | B2 |
6824515 | Suorsa et al. | Nov 2004 | B2 |
6827690 | Bardy | Dec 2004 | B2 |
6829503 | Alt | Dec 2004 | B2 |
6858006 | MacCarter et al. | Feb 2005 | B2 |
6871211 | Labounty et al. | Mar 2005 | B2 |
6878121 | Krausman et al. | Apr 2005 | B2 |
6879850 | Kimball | Apr 2005 | B2 |
6881191 | Oakley et al. | Apr 2005 | B2 |
6887201 | Bardy | May 2005 | B2 |
6890096 | Tokita et al. | May 2005 | B2 |
6893396 | Schulze et al. | May 2005 | B2 |
6894204 | Dunshee | May 2005 | B2 |
6906530 | Geisel | Jun 2005 | B2 |
6912414 | Tong | Jun 2005 | B2 |
6936006 | Sabra | Aug 2005 | B2 |
6940403 | Kail, IV | Sep 2005 | B2 |
6942622 | Turcott | Sep 2005 | B1 |
6952695 | Trinks et al. | Oct 2005 | B1 |
6970742 | Mann et al. | Nov 2005 | B2 |
6972683 | Lestienne et al. | Dec 2005 | B2 |
6978177 | Chen et al. | Dec 2005 | B1 |
6980851 | Zhu et al. | Dec 2005 | B2 |
6980852 | Jersey-Willuhn et al. | Dec 2005 | B2 |
5449000 | Kennedy | Jan 2006 | A1 |
6985078 | Suzuki et al. | Jan 2006 | B2 |
6987965 | Ng et al. | Jan 2006 | B2 |
6988989 | Weiner et al. | Jan 2006 | B2 |
6993378 | Wiederhold et al. | Jan 2006 | B2 |
6997879 | Turcott | Feb 2006 | B1 |
7003346 | Singer | Feb 2006 | B2 |
7009362 | Tsukamoto et al. | Mar 2006 | B2 |
7010340 | Scarantino et al. | Mar 2006 | B2 |
7018338 | Vetter et al. | Mar 2006 | B2 |
7020508 | Stivoric et al. | Mar 2006 | B2 |
7027862 | Dahl et al. | Apr 2006 | B2 |
7041062 | Friedrichs et al. | May 2006 | B2 |
7044911 | Drinan et al. | May 2006 | B2 |
7047067 | Gray et al. | May 2006 | B2 |
7050846 | Sweeney et al. | May 2006 | B2 |
7054679 | Hirsh | May 2006 | B2 |
7059767 | Tokita et al. | Jun 2006 | B2 |
7088242 | Aupperle et al. | Aug 2006 | B2 |
7113826 | Henry et al. | Sep 2006 | B2 |
7118531 | Krill | Oct 2006 | B2 |
7127370 | Kelly, Jr. et al. | Oct 2006 | B2 |
7129836 | Lawson et al. | Oct 2006 | B2 |
7130396 | Rogers et al. | Oct 2006 | B2 |
7130679 | Parsonnet et al. | Oct 2006 | B2 |
7133716 | Kraemer et al. | Nov 2006 | B2 |
7136697 | Singer | Nov 2006 | B2 |
7136703 | Cappa et al. | Nov 2006 | B1 |
7142907 | Xue et al. | Nov 2006 | B2 |
7149574 | Yun et al. | Dec 2006 | B2 |
7149773 | Haller et al. | Dec 2006 | B2 |
7153262 | Stivoric et al. | Dec 2006 | B2 |
7156807 | Carter et al. | Jan 2007 | B2 |
7156808 | Quy | Jan 2007 | B2 |
7160252 | Cho et al. | Jan 2007 | B2 |
7160253 | Nissila | Jan 2007 | B2 |
7166063 | Rahman et al. | Jan 2007 | B2 |
7167743 | Heruth et al. | Jan 2007 | B2 |
7184821 | Belalcazar et al. | Feb 2007 | B2 |
7191000 | Zhu et al. | Mar 2007 | B2 |
7194306 | Turcott | Mar 2007 | B1 |
7206630 | Tarler | Apr 2007 | B1 |
7212849 | Zhang et al. | May 2007 | B2 |
7215984 | Diab et al. | May 2007 | B2 |
7215991 | Besson et al. | May 2007 | B2 |
7238159 | Banet et al. | Jul 2007 | B2 |
7248916 | Bardy | Jul 2007 | B2 |
7251524 | Hepp et al. | Jul 2007 | B1 |
7257438 | Kinast | Aug 2007 | B2 |
7261690 | Teller et al. | Aug 2007 | B2 |
7277741 | Debreczeny et al. | Oct 2007 | B2 |
7284904 | Tokita et al. | Oct 2007 | B2 |
7285090 | Stivoric et al. | Oct 2007 | B2 |
7294105 | Islam | Nov 2007 | B1 |
7295879 | Denker et al. | Nov 2007 | B2 |
7297119 | Westbrook et al. | Nov 2007 | B2 |
7318808 | Tarassenko et al. | Jan 2008 | B2 |
7319386 | Collins, Jr. et al. | Jan 2008 | B2 |
7336187 | Hubbard, Jr. et al. | Feb 2008 | B2 |
7346380 | Axelgaard et al. | Mar 2008 | B2 |
7382247 | Welch et al. | Jun 2008 | B2 |
7384398 | Gagnadre et al. | Jun 2008 | B2 |
7390299 | Weiner et al. | Jun 2008 | B2 |
7395106 | Ryu et al. | Jul 2008 | B2 |
7423526 | Despotis | Sep 2008 | B2 |
7423537 | Bonnet et al. | Sep 2008 | B2 |
7443302 | Reeder et al. | Oct 2008 | B2 |
7450024 | Wildman et al. | Nov 2008 | B2 |
7468032 | Stahmann et al. | Dec 2008 | B2 |
7510699 | Black et al. | Mar 2009 | B2 |
7660632 | Kirby et al. | Feb 2010 | B2 |
7701227 | Saulnier et al. | Apr 2010 | B2 |
7813778 | Benaron et al. | Oct 2010 | B2 |
7881763 | Brauker et al. | Feb 2011 | B2 |
7942824 | Kayyali et al. | May 2011 | B1 |
8116841 | Bly et al. | Feb 2012 | B2 |
20010047127 | New, Jr. et al. | Nov 2001 | A1 |
20020004640 | Conn et al. | Jan 2002 | A1 |
20020019586 | Teller et al. | Feb 2002 | A1 |
20020019588 | Marro et al. | Feb 2002 | A1 |
20020028989 | Pelletier et al. | Mar 2002 | A1 |
20020032581 | Reitberg | Mar 2002 | A1 |
20020045836 | Alkawwas | Apr 2002 | A1 |
20020088465 | Hill | Jul 2002 | A1 |
20020099277 | Harry et al. | Jul 2002 | A1 |
20020116009 | Fraser et al. | Aug 2002 | A1 |
20020123672 | Christophersom et al. | Sep 2002 | A1 |
20020123674 | Plicchi et al. | Sep 2002 | A1 |
20020138017 | Bui et al. | Sep 2002 | A1 |
20020167389 | Uchikoba et al. | Nov 2002 | A1 |
20020182485 | Anderson et al. | Dec 2002 | A1 |
20030009092 | Parker | Jan 2003 | A1 |
20030023184 | Pitts-Crick et al. | Jan 2003 | A1 |
20030028221 | Zhu et al. | Feb 2003 | A1 |
20030028321 | Upadhyaya et al. | Feb 2003 | A1 |
20030045922 | Northrop | Mar 2003 | A1 |
20030051144 | Williams | Mar 2003 | A1 |
20030055460 | Owen et al. | Mar 2003 | A1 |
20030069510 | Semler | Apr 2003 | A1 |
20030083581 | Taha et al. | May 2003 | A1 |
20030085717 | Cooper | May 2003 | A1 |
20030087244 | McCarthy | May 2003 | A1 |
20030092975 | Casscells, III et al. | May 2003 | A1 |
20030093125 | Zhu et al. | May 2003 | A1 |
20030093298 | Hernandez et al. | May 2003 | A1 |
20030100367 | Cooke | May 2003 | A1 |
20030105411 | Smallwood et al. | Jun 2003 | A1 |
20030135127 | Sackner et al. | Jul 2003 | A1 |
20030143544 | McCarthy | Jul 2003 | A1 |
20030149349 | Jensen | Aug 2003 | A1 |
20030181815 | Ebner et al. | Sep 2003 | A1 |
20030187370 | Kodama | Oct 2003 | A1 |
20030191503 | Zhu et al. | Oct 2003 | A1 |
20030212319 | Magill | Nov 2003 | A1 |
20030221687 | Kaigler | Dec 2003 | A1 |
20030233129 | Matos | Dec 2003 | A1 |
20040006279 | Arad | Jan 2004 | A1 |
20040010303 | Bolea et al. | Jan 2004 | A1 |
20040014422 | Kallio | Jan 2004 | A1 |
20040015058 | Besson et al. | Jan 2004 | A1 |
20040019292 | Drinan et al. | Jan 2004 | A1 |
20040044293 | Burton | Mar 2004 | A1 |
20040049132 | Barron et al. | Mar 2004 | A1 |
