System and methods thereof for recommending tags for multimedia content elements based on context

Information

  • Patent Grant
  • 10949773
  • Patent Number
    10,949,773
  • Date Filed
    Thursday, March 30, 2017
    7 years ago
  • Date Issued
    Tuesday, March 16, 2021
    3 years ago
Abstract
A system and method for recommending tags for a multimedia content element to be tagged. The method includes obtaining a plurality of signatures for the multimedia content element to be tagged, wherein each of the generated signatures represents a concept, wherein each concept is a collection of signatures and metadata representing the concept; correlating between the plurality of signatures to determine at least one context of the multimedia content element to be tagged; searching for at least one contextually related multimedia content element, wherein each contextually related multimedia content element matches at least one of the determined at least one context; and identifying at least one tag, wherein each identified tag is associated with at least one of the at least one contextually related multimedia content element; generating a recommendation including the identified at least one tag.
Description
TECHNICAL FIELD

The present disclosure relates generally to contextual analysis of multimedia content elements, and more specifically to context-based recommendation of tags for multimedia content elements.


BACKGROUND

Since the advent of digital photography and, in particular, after the rise of social networks, the Internet has become inundated with uploaded images, videos, and other content.


Due to the large amount of content available online, people generally only look at a small fraction of the content that their contacts in the social network publish. In an effort to address the problem, some people manually tag multimedia content in order to indicate subject matter of such content in an effort to encourage users seeking content featuring the tagged subject matter to view the tagged content. The tags may be textual or other identifiers included in metadata of the multimedia content, thereby associating the textual identifiers with the multimedia content. Users may subsequently search for multimedia content elements with respect to tags by providing queries indicating desired subject matter. Tags therefore make it easier for users to find content related to a particular topic.


A popular textual tag is the hashtag. A hashtag is a type of label or typically used on social networking websites, chats, forums, microblogging services, and the like. Users create and use hashtags by placing the hash character (or number sign) # in front of a word or unspaced phrase, either in the main text of a message associated with content, or at the end. Searching for that hashtag will then present each message and, consequently, each multimedia content element, that has been tagged with it.


Accurate and complete listings of hashtags can massively increase exposure of users to a certain multimedia content. Existing solutions for tagging typically rely on user inputs to provide identifications of subject matter. However, such manual solutions may result in inaccurate or incomplete tagging. Further, although some automatic tagging solutions exist, such solutions face challenges in efficiently and accurately identifying subject matter of multimedia content. Moreover, such solutions typically only recognize superficial expressions of subject matter in multimedia content and, therefore, fail to account for context in tagging multimedia content.


It would be therefore advantageous to provide a solution for accurately recommending tags that matches the multimedia content elements.


SUMMARY

A summary of several example embodiments of the disclosure follows. This summary is provided for the convenience of the reader to provide a basic understanding of such embodiments and does not wholly define the breadth of the disclosure. This summary is not an extensive overview of all contemplated embodiments, and is intended to neither identify key or critical elements of all embodiments nor to delineate the scope of any or all aspects. Its sole purpose is to present some concepts of one or more embodiments in a simplified form as a prelude to the more detailed description that is presented later. For convenience, the term “some embodiments” or “certain embodiments” may be used herein to refer to a single embodiment or multiple embodiments of the disclosure.


Certain embodiments disclosed herein include a method for recommending tags for a multimedia content element to be tagged. The method comprises obtaining a plurality of signatures for the multimedia content element to be tagged, wherein each of the generated signatures represents a concept, wherein each concept is a collection of signatures and metadata representing the concept; correlating between the plurality of signatures to determine at least one context of the multimedia content element to be tagged; searching for at least one contextually related multimedia content element, wherein each contextually related multimedia content element matches at least one of the determined at least one context; and identifying at least one tag, wherein each identified tag is associated with at least one of the at least one contextually related multimedia content element; generating a recommendation including the identified at least one tag.


