The present invention generally relates to aircraft, and more particularly relates to employing data over power applications in aircraft.
Contemporary our business aircraft have nearly the same or similar electrical systems as a commercial aircraft at a fraction of the size. Trying to integrate all the electrical systems in a smaller space is a substantial challenge. For example, the Gulfstream G650, had an increase in wire weight of 133 pounds over its predecessor, the G550. Wiring segments increased by 30% from the previous airframe, and if this trend continues it is possible that future designs will increase by 25% every 5 years. As the demand for more products and conveniences grows, the space needed for the new hardware and the wiring to accommodate it, becomes increasingly prohibitive.
Accordingly, it is desirable to provide systems and methods for employing data over power in aircraft. Furthermore, other desirable features and parameters of the present invention will become apparent from the subsequent detailed description of the invention and the appended claims, taken in conjunction with the accompanying drawings and this background of the invention.
Various non-limiting embodiments of employing data over power in aircraft are disclosed herein.
In one embodiment, a system is provided for data over power in an aircraft that includes a direct current power source for providing power over power lines to devices onboard the aircraft and a data injector coupled to the power lines for digitally modulating data onto twisted pair data over power lines to provide data and power to the devices. A controller is coupled to the direct current power source and the data injector for providing the data to be digitally modulated onto the twisted pair data over power lines such that power for the devices onboard the aircraft and data for control of the device onboard the aircraft are provided to the devices onboard the aircraft over the twisted pair data over power lines.
In another embodiment, a method for providing data over power is provided. The method includes digitally modulating data on twisted pair direct current power lines via frequency shift keying or some other form of RF modulation in the frequency band of 70-180 MHZ to provide both data and power to the devices onboard the aircraft.
The present invention will hereinafter be described in conjunction with the following drawing figures, wherein like numerals denote like elements, and
The following detailed description is merely exemplary in nature and is not intended to limit the invention or the application and uses of the invention. Furthermore, there is no intention to be bound by any theory presented in the preceding background or the following detailed description.
Data over power applications for aircraft are described herein and generally achieve a reduction in wire weight and cost over conventional aircraft. Although data over power applications are discussed herein as a component of an aircraft, the configurations and algorithms described for operation of the data over power may be applicable to other vehicles, such as submarines or automobiles.
A challenge in implementing a data over power application are the high current requirements of some of the powered devices. For example, passenger seats 204 typically require current in excess of ten amps which may make the size of the inductors needed to isolate the network infeasible. High current application can also be implement using well shielded radiofrequency (RF) coax cables, but such cables are not typically used in power applications on aircraft. Typically, contemporary aircraft cabin wiring employs 28 VDC power and ground lines, but these lines are not typically balanced making the addition of higher frequency data communication a challenge. At higher data frequencies, increased crosstalk and energy radiation can become an issue. Furthermore, impedance mismatch intolerance limits the data frequency that can be employed. Another complication arises in that the aviation COM/NAV frequency band (110-139 MHz) must be avoided for data over power applications.
As will be discussed in detail below in connection with
The sub-1 GHz transceiver(s) 400 are controlled by the controller 304 that receives data to be provided to the cabin device via an ethernet network 306. The ethernet data 306 is received by an ethernet interface 402 and the data is processed by a processor 404 and provided to one (or as many as desired in any particular realization) sub-1 GHz transceiver 400 of the data injector 302.
In this way, the present disclosure provides data over power to cabin devices using a hybrid arrangement of digitally modulated RF data, DC power and twisted pair data over power lines that can support current in excess of one amp while substantially reducing wire weight about an aircraft. Additionally, susceptibility to RF interference (e.g., from microwave oven) is reduced (or eliminated) supporting low latency data rates over the power lines.
In the example provided, while at least one exemplary embodiment has been presented in the foregoing detailed description of the disclosure, it should be appreciated that a vast number of variations exist. It should also be appreciated that the exemplary embodiment or exemplary embodiments are only examples, and are not intended to limit the scope, applicability, or configuration of the disclosure in any way. Rather, the foregoing detailed description will provide those skilled in the art with a convenient road map for implementing an exemplary embodiment of the disclosure. It being understood that various changes may be made in the function and arrangement of elements described in an exemplary embodiment without departing from the scope of the disclosure as set forth herein.
This application claims the benefit of U.S. Provisional Application No. 62/907,140 filed Sep. 27, 2019.
Number | Name | Date | Kind |
---|---|---|---|
5210519 | Moore | May 1993 | A |
5818127 | Abraham | Oct 1998 | A |
7689327 | Loda | Mar 2010 | B2 |
10065583 | Carleial et al. | Sep 2018 | B2 |
20100110900 | Kim | May 2010 | A1 |
20130003756 | Mitchell | Jan 2013 | A1 |
20170093230 | Yundt et al. | Mar 2017 | A1 |
20180097641 | Byrne | Apr 2018 | A1 |
Number | Date | Country |
---|---|---|
1487128 | Dec 2004 | EP |
3241748 | Nov 2017 | EP |
2410481 | Aug 2005 | GB |
Entry |
---|
Analog Devices, High Performance, Sub GHZ Radio Transceiver IC, ADF7030-1, Data Sheet, Norwood MA, 2016. |
Number | Date | Country | |
---|---|---|---|
20210099202 A1 | Apr 2021 | US |
Number | Date | Country | |
---|---|---|---|
62907140 | Sep 2019 | US |