20040064133 | Miller et al. | Apr 2004 | A1 |
20040073094 | Baker | Apr 2004 | A1 |
20040073126 | Rowlandson | Apr 2004 | A1 |
20040077954 | Oakley et al. | Apr 2004 | A1 |
20040100376 | Lye et al. | May 2004 | A1 |
20040102683 | Khanuja et al. | May 2004 | A1 |
20040106951 | Edman et al. | Jun 2004 | A1 |
20040122489 | Mazar et al. | Jun 2004 | A1 |
20040127790 | Lang et al. | Jul 2004 | A1 |
20040133079 | Mazar et al. | Jul 2004 | A1 |
20040133081 | Teller et al. | Jul 2004 | A1 |
20040134496 | Cho et al. | Jul 2004 | A1 |
20040143170 | DuRousseau | Jul 2004 | A1 |
20040147969 | Mann et al. | Jul 2004 | A1 |
20040152956 | Korman | Aug 2004 | A1 |
20040158132 | Zaleski | Aug 2004 | A1 |
20040167389 | Brabrand | Aug 2004 | A1 |
20040172080 | Stadler et al. | Sep 2004 | A1 |
20040199056 | Husemann et al. | Oct 2004 | A1 |
20040215240 | Lovett et al. | Oct 2004 | A1 |
20040215247 | Bolz | Oct 2004 | A1 |
20040220639 | Mulligan et al. | Nov 2004 | A1 |
20040225199 | Evanyk et al. | Nov 2004 | A1 |
20040225203 | Jemison et al. | Nov 2004 | A1 |
20040243018 | Organ et al. | Dec 2004 | A1 |
20040267142 | Paul | Dec 2004 | A1 |
20050004506 | Gyory | Jan 2005 | A1 |
20050015094 | Keller | Jan 2005 | A1 |
20050015095 | Keller | Jan 2005 | A1 |
20050020935 | Helzel et al. | Jan 2005 | A1 |
20050027175 | Yang | Feb 2005 | A1 |
20050027204 | Kligfield et al. | Feb 2005 | A1 |
20050027207 | Westbrook et al. | Feb 2005 | A1 |
20050027918 | Govindarajulu et al. | Feb 2005 | A1 |
20050043675 | Pastore et al. | Feb 2005 | A1 |
20050054944 | Nakada et al. | Mar 2005 | A1 |
20050059867 | Cheng | Mar 2005 | A1 |
20050065445 | Arzbaecher et al. | Mar 2005 | A1 |
20050065571 | Imran | Mar 2005 | A1 |
20050070768 | Zhu et al. | Mar 2005 | A1 |
20050070778 | Lackey et al. | Mar 2005 | A1 |
20050080346 | Gianchandani et al. | Apr 2005 | A1 |
20050080460 | Wang et al. | Apr 2005 | A1 |
20050080463 | Stahmann et al. | Apr 2005 | A1 |
20050085734 | Tehrani | Apr 2005 | A1 |
20050091338 | de la Huerga | Apr 2005 | A1 |
20050096513 | Ozguz et al. | May 2005 | A1 |
20050113703 | Farringdon et al. | May 2005 | A1 |
20050124878 | Sharony | Jun 2005 | A1 |
20050124901 | Misczynski et al. | Jun 2005 | A1 |
20050124908 | Belalcazar et al. | Jun 2005 | A1 |
20050131288 | Turner et al. | Jun 2005 | A1 |
20050137464 | Bomba | Jun 2005 | A1 |
20050137626 | Pastore et al. | Jun 2005 | A1 |
20050148895 | Misczynski et al. | Jul 2005 | A1 |
20050158539 | Murphy et al. | Jul 2005 | A1 |
20050177038 | Kolpin et al. | Aug 2005 | A1 |
20050187482 | O'Brien et al. | Aug 2005 | A1 |
20050187796 | Rosenfeld et al. | Aug 2005 | A1 |
20050192488 | Bryenton et al. | Sep 2005 | A1 |
20050197654 | Edman et al. | Sep 2005 | A1 |
20050203433 | Singer | Sep 2005 | A1 |
20050203435 | Nakada | Sep 2005 | A1 |
20050203436 | Davies | Sep 2005 | A1 |
20050203637 | Edman et al. | Sep 2005 | A1 |
20050206518 | Welch et al. | Sep 2005 | A1 |
20050215914 | Bornzin et al. | Sep 2005 | A1 |
20050215918 | Frantz et al. | Sep 2005 | A1 |
20050228234 | Yang | Oct 2005 | A1 |
20050228238 | Monitzer | Oct 2005 | A1 |
20050228244 | Banet | Oct 2005 | A1 |
20050239493 | Batkin et al. | Oct 2005 | A1 |
20050240087 | Keenan et al. | Oct 2005 | A1 |
20050251044 | Hoctor et al. | Nov 2005 | A1 |
20050256418 | Mietus et al. | Nov 2005 | A1 |
20050261598 | Banet et al. | Nov 2005 | A1 |
20050261743 | Kroll | Nov 2005 | A1 |
20050267376 | Marossero et al. | Dec 2005 | A1 |
20050267377 | Marossero et al. | Dec 2005 | A1 |
20050267381 | Benditt et al. | Dec 2005 | A1 |
20050273023 | Bystrom et al. | Dec 2005 | A1 |
20050277841 | Shennib | Dec 2005 | A1 |
20050277842 | Silva | Dec 2005 | A1 |
20050277992 | Koh et al. | Dec 2005 | A1 |
20050280531 | Fadem et al. | Dec 2005 | A1 |
20050283197 | Daum et al. | Dec 2005 | A1 |
20050288601 | Wood et al. | Dec 2005 | A1 |
20060004300 | Kennedy | Jan 2006 | A1 |
20060004377 | Keller | Jan 2006 | A1 |
20060009697 | Banet et al. | Jan 2006 | A1 |
20060009701 | Nissila et al. | Jan 2006 | A1 |
20060010090 | Brockway et al. | Jan 2006 | A1 |
20060020218 | Freeman et al. | Jan 2006 | A1 |
20060025661 | Sweeney et al. | Feb 2006 | A1 |
20060030781 | Shennib | Feb 2006 | A1 |
20060030782 | Shennib | Feb 2006 | A1 |
20060031102 | Teller et al. | Feb 2006 | A1 |
20060041280 | Stahmann et al. | Feb 2006 | A1 |
20060047215 | Newman et al. | Mar 2006 | A1 |
20060052678 | Drinan et al. | Mar 2006 | A1 |
20060058543 | Walter et al. | Mar 2006 | A1 |
20060058593 | Drinan et al. | Mar 2006 | A1 |
20060064030 | Cosentino et al. | Mar 2006 | A1 |
20060064040 | Berger et al. | Mar 2006 | A1 |
20060064142 | Chavan et al. | Mar 2006 | A1 |
20060066449 | Johnson | Mar 2006 | A1 |
20060074283 | Henderson et al. | Apr 2006 | A1 |
20060074462 | Verhoef | Apr 2006 | A1 |
20060075257 | Martis et al. | Apr 2006 | A1 |
20060084881 | Korzinov et al. | Apr 2006 | A1 |
20060085049 | Cory et al. | Apr 2006 | A1 |
20060089679 | Zhu et al. | Apr 2006 | A1 |
20060094948 | Gough et al. | May 2006 | A1 |
20060102476 | Niwa et al. | May 2006 | A1 |
20060116592 | Zhou et al. | Jun 2006 | A1 |
20060122474 | Teller et al. | Jun 2006 | A1 |
20060135858 | Nidd et al. | Jun 2006 | A1 |
20060142654 | Rytky | Jun 2006 | A1 |
20060142820 | Von Arx et al. | Jun 2006 | A1 |
20060149168 | Czarnek | Jul 2006 | A1 |
20060155174 | Glukhovsky et al. | Jul 2006 | A1 |
20060155183 | Kroecker et al. | Jul 2006 | A1 |
20060155200 | Ng | Jul 2006 | A1 |
20060161073 | Singer | Jul 2006 | A1 |
20060161205 | Mitrani et al. | Jul 2006 | A1 |
20060161459 | Rosenfeld et al. | Jul 2006 | A9 |
20060167374 | Takehara et al. | Jul 2006 | A1 |
20060173257 | Nagai et al. | Aug 2006 | A1 |
20060173269 | Glossop | Aug 2006 | A1 |
20060195020 | Martin et al. | Aug 2006 | A1 |
20060195039 | Drew et al. | Aug 2006 | A1 |
20060195097 | Evans et al. | Aug 2006 | A1 |
20060195144 | Giftakis et al. | Aug 2006 | A1 |
20060202816 | Crump et al. | Sep 2006 | A1 |
20060212097 | Varadan et al. | Sep 2006 | A1 |
20060224051 | Teller et al. | Oct 2006 | A1 |
20060224072 | Shennib | Oct 2006 | A1 |