Certain embodiments disclosed herein also include a non-transitory computer readable medium having stored thereon causing a processing circuitry to execute a process, the process comprising: obtaining a plurality of signatures for the multimedia content element to be tagged, wherein each of the generated signatures represents a concept, wherein each concept is a collection of signatures and metadata representing the concept; correlating between the plurality of signatures to determine at least one context of the multimedia content element to be tagged; searching for at least one contextually related multimedia content element, wherein each contextually related multimedia content element matches at least one of the determined at least one context; and identifying at least one tag, wherein each identified tag is associated with at least one of the at least one contextually related multimedia content element; generating a recommendation including the identified at least one tag.


Certain embodiments disclosed herein also include a system for method for recommending tags for a multimedia content element to be tagged. The system comprises: a processing circuitry; and a memory connected to the processing circuitry, the memory containing instructions that, when executed by the processing circuitry, configure the system to: obtain a plurality of signatures for the multimedia content element to be tagged, wherein each of the generated signatures represents a concept, wherein each concept is a collection of signatures and metadata representing the concept; correlate between the plurality of signatures to determine at least one context of the multimedia content element to be tagged; search for at least one contextually related multimedia content element, wherein each contextually related multimedia content element matches at least one of the determined at least one context; and identify at least one tag, wherein each identified tag is associated with at least one of the at least one contextually related multimedia content element; generate a recommendation including the identified at least one tag.





BRIEF DESCRIPTION OF THE DRAWINGS

The subject matter that is regarded as the disclosure is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other objects, features, and advantages of the disclosed embodiments will be apparent from the following detailed description taken in conjunction with the accompanying drawings.



FIG. 1 is a network diagram utilized to describe the various disclosed embodiments herein.



FIG. 2 is a flowchart illustrating a method for recommending tags for a multimedia content element according to an embodiment.



FIG. 3 is a flowchart illustrating a method for selecting recommended tags of a plurality of potential tags as recommendations to the user device according to an embodiment.



FIG. 4 is a block diagram depicting the basic flow of information in the signature generator system.



FIG. 5 is a diagram showing the flow of patches generation, response vector generation, and signature generation in a large-scale speech-to-text system.



FIG. 6 is a block diagram of a tag recommender according to an embodiment.





DETAILED DESCRIPTION

It is important to note that the embodiments disclosed herein are only examples of the many advantageous uses of the innovative teachings herein. In general, statements made in the specification of the present application do not necessarily limit any of the various claimed inventions. Moreover, some statements may apply to some inventive features but not to others. In general, unless otherwise indicated, singular elements may be in plural and vice versa with no loss of generality. In the drawings, like numerals refer to like parts through several views.


A system and method for recommending tags for multimedia content elements based on context. A plurality of signatures is generated to a multimedia content element. Each of the generated signatures represents a concept. The concepts of the generated signatures are correlated. Based on the correlation, a context of the multimedia content element is determined. Based on the context, a recommendation of at least one tag is generated. Generating the at least one tag may include searching for existing tags associated with contextually related multimedia content elements.



FIG. 1 is an example network diagram 100 utilized to describe the various embodiments disclosed. The network diagram 100 includes a user device 120, a tag recommender 130, a database 150, a deep content classification (DCC) system 160, and a plurality of data sources 170-1 through 170-m (hereinafter referred to individually as a data source 170 and collectively as data sources 170, merely for simplicity purposes) communicatively connected via a network 110. The network 110 may be, but is not limited to, the Internet, the world-wide-web (WWW), a local area network (LAN), a wide area network (WAN), a metro area network (MAN), and other networks capable of enabling communication between the elements of the network diagram 100.