20060224079 | Washchuk | Oct 2006 | A1 |
20060235281 | Tuccillo | Oct 2006 | A1 |
20060235316 | Ungless et al. | Oct 2006 | A1 |
20060235489 | Drew et al. | Oct 2006 | A1 |
20060241641 | Albans et al. | Oct 2006 | A1 |
20060241701 | Markowitz et al. | Oct 2006 | A1 |
20060241722 | Thacker et al. | Oct 2006 | A1 |
20060247545 | St. Martin | Nov 2006 | A1 |
20060252999 | Devaul et al. | Nov 2006 | A1 |
20060253005 | Drinan et al. | Nov 2006 | A1 |
20060253044 | Zhang et al. | Nov 2006 | A1 |
20060258952 | Stahmann et al. | Nov 2006 | A1 |
20060264730 | Stivoric et al. | Nov 2006 | A1 |
20060264767 | Shennib | Nov 2006 | A1 |
20060264776 | Stahmann et al. | Nov 2006 | A1 |
20060271116 | Stahmann et al. | Nov 2006 | A1 |
20060276714 | Holt et al. | Dec 2006 | A1 |
20060281981 | Jang et al. | Dec 2006 | A1 |
20060281996 | Kuo et al. | Dec 2006 | A1 |
20060293571 | Bao et al. | Dec 2006 | A1 |
20060293609 | Stahmann et al. | Dec 2006 | A1 |
20070010721 | Chen et al. | Jan 2007 | A1 |
20070010750 | Ueno et al. | Jan 2007 | A1 |
20070015973 | Nanikashvili | Jan 2007 | A1 |
20070015976 | Miesel et al. | Jan 2007 | A1 |
20070016089 | Fischell et al. | Jan 2007 | A1 |
20070021678 | Beck et al. | Jan 2007 | A1 |
20070021790 | Kieval et al. | Jan 2007 | A1 |
20070021792 | Kieval et al. | Jan 2007 | A1 |
20070021794 | Kieval et al. | Jan 2007 | A1 |
20070021796 | Kieval et al. | Jan 2007 | A1 |
20070021797 | Kieval et al. | Jan 2007 | A1 |
20070021798 | Kieval et al. | Jan 2007 | A1 |
20070021799 | Kieval et al. | Jan 2007 | A1 |
20070027388 | Chou | Feb 2007 | A1 |
20070027497 | Parnis | Feb 2007 | A1 |
20070032749 | Overall et al. | Feb 2007 | A1 |
20070038038 | Stivoric et al. | Feb 2007 | A1 |
20070038078 | Osadchy | Feb 2007 | A1 |
20070038255 | Kieval et al. | Feb 2007 | A1 |
20070038262 | Kieval et al. | Feb 2007 | A1 |
20070043301 | Martinsen et al. | Feb 2007 | A1 |
20070043303 | Osypka et al. | Feb 2007 | A1 |
20070048224 | Howell et al. | Mar 2007 | A1 |
20070060800 | Drinan et al. | Mar 2007 | A1 |
20070060802 | Ghevondian et al. | Mar 2007 | A1 |
20070073132 | Vosch | Mar 2007 | A1 |
20070073168 | Zhang et al. | Mar 2007 | A1 |
20070073181 | Pu et al. | Mar 2007 | A1 |
20070073361 | Goren et al. | Mar 2007 | A1 |
20070082189 | Gillette | Apr 2007 | A1 |
20070083092 | Rippo et al. | Apr 2007 | A1 |
20070092862 | Gerber | Apr 2007 | A1 |
20070104840 | Singer | May 2007 | A1 |
20070106132 | Elhag et al. | May 2007 | A1 |
20070106137 | Baker, Jr. et al. | May 2007 | A1 |
20070106167 | Kinast | May 2007 | A1 |
20070118039 | Bodecker et al. | May 2007 | A1 |
20070123756 | Kitajima et al. | May 2007 | A1 |
20070123903 | Raymond et al. | May 2007 | A1 |
20070123904 | Stad et al. | May 2007 | A1 |
20070129622 | Bourget et al. | Jun 2007 | A1 |
20070129643 | Kwok et al. | Jun 2007 | A1 |
20070129769 | Bourget et al. | Jun 2007 | A1 |
20070142715 | Banet et al. | Jun 2007 | A1 |
20070142732 | Brockway et al. | Jun 2007 | A1 |
20070149282 | Lu et al. | Jun 2007 | A1 |
20070150008 | Jones et al. | Jun 2007 | A1 |
20070150009 | Kveen et al. | Jun 2007 | A1 |
20070150029 | Bourget et al. | Jun 2007 | A1 |
20070162089 | Mosesov | Jul 2007 | A1 |
20070167753 | Van Wyk et al. | Jul 2007 | A1 |
20070167848 | Kuo et al. | Jul 2007 | A1 |
20070167849 | Zhang et al. | Jul 2007 | A1 |
20070167850 | Russell et al. | Jul 2007 | A1 |
20070172424 | Roser | Jul 2007 | A1 |
20070173705 | Teller et al. | Jul 2007 | A1 |
20070180047 | Dong et al. | Aug 2007 | A1 |
20070180140 | Welch et al. | Aug 2007 | A1 |
20070191723 | Prystowsky et al. | Aug 2007 | A1 |
20070207858 | Breving | Sep 2007 | A1 |
20070208233 | Kovacs | Sep 2007 | A1 |
20070208235 | Besson et al. | Sep 2007 | A1 |
20070208262 | Kovacs | Sep 2007 | A1 |
20070232867 | Hansmann | Oct 2007 | A1 |
20070244403 | Natarajan et al. | Oct 2007 | A1 |
20070249946 | Kumar et al. | Oct 2007 | A1 |
20070250121 | Miesel et al. | Oct 2007 | A1 |
20070255120 | Rosnov | Nov 2007 | A1 |
20070255153 | Kumar et al. | Nov 2007 | A1 |
20070255184 | Shennib | Nov 2007 | A1 |
20070255531 | Drew | Nov 2007 | A1 |
20070260133 | Meyer | Nov 2007 | A1 |
20070260155 | Rapoport et al. | Nov 2007 | A1 |
20070260289 | Giftakis et al. | Nov 2007 | A1 |
20070270678 | Fadem et al. | Nov 2007 | A1 |
20070273504 | Tran | Nov 2007 | A1 |
20070276273 | Watson, Jr | Nov 2007 | A1 |
20070282173 | Wang et al. | Dec 2007 | A1 |
20070299325 | Farrell et al. | Dec 2007 | A1 |
20080004499 | Davis | Jan 2008 | A1 |
20080004904 | Tran | Jan 2008 | A1 |
20080021336 | Dobak | Jan 2008 | A1 |
20080024293 | Stylos | Jan 2008 | A1 |
20080024294 | Mazar | Jan 2008 | A1 |
20080033260 | Sheppard et al. | Feb 2008 | A1 |
20080039700 | Drinan et al. | Feb 2008 | A1 |
20080058614 | Banet et al. | Mar 2008 | A1 |
20080058656 | Costello et al. | Mar 2008 | A1 |
20080059239 | Gerst et al. | Mar 2008 | A1 |
20080091089 | Guillory et al. | Apr 2008 | A1 |
20080114220 | Banet et al. | May 2008 | A1 |
20080120784 | Warner et al. | May 2008 | A1 |
20080139934 | McMorrow et al. | Jun 2008 | A1 |
20080146892 | LeBoeuf et al. | Jun 2008 | A1 |
20080167538 | Teller et al. | Jul 2008 | A1 |
20080171918 | Teller et al. | Jul 2008 | A1 |
20080171922 | Teller et al. | Jul 2008 | A1 |
20080171929 | Katims | Jul 2008 | A1 |
20080183052 | Teller et al. | Jul 2008 | A1 |
20080200774 | Luo | Aug 2008 | A1 |
20080214903 | Orbach | Sep 2008 | A1 |
20080220865 | Hsu | Sep 2008 | A1 |
20080221399 | Zhou et al. | Sep 2008 | A1 |
20080221402 | Despotis | Sep 2008 | A1 |
20080224852 | Dicks et al. | Sep 2008 | A1 |
20080228084 | Bedard et al. | Sep 2008 | A1 |
20080275465 | Paul et al. | Nov 2008 | A1 |
20080287751 | Stivoric et al. | Nov 2008 | A1 |
20080287752 | Stroetz et al. | Nov 2008 | A1 |
20080293491 | Wu et al. | Nov 2008 | A1 |
20080294019 | Tran | Nov 2008 | A1 |
20080294020 | Sapounas | Nov 2008 | A1 |
20080318681 | Rofougaran et al. | Dec 2008 | A1 |
20080319279 | Ramsay et al. | Dec 2008 | A1 |
20080319282 | Tran | Dec 2008 | A1 |
20080319290 | Mao et al. | Dec 2008 | A1 |
20090005016 | Eng et al. | Jan 2009 | A1 |
20090018410 | Coene et al. | Jan 2009 | A1 |
20090018456 | Hung | Jan 2009 | A1 |
20090048526 | Aarts | Feb 2009 | A1 |
20090054737 | Magar et al. | Feb 2009 | A1 |
20090062670 | Sterling et al. | Mar 2009 | A1 |
20090073991 | Landrum et al. | Mar 2009 | A1 |
20090076336 | Mazar et al. | Mar 2009 | A1 |
20090076340 | Libbus et al. | Mar 2009 | A1 |
20090076341 | James et al. | Mar 2009 | A1 |
20090076342 | Amurthur et al. | Mar 2009 | A1 |
20090076343 | James et al. | Mar 2009 | A1 |
20090076344 | Libbus et al. | Mar 2009 | A1 |
20090076345 | Manicka et al. | Mar 2009 | A1 |
20090076346 | James et al. | Mar 2009 | A1 |
20090076348 | Manicka et al. | Mar 2009 | A1 |
20090076349 | Libbus et al. | Mar 2009 | A1 |
20090076350 | Bly et al. | Mar 2009 | A1 |
20090076363 | Bly et al. | Mar 2009 | A1 |
20090076364 | Libbus et al. | Mar 2009 | A1 |
20090076397 | Libbus et al. | Mar 2009 | A1 |
20090076401 | Mazar et al. | Mar 2009 | A1 |
20090076405 | Amurthur et al. | Mar 2009 | A1 |
20090076559 | Libbus et al. | Mar 2009 | A1 |
20090177145 | Ohlander et al. | Jul 2009 | A1 |
20090182204 | Semler et al. | Jul 2009 | A1 |
20090234410 | Libbus et al. | Sep 2009 | A1 |
20090292194 | Libbus et al. | Nov 2009 | A1 |
20100056881 | Libbus et al. | Mar 2010 | A1 |
20100191310 | Bly et al. | Jul 2010 | A1 |
20110144470 | Mazar et al. | Jun 2011 | A1 |
Number | Date | Country |
---|---|---|
2003-220574 | Oct 2003 | AU |
1487535 | Dec 2004 | EP |
1579801 | Sep 2005 | EP |
2005-521448 | Jul 2005 | JP |
WO 0079255 | Dec 2000 | WO |
WO 0189362 | Nov 2001 | WO |
WO 02092101 | Nov 2002 | WO |
WO 03082080 | Oct 2003 | WO |
WO 2005051164 | Jun 2005 | WO |
WO 2005104930 | Nov 2005 | WO |
WO 2006008745 | Jan 2006 | WO |
WO 2006102476 | Sep 2006 | WO |
WO 2006111878 | Nov 2006 | WO |
WO 2007041783 | Apr 2007 | WO |
WO 2007106455 | Sep 2007 | WO |
WO 2009116906 | Sep 2009 | WO |
Entry |
---|
Something in the way he moves, The Economist, 2007, retrieved from the Internet: <<http://www.economist.com/science/printerFriendly.cfm?story id=9861412>>. |
Abraham, “New approaches to monitoring heart failure before symptoms appear,” Rev Cardiovasc Med. 2006 ;7 Suppl 1 :33-41. |
Adams, Jr. “Guiding heart failure care by invasive hemodynamic measurements: possible or useful?”, Journal of Cardiac Failure 2002; 8(2):71-73. |
Adamson et al., “Continuous autonomic assessment in patients with symptomatic heart failure: prognostic value of heart rate variability measured by an implanted cardiac resynchronization devices,” Circulation. 2004;110:2389-2394. |
Adamson et al., “Ongoing right ventricular hemodynamics in heart failure,” J Am Coll Cardiol, 2003; 41:565-57. |
Adamson, “Integrating device monitoring into the infrastructure and workflow of routine practice,” Rev Cardiovasc Med. 2006 ;7 Suppl 1:42-6. |
ADVAMED White Sheet, “Health Information Technology: Improving Patient Safety and Quality of Care,” Jun. 2005, 23 pages. |
Aghababian, “Acutely decompensated heart failure: opportunities to improve care and outcomes in the emergency department,” Rev Cardiovasc Med. 2002;3 Suppl 4:S3-9. |
Albert, “Bioimpedance to prevent heart failure hospitalization,” Curr Heart Fail Rep. Sep. 2006;3(3):136-42. |
American Heart Association, “Heart Disease and Stroke Statistics—2006 Update,” 2006, 43 pages. |
American Heart Association, “Heart Disease and Stroke Statistics—2007 Update. A Report From the American Heart Association Statistics Committee and Stroke Statistics Subcommittee,” Circulation 2007; 115;e69-e171. |
Belalcazar et al., “Monitoring lung edema using the pacemaker pulse and skin electrodes,” Physiol. Meas. 2005; 26:S153-S163. |
Bennet, “Development of implantable devices for continuous ambulatory monitoring of central hemodynamic values in heart failure patients,” PACE Jun. 2005; 28:573-584. |
Bourge, “Case studies in advanced monitoring with the chronicle device,” Rev Cardiovasc Med. 2006 ;7 Suppl 1:S56-61. |
Braunschweig, “Continous haemodynamic monitoring during withdrawal of diuretics in patients with congestive heart failure,” European Heart Journal 2002 23(1):59-69. |
Braunschweig, “Dynamic changes in right ventricular pressures during haemodialysis recorded with an implantable haemodynamic monitor,” Nephrol Dial Transplant 2006; 21:176-183. |
Buono et al., “The effect of ambient air temperature on whole-body bioelectrical impedance,” Physiol. Meas. 2004;25:119-123. |
Burkhoff et al., “Heart failure with a normal ejection fraction: Is it really a disorder of diastolic function?” Circulation 2003; 107:656-658. |
Burr et al., “Heart rate variability and 24-hour minimum heart rate,” Biological Research for Nursing, 2006; 7(4):256-267. |
CardioNet, “CardioNet Mobile Cardiac Outpatient Telemetry: Addendum to Patient Education Guide”, CardioNet, Inc., 2007, 2 pages. |
CardioNet, “Patient Education Guide”, CardioNet, Inc., 2007, 7 pages. Undated. |
Charach et al., “Transthoracic monitoring of the impedance of the right lung in patients with cardiogenic pulmonary edema,” Crit Care Med Jun. 2001;29(6):1137-1144. |
Charlson et al., “Can disease management target patients most likely to generate high costs? The Impact of Comorbidity,” Journal of General Internal Medicine, Apr. 2007, 22(4):464-469. |
Chaudhry et al., “Telemonitoring for patients with chronic heart failure: a systematic review,” J Card Fail. Feb. 2007; 13(1): 56-62. |
Chung et al., “White coat hypertension: Not so benign after all?,” Journal of Human Hypertension (2003) 17, 807-809. |
Cleland et al., “The EuroHeart Failure survey programme—a survey on the quality of care among patients with heart failure in Europe—Part 1: patient characteristics and diagnosis,” European Heart Journal 2003 24(5):442-463. |
Cowie et al., “Hospitalization of patients with heart failure. A population-based study,” European Heart Journal 2002 23(11):877-885. |
Dimri, Chapter 1: Fractals in geophysics and seimology: an introduction, Fractal Behaviour of the Earth System, Springer Berlin Heidelberg 2005, pp. 1-22. [Summary and 1st page Only]. |