The user device 120 may be, but is not limited to, a personal computer (PC), a personal digital assistant (PDA), a mobile phone, a smart phone, a tablet computer, a wearable computing device and other kinds of wired and mobile appliances, equipped with browsing, viewing, listening, filtering, managing, and other capabilities that are enabled as further discussed herein below. The user device 120 may have installed thereon an application 125 such as, but not limited to, a web browser. The application 125 may be configured to store multimedia content elements in, for example, the data sources 170. For example, the application 125 may be a web browser through which a user of the user device 120 accesses a social media website and uploads multimedia content elements when one of the data sources 170 is associated with the social media website.


The database 150 may be a context database storing information such as, but not limited to, multimedia content elements, clusters of multimedia content elements, previously determined contexts, signatures previously analyzed, a combination thereof, and the like. The database 150 may further store concepts, where the concepts may represent the previously determined contexts.


In an embodiment, the tag recommender 130 includes a processing circuitry coupled to a memory (e.g., the processing circuitry 610 and the memory 620 as shown in FIG. 6). The memory contains instructions that can be executed by the processing circuitry. In a further embodiment the tag recommender 130 may include an array of at least partially statistically independent computational cores configured as described in more detail herein below.


In an embodiment, the tag recommender 130 is communicatively connected to a signature generator system (SGS) 140, which is utilized by the tag recommender 130 to perform the various disclosed embodiments. Specifically, the signature generator system 140 is configured to generate signatures to multimedia content elements and includes a plurality of computational cores, each computational core having properties that are at least partially statistically independent of each other core, where the properties of each core are set independently of the properties of each other core.


The signature generator system 140 may be communicatively connected to the tag recommender 130 directly (as shown), or through the network 110 (not shown). In another embodiment, the tag recommender 130 may further include the signature generator system 140, thereby allowing the tag recommender 130 to generate signatures for multimedia content elements.


In an embodiment, the tag recommender 130 is communicatively connected to the deep content classification system 160, which is utilized by the tag recommender 130 to perform the various disclosed embodiments. Specifically, the deep content classification system 160 is configured to create, automatically and in an unsupervised fashion, concepts for a wide variety of multimedia content elements. To this end, the deep content classification system 160 may be configured to inter-match patterns between signatures for a plurality of multimedia content elements and to cluster the signatures based on the inter-matching. The deep content classification system 160 may be further configured to reduce the number of signatures in a cluster to a minimum that maintains matching and enables generalization to new multimedia content elements. Metadata of the multimedia content elements is collected to form, together with the reduced clusters, a concept. An example deep content classification system is described further in U.S. Pat. No. 8,266,185, assigned to the common assignee, the contents of which are hereby incorporated by reference.


The deep content classification system 160 may be communicatively connected to the tag recommender 130 directly (not shown), or through the network 110 (as shown). In another embodiment, the tag recommender 130 may further include the deep content classification system 160, thereby allowing the tag recommender 130 to create a concept database and to match concepts from the concept database to multimedia content elements.


In an embodiment, the tag recommender 130 is configured to receive, from the user device 120, a multimedia content element to be tagged. In another embodiment, the tag recommender 130 is configured to receive, from the user device 120, an indicator of a location of the multimedia content element to be tagged in storage (e.g., in the data source 170). In a further embodiment, the tag recommender 130 is configured to retrieve the multimedia content element to be tagged based on the indicator. The multimedia content element may be, but is not limited to, an image, a graphic, a video stream, a video clip, an audio stream, an audio clip, a video frame, a photograph, an image of signals (e.g., spectrograms, phasograms, scalograms, etc.), combinations thereof, portions thereof, and the like.


In an embodiment, the tag recommender 130 is configured to send the multimedia content element to be tagged to the signature generator system 140, to the deep content classification system 160, or both. In a further embodiment, the tag recommender 130 is configured to receive a plurality of signatures generated to the multimedia content element from the signature generator system 140, to receive a plurality of signatures (e.g., signature reduced clusters) of concepts matched to the multimedia content element from the deep content classification system 160, or both. In another embodiment, the tag recommender 130 may be configured to generate the plurality of signatures, identify the plurality of signatures (e.g., by determining concepts associated with the signature reduced clusters matching the multimedia content element to be tagged), or a combination thereof.