El-Dawlatly et al., “Impedance cardiography: noninvasive assessment of hemodynamics and thoracic fluid content during bariatric surgery,” Obesity Surgery, May 2005, 15(5):655-658. |
Erdmann, “Editorials: The value of diuretics in chronic heart failure demonstrated by an implanted haemodynamic monitor,” European Heart Journal 2002 23(1):7-9. |
FDA—Medtronic Inc., Chronicle 9520B Implantable Hemodynamic Monitor Reference Manual, 2007, 112 pages. |
FDA Executive Summary Memorandum, prepared for Mar. 1, 2007, meeting of the Circulatory Systems Devices Advisory Panel, P050032 Medtronic, Inc. Chronicle Implantable Hemodynamic Monitor (IHM) System, 23 pages. Retrieved from the Internet: <<http://www.fda.gov/ohrms/dockets/ac/07/briefing/2007-4284b1—02.pdf>>. |
FDA, References for Mar. 1 Circulatory System Devices Panel, 1 page total. 2007. Retrieved from the Internet: <<http://www.fda.gov/OHRMS/DOCKETS/AC/07/briefing/2007-4284bib1—01.pdf>>. |
FDA Panel Recommendation, “Chronicle Analysis,” Mar. 1, 2007, 14 pages total. |
Fonarow, “How well are chronic heart failure patients being managed?”, Rev Cardiovasc Med. 2006;7 Suppl 1:S3-11. |
Fonarow, “Proactive monitoring and management of the chronic heart failure patient,” Rev Cardiovasc Med. 2006; 7 Suppl 1:S1-2. |
Fonarow, “The Acute Decompensated Heart Failure National Registry (ADHERE): opportunities to improve care of patients hospitalized with acute decompensated heart failure,” Rev Cardiovasc Med. 2003;4 Suppl 7:S21-S30. |
Ganion et al., “Intrathoracic impedance to monitor heart failure status: a comparison of two methods in a chronic heart failure dog model,” Congest Heart Fail. Jul.-Aug. 2005;11(4):177-81, 211. |
Gass et al., “Critical pathways in the management of acute decompensated heart failure: A CME-Accredited monograph,” Mount Sinai School of Medicine, 2004, 32 pages total. |
Gheorghiade et al., “Congestion is an important diagnostic and therapeutic target in heart failure,” Rev Cardiovasc Med. 2006 ;7 Suppl 1 :12-24. |
Gilliam, III et al., “Changes in heart rate variability, quality of life, and activity in cardiac resynchronization therapy patients: results of the HF-HRV registry,” Pacing and Clinical Electrophysiology, Jan. 18, 2007; 30(1): 56-64. |
Gilliam, III et al., “Prognostic value of heart rate variability footprint and standard deviation of average 5-minute intrinsic R-R intervals for mortality in cardiac resynchronization therapy patients.,” J Electrocardiol. Oct. 2007;40(4):336-42. |
Gniadecka, “Localization of dermal edema in lipodermatosclerosis, lymphedema, and cardiac insufficiency high-frequency ultrasound examination of intradermal echogenicity,” J Am Acad oDermatol, Jul. 1996; 35(1):37-41. |
Goldberg et al., “Randomized trial of a daily electronic home monitoring system in patients with advanced heart failure: The Weight Monitoring in Heart Failure (WHARF) Trial,” American Heart Journal, Oct. 2003; 416(4):705-712. |
Grap et al., “Actigraphy in the Critically Ill: Correlation With Activity, Agitation, and Sedation,” American Journal of Critical Care. 2005;14: 52-60. |
Gudivaka et al., “Single- and multifrequency models for bioelectrical impedance analysis of body water compartments,” J Appl Physiol, 1999;87(3):1087-1096. |
Guyton et al., Unit V: The Body Fluids and Kidneys, Chapter 25: The Body Fluid Compartments: Extracellular and Intracellular Fluids; Interstitial Fluid and Edema, Guyton & Hall Textbook of Medical Physiology 11th Edition, Saunders 2005; pp. 291-306. |
Hadase et al., “Very low frequency power of heart rate variability is a powerful predictor of clinical prognosis in patients with congestive heart Failure,” Circ J 2004; 68(4):343-347. |
Hallstrom et al., “Structural relationships between measures based on heart beat intervals: potential for improved risk assessment,” IEEE Biomedical Engineering 2004, 51(8):1414-1420. |
HFSA 2006 Comprehensive Heart Failure Practice Guideline—Executive Summary: HFSA 2006 Comprehensive Heart Failure Practice Guideline, Journal of Cardiac Failure 2006;12(1):10-e38. |
HFSA 2006 Comprehensive Heart Failure Practice Guideline—Section 12: Evaluation and Management of Patients With Acute Decompensated Heart Failure, Journal of Cardiac Failure 2006;12(1):e86-e103. |
HFSA 2006 Comprehensive Heart Failure Practice Guideline—Section 2: Conceptualization and Working Definition of Heart Failure, Journal of Cardiac Failure 2006;12(1):e10-e11. |
HFSA 2006 Comprehensive Heart Failure Practice Guideline—Section 3: Prevention of Ventricular Remodeling Cardiac Dysfunction, and Heart Failure Overview, Journal of Cardiac Failure 2006;12(1):e12-e15. |
HFSA 2006 Comprehensive Heart Failure Practice Guideline—Section 4: Evaluation of Patients for Ventricular Dysfunction and Heart Failure, Journal of Cardiac Failure 2006;12(1):e16-e25. |
HFSA 2006 Comprehensive Heart Failure Practice Guideline—Section 8: Disease Management in Heart Failure Education and Counseling, Journal of Cardiac Failure 2006;12(1):e58-e68. |
Hunt et al., “ACC/AHA 2005 Guideline Update for the Diagnosis and Management of Chronic Heart Failure in the Adult: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Update the 2001 Guidelines for the Evaluation and Management of Heart Failure): Developed in Collaboration With the American College of Chest Physicians and the International Society for Heart and Lung Transplantation: Endorsed by the Heart Rhythm Society,” Circulation. 2005;112:e154-e235. |
Hunt et al., ACC/AHA Guidelines for the Evaluation and Management of Chronic Heart Failure in the Adult: Executive Summary A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Revise the 1995 Guidelines for the Evaluation and Management of Heart Failure), Circulation. 2001;104:2996-3007. |
Imhoff et al., “Noninvasive whole-body electrical bioimpedance cardiac output and invasive thermodilution cardiac output in high-risk surgical patients,” Critical Care Medicine 2000; 28(8):2812-2818. |
Jaeger et al., “Evidence for Increased Intrathoracic Fluid Volume in Man at High Altitude,” J Appl Physiol 1979; 47(6): 670-676. |