Each signature represents a concept, and may be robust to noise and distortion. Each concept is a collection of signatures representing multimedia content elements and metadata describing the concept, and acts as an abstract description of the content to which the signature was generated. As a non-limiting example, a ‘Superman concept’ is a signature-reduced cluster of signatures describing elements (such as multimedia elements) related to, e.g., a Superman cartoon: a set of metadata representing proving textual representation of the Superman concept. As another example, metadata of a concept represented by the signature generated for a picture showing a bouquet of red roses is “flowers”. As yet another example, metadata of a concept represented by the signature generated for a picture showing a bouquet of wilted roses is “wilted flowers”.


In an embodiment, the tag recommender 130 is configured to correlate among the received signatures of the multimedia content element to be tagged and to determine, based on the correlation, at least one context of the multimedia content element. Each context is determined by correlating among the plurality of signatures of the multimedia content element. A context is determined as the correlation between a plurality of concepts. A strong context may be determined, e.g., when there are at least a threshold number of concepts that satisfy the same predefined condition. As a non-limiting example, by correlating a signature of a person in a baseball uniform with a signature of a baseball stadium, a context representing a “baseball player” may be determined. Correlations among the concepts of a plurality of multimedia content elements can be achieved using probabilistic models by, e.g., identifying a ratio between signatures' sizes, a spatial location of each signature, and the like. Determining contexts for multimedia content elements is described further in the above-referenced U.S. patent application Ser. No. 13/770,603.


It should be noted that using signatures for determining the context ensures more accurate identification of trending multimedia content than, for example, based on metadata alone.


In an embodiment, the tag recommender 130 is configured to search for at least one contextually related multimedia content element based on the determined at least one context. To this end, in a further embodiment, the tag recommender 130 is configured to search through the data sources 170. The data sources 170 may include, but are not limited to, a search engine, a content provider server, a vertical comparison engine, a content publisher server, a mobile application installed on the user device, a social network, a content website, or any other storage including multimedia content elements and associated tags.


In an embodiment, the tag recommender 130 is configured to generate at least one query, where the search is performed using the at least one query. Each query may include, but is not limited to, a textual representation of the determined at least one context of the multimedia content element to be tagged. In a further embodiment, generating the query may include identifying text associated with the determined at least one context in, e.g., the database 150. In yet a further embodiment, the tag recommender 130 may be configured to customize each query with respect to a type of data source (e.g., a social media network, an image or video repository, a forum, etc.) or with respect to a particular data source (e.g., Facebook®, Instagram®, Twitter®, Youtube®, etc.) to which the query will be sent. The queries may be customized such that, for example, each query is in a format that is acceptable to or optimized for the data sources 170 to which the query will be sent.


In an embodiment, the tag recommender 130 is configured to generate the at least one query by identifying concepts matching the determined at least one context (e.g., concepts stored in the database 150 that represent previously determined contexts), where the textual representation of the context includes text of metadata of the identified concepts (i.e., metadata representing the identified concepts). In a further embodiment, the tag recommender 130 is configured to search the database 150 for previously determined contexts matching the determined at least one context of the multimedia content element to be tagged, where the identified concepts represent the matching contexts.


In an embodiment, the tag recommender 130 is configured to generate a recommendation of tags for the multimedia content element. The recommendation may include, but is not limited to, the tags found during the search or a group of tags selected from among the tags found during the search. The tags may be, but are not limited to, textual or graphical inputs that are associated with multimedia content elements The tags may be, for example, hashtags (e.g., “#vacation”).


In a further embodiment, the tag recommender 130 may be configured to select the tags to be included in the recommendation based on, for example, a trendiness of each tag (i.e., such that each selected tag is a trending tag). In yet a further embodiment, the trendiness of a tag may be determined based on a number of uses of the tag in the data sources 170 (e.g., a number of posts by users including the tag), positive feedback related to the tag (e.g., a number of likes or comments including known positive language associated with a multimedia content element having the tag), both, and the like.


In another embodiment, the selected tags may exclude duplicates of selected tags (e.g., tags matching a selected tag above a predetermined threshold such as, for example, tags that differ by fewer than 3 characters). In a further embodiment, identifying duplicate tags may include generating signatures to the found tags and comparing the generated tag signatures, where tags having signature matching above a predetermined threshold are identified as duplicates.


In an embodiment, the tag recommender 130 is configured to send the generated recommendation to, e.g., the user device 120. The user of the user device 120 may review the recommended tags and may tag the multimedia content element with the recommended tags, may modify any of the recommended tags, and the like. In another embodiment, the tag recommender 130 is configured to store the recommended tags in, e.g., one or more of the data sources 170.


As a non-limiting example, an image in which a plurality of people are shown wearing green shirts, smiling and raising a toast is received by the tag recommender 130 from the user device 120. The image is sent to the signature generator generator system 140, the deep content classification system 160, or both, and a plurality of signatures are received. The received signatures represent concepts such as “people”, “party”, “drinks”, and “green shirts”. The signatures are then correlated and the context is determined as “friends drinking with green shirts”. A query of “friends drinking with green shirts and Mar. 17, 2016” is generated. According to an embodiment, the query may customized respective of a type of data source 170 through which the search is performed, i.e., different queries shall be sent to the Facebook® website and to the Instagram® application program. The search result may indicate that a popular tag associated with the query is “#HappySaintPatrickDay,” i.e., a tag indicating a feast of a religious and cultural celebration which often involves people drinking beers wearing green shirts and other Irish symbols. A recommendation including the “#HappySaintPatrickDay” tag is provided by the tag recommender 130 to the user device 120.


It should be noted that only one user device 120 and one application 125 are described herein above with reference to FIG. 1 merely for the sake of simplicity and without limitation on the disclosed embodiments. Multiple user devices may provide multimedia content elements via multiple applications 125, and tags for each multimedia content element may be recommended to the sending user device, without departing from the scope of the disclosure.



FIG. 2 depicts an example flowchart 200 illustrating a method for recommending tags for a multimedia content element according to an embodiment. In an embodiment, the method may be performed by the tag recommender 130.


At S210, a multimedia content element to be tagged is obtained. In an embodiment, S210 may include receiving a request including the multimedia content element to be tagged. The request may further include one or more potential tags received from a user device. The request may be received by the agent 125 installed on the user device 120.


At S220, a plurality of signatures is generated or obtained. The signatures are generated as described below with respect to FIGS. 4 and 5. The signatures may be robust to noise and distortion.


In an embodiment, S220 includes generating the signatures via a plurality of at least partially statistically independent computational cores, where the properties of each core are set independently of the properties of the other cores. In another embodiment, S220 includes sending the multimedia content element to a signature generator system, to a deep content classification system, or both, and receiving the plurality of signatures. The signature generator system includes a plurality of at least statistically independent computational cores as described further herein. The deep content classification system is configured to create concepts for a wide variety of multimedia content elements, automatically and in an unsupervised fashion.


At S230, a recommendation of at least one tag for the multimedia content element is generated. In an embodiment, S230 includes correlating between concepts of the signatures generated or obtained at S220 and determining, based on the correlations, at least one context of the multimedia content element. In a further embodiment, S230 also includes searching for the at least one tag based on the determined contexts. Generating recommendations of tags for multimedia content elements is described further herein below with respect to FIG. 3.


In an embodiment, the recommendation only includes found tags that match (e.g., above a predetermined threshold) the received potential tags. The matching may include comparing the tags, comparing signatures generated to the tags, and the like. Accordingly, the recommendation may be utilized to verify whether a proposed tag from a user is appropriate for the multimedia content element.


At S240, the generated recommendation is provided. Providing the generated recommendation may include, but is not limited to, sending the generated recommendation (e.g., to a user device), storing the generated recommendation in a storage, both, and the like.