Jerant et al., “Reducing the cost of frequent hospital admissions for congestive heart failure: a randomized trial of a home telecare intervention,” Medical Care 2001, 39(11):1234-1245. |
Jaio et al., “Variance fractal dimension analysis of seismic refraction signals,” WESCANEX 97: Communications, Power and Computing. IEEE Conference Proceedings., May 22-23, 1997, pp. 163-167 [Abstract Only]. |
Kasper et al., “A randomized trial of the efficacy of multidisciplinary care in heart failure outpatients at high risk of hospital readmission,” J Am Coll Cardiol, 2002; 39:471-480. |
Kaukinen, “Cardiac output measurement after coronary artery bypass grafting using bolus thermodilution, continuous thermodilution, and whole-body impedance cardiography,” Journal of Cardiothoracic and Vascular Anesthesia 2003; 17(2):199-203. |
Kawaguchi et al., “Combined ventricular systolic and arterial stiffening in patients with heart failure and preserved ejection fraction: implications for systolic and diastolic reserve limitations,” Circulation. 2003;107:714-720. |
Kawasaki et al., “Heart rate turbulence and clinical prognosis in hypertrophic cardiomyopathy and myocardial infarction,” Circ J. Jul. 2003;67(7):601-604. |
Kearney et al., “Predicting death due to progressive heart failure in patients with mild-to-moderate chronic heart failure,” J Am Coll Cardiol, 2002; 40(10):1801-1808. |
Kitzman et al., “Pathophysiological characterization of isolated diastolic heart failure in comparison to systolic heart failure,” JAMA Nov. 2002; 288(17):2144-2150. |
Kööbi et al., “Non-invasive measurement of cardiac output : whole-body impedance cardiography in simultaneous comparison with thermodilution and direct oxygen Fick methods,” Intensive Care Medicine 1997; 23(11):1132-1137. |
Koyama et al., “Evaluation of heart-rate turbulence as a new prognostic marker in patients with chronic heart failure,” Circ J 2002; 66(10):902-907. |
Krumholz et al., “Predictors of readmission among elderly survivors of admission with heart failure,” American Heart Journal 2000; 139 (1):72-77. |
Kyle et al., “Bioelectrical Impedance Analysis—part I: review of principles and methods,” Clin Nutr. Oct. 2004;23(5):1226-1243. |
Kyle et al., “Bioelectrical Impedance Analysis—part II: utilization in clinical practice,” Clin Nutr. Oct. 2004;23(5):1430-1453. |
Lee et al., “Predicting mortality among patients hospitalized for heart failure: derivation and validation of a clinical model,” JAMA 2003;290(19):2581-2587. |
Leier “The Physical Examination in Heart Failure—Part I,” Congest Heart Fail. Jan.-Feb. 2007;13(1):41-47. |
Liu et al., “Fractal analysis with applications to seismological pattern recognition of underground nuclear explosions,” Singal Processing, Sep. 2000, 80(9):1849-1861. [Abstract Only]. |
Lozano-Nieto, “Impedance ratio in bioelectrical impedance measurements for body fluid shift determination,” Proceedings of the IEEE 24th Annual Northeast Bioengineering Conference, Apr. 9-10, 1998, pp. 24-25. |
Lucreziotti et al., “Five-minute recording of heart rate variability in severe chronic heart failure : Correlates with right ventricular function and prognostic implications,” American Heart Journal 2000; 139(6):1088-1095. |
Lüthje et al., “Detection of heart failure decompensation using intrathoracic impedance monitoring by a triple-chamber implantable defibrillator,” Heart Rhythm Sep. 2005;2(9):997-999. |
Magalski et al., “Continuous ambulatory right heart pressure measurements with an implantable hemodynamic monitor: a multicenter, 12-Month Follow-up Study of Patients With Chronic Heart Failure,” J Card Fail 2002, 8(2):63-70. |
Mahlberg et al., “Actigraphy in agitated patients with dementia: Monitoring treatment outcomes,” Zeitschrift für Gerontologie und Geriatrie, Jun. 2007; 40(3)178-184. [Abstract Only]. |
Matthie et al., “Analytic assessment of the various bioimpedance methods used to estimate body water,” Appl Physiol 1998; 84(5):1801-1816. |
Matthie, “Second generation mixture theory equation for estimating intracellular water using bioimpedance spectroscopy,” J Appl Physiol 2005; 99:780-781. |
McMurray et al., “Heart Failure: Epidemiology, Aetiology, and Prognosis of Heart Failure,” Heart 2000;83:596-602. |
Miller, “Home monitoring for congestive heart failure patients,” Caring Magazine, Aug. 1995: 53-54. |
Moser et al., “Improving outcomes in heart failure: it's not unusual beyond usual Care,” Circulation. 2002;105:2810-2812. |
Nagels et al., “Actigraphic measurement of agitated behaviour in dementia,” International journal of geriatric psychiatry , 2009; 21(4):388-393. [Abstract Only]. |
Nakamura et al., “Universal scaling law in human behavioral organization,” Physical Review Letters, Sep. 28, 2007; 99(13):138103 (4 pages). |
Nakaya, “Fractal properties of seismicity in regions affected by large, shallow earthquakes in western Japan: Implications for fault formation processes based on a binary fractal fracture network model,” Journal of geophysical research, Jan. 2005; 11(B1):B01310.1-B01310.15. [Abstract Only]. |
Naylor et al., “Comprehensive discharge planning for the hospitalized elderly: a randomized clinical trial ,” Amer. College Physicians 1994; 120(12):999-1006. |
Nesiritide (NATRECOR),, [Presentation] Acutely Decompensated Congestive Heart Failure: Burden of Disease, downloaded from the Internet: <<http://www.huntsvillehospital.org/foundation/events/cardiologyupdate/CHF.ppt.>>, 39 pages. |
Nieminen et al., “EuroHeart Failure Survey II (EHFS II): a survey on hospitalized acute heart failure patients: description of population,” European Heart Journal 2006; 27(22):2725-2736. |
Nijsen et al., “The potential value of three-dimensional accelerometry for detection of motor seizures in severe epilepsy,” Epilepsy Behav. Aug. 2005;7(1):74-84. |
Noble et al., “Diuretic induced change in lung water assessed by electrical impedance tomography,” Physiol. Meas. 2000; 21(1):155-163. |
Noble et al., “Monitoring patients with left ventricular failure by electrical impedance tomography,” Eur J Heart Fail. Dec. 1999;1(4):379-84. |
O'Connell et al., “Economic impact of heart failure in the United States: time for a different approach,” J Heart Lung Transplant., Jul.-Aug. 1994; 13(4):S107-S112. |