In S250, it is checked whether additional received multimedia content elements are to be tagged, and if so, execution continues with S210; otherwise, execution terminates.



FIG. 3 depicts an example flowchart S230 illustrating a method for generating a recommendation of at least one tag for a multimedia content element according to an embodiment. In an embodiment, the method is performed based on a plurality of signatures representing concepts of the multimedia content element.


At S310, the signatures for the multimedia content element are correlated. In an embodiment, S310 includes correlating among the concepts of a plurality of multimedia content elements using probabilistic models by, e.g., identifying a ratio between signatures' sizes, a spatial location of each signature, and the like. In an embodiment, S310 may further include querying a DCC system with the signatures. The deep content classification system may be configured to identify and return at least one matching concept.


At S320, based on the correlation, at least one context of the multimedia content element is determined. A context is determined as the correlation between a plurality of concepts. A strong context may be determined, e.g., when there are at least a threshold number of concepts that satisfy the same predefined condition.


At S330, based on the at least one context, at least one tag is identified. In an embodiment, S330 includes searching through one or more data sources for multimedia content elements that are contextually related to the multimedia content element to be tagged. In an embodiment, the searching includes generating at least one query based on the context, where the at least one query is utilized during the search. In a further embodiment, the at least one query includes a textual representation of the determined at least one context. To this end, in yet a further embodiment, S330 may include searching in a context database for at least one matching context related to the determined context, where each context in the context database is represented by a concept having metadata including text representing the context. The text of the identified concept metadata may be included in the query. In another further embodiment, the queries may be customized for different data sources to be searched. Each query includes a textual representation of the at least one context or a portion thereof.


At optional S340, at least one tag may be selected from among the determined at least one tag. In an embodiment, the selection may be of at least one trendy tag. To this end, the selection may be based on, but not limited to, a number of mentions of each tag in social media posts, a number of inclusions of each tag in comments, a matching level between each tag and the determined at least one context, or a combination thereof. In another embodiment, the selection may result in excluding duplicate tags (e.g., tags that are identical or nearly identical as determined based on, for example, matching text, matching signatures, etc.). In an optional embodiment, only the selected tags may be included in a recommendation for the multimedia content element. Alternatively, the recommendation may include all tags found during the search.



FIGS. 4 and 5 illustrate the generation of signatures for the multimedia content elements by the SGS 140 according to one embodiment. An exemplary high-level description of the process for large scale matching is depicted in FIG. 4. In this example, the matching is for a video content.


Video content segments 2 from a Master database (DB) 6 and a Target DB 1 are processed in parallel by a large number of independent computational Cores 3 that constitute an architecture for generating the Signatures (hereinafter the “Architecture”). Further details on the computational Cores generation are provided below. The independent Cores 3 generate a database of Robust Signatures and Signatures 4 for Target content-segments 5 and a database of Robust Signatures and Signatures 7 for Master content-segments 8. An exemplary and non-limiting process of signature generation for an audio component is shown in detail in FIG. 4. Finally, Target Robust Signatures and/or Signatures are effectively matched, by a matching algorithm 9, to Master Robust Signatures and/or Signatures database to find all matches between the two databases.


To demonstrate an example of the signature generation process, it is assumed, merely for the sake of simplicity and without limitation on the generality of the disclosed embodiments, that the signatures are based on a single frame, leading to certain simplification of the computational cores generation. The Matching System is extensible for signatures generation capturing the dynamics in-between the frames. In an embodiment the server 130 is configured with a plurality of computational cores to perform matching between signatures.