Ohlsson et al., “Central hemodynamic responses during serial exercise tests in heart failure patients using implantable hemodynamic monitors,” Eur J Heart Fail. Jun. 2003;5(3):253-259. |
Ohlsson et al., “Continuous ambulatory monitoring of absolute right ventricular pressure and mixed venous oxygen saturation in patients with heart failure using an implantable haemodynamic monitor,” European Heart Journal 2001 22(11):942-954. |
Packer et al., “Utility of impedance cardiography for the identification of short-term risk of clinical decompensation in stable patients with chronic heart failure,” J Am Coll Cardiol, 2006; 47(11):2245-2252. |
Palatini et al., “Predictive value of clinic and ambulatory heart rate for mortality in elderly subjects with systolic hypertension” Arch Intern Med. 2002;162:2313-2321. |
Piiria et al., “Crackles in patients with fibrosing alveolitis bronchiectasis, COPD, and Heart Failure,” Chest May 1991; 99(5):1076-1083. |
Pocock et al., “Predictors of mortality in patients with chronic heart failure,” Eur Heart J 2006; (27): 65-75. |
Poole-Wilson, “Importance of control of fluid volumes in heart failure,” European Heart Journal 2000; 22(11):893-894. |
Raj et al., ‘Letter Regarding Article by Adamson et al, “Continuous Autonomic Assessment in Patients With Symptomatic Heart Failure: Prognostic Value of Heart Rate Variability Measured by an Implanted Cardiac Resynchronization Device”’, Circulation 2005;112:e37-e38. |
Ramirez et al., “Prognostic value of hemodynamic findings from impedance cardiography in hypertensive stroke,” AJH 2005; 18(20):65-72. |
Rich et al., “A multidisciplinary intervention to prevent the readmission of elderly patients with congestive heart failure,” New Engl. J. Med. 1995;333:1190-1195. |
Roglieri et al., “Disease management interventions to improve outcomes in congestive heart failure,” Am J Manag Care. Dec. 1997;3(12):1831-1839. |
Sahalos et al., “The Electrical impedance of the human thorax as a guide in evaluation of intrathoracic fluid volume,” Phys. Med. Biol. 1986; 31:425-439. |
Saxon et al., “Remote active monitoring in patients with heart failure (rapid-rf): design and rationale,” Journal of Cardiac Failure 2007; 13(4):241-246. |
Scharf et al., “Direct digital capture of pulse oximetry waveforms,” Proceedings of the Twelfth Southern Biomedical Engineering Conference, 1993., pp. 230-232. |
Shabetai, “Monitoring heart failure hemodynamics with an implanted device: its potential to improve outcome,” J Am Coll Cardiol, 2003; 41:572-573. |
Small, “Integrating monitoring into the Infrastructure and Workflow of Routine Practice: OptiVol,” Rev Cardiovasc Med. 2006 ;7 Supp 1: S47-S55. |
Smith et al., “Outcomes in heart failure patients with preserved ejection fraction: mortality, readmission, and functional decline ,” J Am Coll Cardiol, 2003; 41:1510-1518. |
Someren, “Actigraphic monitoring of movement and rest-activity rhythms inaging, Alzheimer's disease, and Parkinson's disease,” IEEE Transactions on Rehabilitation Engineering, Dec. 1997; 5(4):394-398. [Abstract Only]. |
Starling, “Improving care of chronic heart failure: advances from drugs to devices,” Cleveland Clinic Journal of Medicine Feb. 2003; 70(2):141-146. |
Steijaert et al., “The use of multi-frequency impedance to determine total body water and extracellular water in obese and lean female individuals,” International Journal of Obesity Oct. 1997; 21(10):930-934. |
Stewart et al., “Effects of a home-based intervention among patients with congestive heart failure discharged from acute hospital care,” Arch Intern Med. 1998;158:1067-1072. |
Stewart et al., “Effects of a multidisciplinary, home-based intervention on planned readmissions and survival among patients with chronic congestive heart failure: a randomised controlled study,” The Lancet Sep. 1999, 354(9184):1077-1083. |
Stewart et al., “Home-based intervention in congestive heart failure: long-term implications on readmission and survival,” Circulation. 2002;105:2861-2866. |
Stewart et al., “Prolonged beneficial effects of a home-based intervention on unplanned readmissions and mortality among patients with congestive heart failure,” Arch Intern Med. 1999;159:257-261. |
Stewart et al., “Trends in Hospitalization for Heart Failure in Scotland, 1990-1996. An Epidemic that has Reached Its Peak?,” European Heart Journal 2001 22(3):209-217. |
Swedberg et al., “Guidelines for the diagnosis and treatment of chronic heart failure: executive summary (update 2005): The Task Force for the Diagnosis and Treatment of Chronic Heart Failure of the European Society of Cardiology,” Eur Heart J. Jun. 2005; 26(11):1115-1140. |
Tang, “Case studies in advanced monitoring: OptiVol,” Rev Cardiovasc Med. 2006;7 Suppl 1:S62-S66. |
The ESCAPE Investigators and ESCAPE Study Coordinators, “Evaluation Study of Congestive Heart Failure and Pulmonary Artery Catheterization Effectiveness,” JAMA 2005;294:1625-1633. |
Tosi et al., “Seismic signal detection by fractal dimension analysis,” Bulletin of the Seismological Society of America; Aug. 1999; 89(4):970-977. [Abstract Only]. |
Van De Water et al., “Monitoring the chest with impedance,” Chest. 1973;64:597-603. |
Vasan et al., “Congestive heart failure in subjects with normal versus reduced left ventricular ejection fraction,” J Am Coll Cardiol, 1999; 33:1948-1955. |
Verdecchia et al., “Adverse prognostic value of a blunted circadian rhythm of heart rate in essential hypertension,” Journal of Hypertension 1998; 16(9):1335-1343. |
Verdecchia et al., “Ambulatory pulse pressure: a potent predictor of total cardiovascular risk in hypertension,” Hypertension. 1998;32:983-988. |
Vollmann et al., “Clinical utility of intrathoracic impedance monitoring to alert patients with an implanted device of deteriorating chronic heart failure,” Euorpean Heart Journal Advance Access published on Feb. 19, 2007, downloaded from the Internet:<<http://eurheartj.oxfordjournals.org/cgi/content/full/ehl506v1>>, 6 pages total. |
Vuksanovic et al., “Effect of posture on heart rate variability spectral measures in children and young adults with heart disease,” International Journal of Cardiology 2005;101(2): 273-278. |
Wang et al., “Feasibility of using an implantable system to measure thoracic congestion in an ambulatory chronic heart failure canine model,” PACE 2005;28(5):404-411. |
Wickemeyer et al., #197—“Association between atrial and ventricular tachyarrhythmias, intrathoracic impedance and heart failure decompensation in CRT-D Patients,” Journal of Cardiac Failure 2007; 13 (6) Suppl.; S131-132. |
Williams et al, “How do different indicators of cardiac pump function impact upon the long-term prognosis of patients with chronic heart failure,” American Heart Journal, 150(5):983.e1-983.e6. |
Wonisch et al., “Continuous haemodynamic monitoring during exercise in patients with pulmonary hypertension,” Int J Cardiol. Jun. 8, 2005;101(3):415-420. |
Wynne et al., “Impedance cardiography: a potential monitor for hemodialysis,” Journal of Surgical Research 2006, 133(1):55-60. |
Yancy “Current approaches to monitoring and management of heart failure,” Rev Cardiovasc Med 2006; 7 Suppl 1:S25-32. |
Ypenburg et al., “Intrathoracic Impedance Monitoring to Predict Decompensated Heart Failure,” Am J Cardiol 2007, 99(4):554-557. |
Yu et al., “Intrathoracic Impedance Monitoring in Patients With Heart Failure: Correlation With Fluid Status and Feasibility of Early Warning Preceding Hospitalization,” Circulation. 2005;112:841-848. |
Zannad et al., “Incidence, clinical and etiologic features, and outcomes of advanced chronic heart failure: The EPICAL Study,” J Am Coll Cardiol, 1999; 33(3):734-742. |
Zile, “Heart failure with preserved ejection fraction: is this diastolic heart failure?” J Am Coll Cardiol, 2003; 41(9):1519-1522. |
U.S. Appl. No. 60/006,600, filed Nov. 13, 1995; inventor: Terry E. Flach. |
U.S. Appl. No. 60/972,316, filed Sep. 12, 2008; inventor: Imad Libbus et al. |
U.S. Appl. No. 60/972,329, filed Sep. 14, 2007; inventor: Yatheendhar Manicka et al. |
U.S. Appl. No. 60/972,333, filed Sep. 14, 2007; inventor: Mark Bly et al. |
U.S. Appl. No. 60/972,336, filed Sep. 14, 2007; inventor: James Kristofer et al. |
U.S. Appl. No. 60/972,340, filed Sep. 14, 2007; inventor: James Kristofer et al. |
U.S. Appl. No. 60/972,343, filed Sep. 14, 2007; inventor: James Kristofer et al. |
U.S. Appl. No. 60/972,354, filed Sep. 14, 2007; inventor: Scott Thomas Mazar et al. |
U.S. Appl. No. 60/972,359, filed Sep. 14, 2007; inventor: Badri Amurthur et al. |
U.S. Appl. No. 60/972,363, filed Sep. 14, 2007; inventor: Badri Amurthur et al. |
U.S. Appl. No. 60/972,512, filed Sep. 14, 2007; inventor: Imad Libbus et al. |
U.S. Appl. No. 60/972,537 filed Sep. 14, 2007; inventor: Yatheendhar Manicka et al. |
U.S. Appl. No. 60/972,581, filed Sep. 14, 2007; inventor: Imad Libbus et al. |
U.S. Appl. No. 60/972,616, filed Sep. 14, 2007; inventor: Imad Libbus et al. |
U.S. Appl. No. 60/972,629, filed Sep. 14, 2007; inventor: Mark Bly et al. |
U.S. Appl. No. 61/035,970, filed Mar. 12, 2008; inventor: Imad Libbus et al. |
U.S. Appl. No. 61/046,196 filed Apr. 18, 2008; inventor: Scott T. Mazar. |
U.S. Appl. No. 61/047,875, filed Apr. 25, 2008; inventor: Imad Libbus et al. |
U.S. Appl. No. 61/055,645, filed May 23, 2008; inventor: Mark Bly et al. |
U.S. Appl. No. 61/055,656, filed May 23, 2008; inventor: Imad Libbus et al. |
U.S. Appl. No. 61/055,662, filed May 23, 2008; inventor: Imad Libbus et al. |
U.S. Appl. No. 61/055,666, filed May 23, 2008; inventor: Yatheendhar Manicka et al. |
U.S. Appl. No. 61/079,746, filed Jul. 10, 2008; inventor: Brett Landrum. |
U.S. Appl. No. 61/084,567, filed Jul. 29, 2008; inventor: Mark Bly. |
ADHERE [presentation], “Insights from the ADHERE Registry: Data from over 100,000 patient cases,” 2005, 70 pages total. |
Brennan, “Measuring a Grounded Impedance Profile Using the AD5933,” Analog Devices, 2006; retrieved from the internet <<http://http://www.analog.com/static/imported-files/application—notes/427095282381510189AN847—0.pdf, 12 pages total. |
Cooley, “The Parameters of Transthoracic Electical Conduction,” Annals of the New York Academy of Sciences, 1970; 170(2):702-713. |
FDA—Medtronic Chronicle Implantable Hemodynamic Monitoring System P050032: Panel Package Section 11: Chronicle IHM Summary of Safety and Effectiveness, 2007; retrieved from the Internet: <http://www.fda.gov/OHRMS/DOCKETS/AC/07/briefing/2007-4284b1—04.pdf>, 77 pages total. |
FDA Executive Summary, Medtronic Chronicle Implantable Hemodynamic Monitoring System P050032: Panel Package Sponsor Executive Summary; vol. 1, section 4: Executive Summary. 2007, 12 pages total. Retrieved from the Internet: <<http://www.fda.gov/OHRMS/DOCKETS/AC/07/briefing/2007-4284b1—03.pdf>>. |
FDA, Draft questions for Chronicle Advisory Panel Meeting, 2007, 3 pages total. Retrieved from the Internet: <<http://www.fda.gov/ohrms/dockets/ac/07/questions/2007-4284q1—draft.pdf>>. |
HRV Enterprises, LLC, “Heart Rate Variability Seminars,” downloaded from the Internet: <<http://hrventerprise.com/>> on Apr. 24, 2008, 3 pages total. |
HRV Enterprises, LLC, “LoggerPro HRV Biosignal Analysis,” downloaded from the Internet: <<http://hrventerprise.com/products.html>> on Apr. 24, 2008, 3 pages total. |
3M Corporation, “3M Surgical Tapes—Choose the Correct Tape” quicksheet (2004). |
“Acute Decompensated Heart Failure”—Wikipedia Entry, downloaded from: <http://en.wikipedia.org/wiki/Acute—decompensated—heart—failure>. entry page created in 2008, 6 pages total. |
EM Microelectronic—Mann SA, “Plastic Flexible LCD,” [product brochure]; retrieved from the Internet: <<http://www.emmicroelectronic.com/Line.asp?IdLine=48>>, copyright 2009, 2 pages total. |
“Heart Failure”—Wikipedia Entry, downloaded from the Internet: <http://en.wikipedia.org/wiki/Heart—failure>, submitted version downloaded Feb. 11, 2011, 17 pages total. |
Number | Date | Country | |
---|---|---|---|
20090076410 A1 | Mar 2009 | US |
Number | Date | Country | |
---|---|---|---|
61055666 | May 2008 | US | |
60972537 | Sep 2007 | US | |
60972512 | Sep 2007 | US |