The Signatures' generation process is now described with reference to FIG. 5. The first step in the process of signatures generation from a given speech-segment is to breakdown the speech-segment to K patches 14 of random length P and random position within the speech segment 12. The breakdown is performed by the patch generator component 21. The value of the number of patches K, random length P and random position parameters is determined based on optimization, considering the tradeoff between accuracy rate and the number of fast matches required in the flow process of the server 130 and SGS 140. Thereafter, all the K patches are injected in parallel into all computational Cores 3 to generate K response vectors 22, which are fed into a signature generator system 23 to produce a database of Robust Signatures and Signatures 4.


In order to generate Robust Signatures, i.e., Signatures that are robust to additive noise L (where L is an integer equal to or greater than 1) by the Computational Cores 3 a frame ‘i’ is injected into all the Cores 3. Then, Cores 3 generate two binary response vectors: {right arrow over (S)} which is a Signature vector, and {right arrow over (RS)} which is a Robust Signature vector.


For generation of signatures robust to additive noise, such as White-Gaussian-Noise, scratch, etc., but not robust to distortions, such as crop, shift and rotation, etc., a core Ci={ni} (1≤i≤L) may consist of a single leaky integrate-to-threshold unit (LTU) node or more nodes. The node ni equations are:







V
i

=



j








w
ij



k
j










n
i

=

θ


(

Vi
-

Th
x


)






where, θ is a Heaviside step function; wij is a coupling node unit (CNU) between node i and image component j (for example, grayscale value of a certain pixel j); kj is an image component ‘j’ (for example, grayscale value of a certain pixel j); ThX is a constant Threshold value, where ‘x’ is ‘S’ for Signature and ‘RS’ for Robust Signature; and Vi is a Coupling Node Value.


The Threshold values ThX are set differently for Signature generation and for Robust Signature generation. For example, for a certain distribution of Vi values (for the set of nodes), the thresholds for Signature (ThS) and Robust Signature (ThRS) are set apart, after optimization, according to at least one or more of the following criteria:


1: For: Vi>ThRS
1−p(V>ThS)−1−(1−ε)l<<1

i.e., given that/nodes (cores) constitute a Robust Signature of a certain image I, the probability that not all of these I nodes will belong to the Signature of same, but noisy image, Ĩ is sufficiently low (according to a system's specified accuracy).


2: p(Vi>ThRS)≈l/L


i.e., approximately/out of the total L nodes can be found to generate a Robust Signature according to the above definition.


3: Both Robust Signature and Signature are generated for certain frame i.


It should be understood that the generation of a signature is unidirectional, and typically yields lossless compression, where the characteristics of the compressed data are maintained but the uncompressed data cannot be reconstructed. Therefore, a signature can be used for the purpose of comparison to another signature without the need of comparison to the original data. The detailed description of the Signature generation can be found in U.S. Pat. Nos. 8,326,775 and 8,312,031, assigned to the common assignee, which are hereby incorporated by reference.


A Computational Core generation is a process of definition, selection, and tuning of the parameters of the cores for a certain realization in a specific system and application. The process is based on several design considerations, such as:


(a) The Cores should be designed so as to obtain maximal independence, i.e., the projection from a signal space should generate a maximal pair-wise distance between any two cores' projections into a high-dimensional space.


(b) The Cores should be optimally designed for the type of signals, i.e., the Cores should be maximally sensitive to the spatio-temporal structure of the injected signal, for example, and in particular, sensitive to local correlations in time and space. Thus, in some cases a core represents a dynamic system, such as in state space, phase space, edge of chaos, etc., which is uniquely used herein to exploit their maximal computational power.


(c) The Cores should be optimally designed with regard to invariance to a set of signal distortions, of interest in relevant applications.


A detailed description of the Computational Core generation and the process for configuring such cores is discussed in more detail in the co-pending U.S. patent application Ser. No. 12/084,150 referenced above.



FIG. 6 is an example block diagram of the trending content recommendation generator 130 according to an embodiment. The trending content recommendation generator 130 includes a processing circuitry 610 coupled to a memory 620, a storage 630, and a network interface 640. In an embodiment, the components of the trending content recommendation generator 130 may be communicatively connected via a bus 650.


The processing circuitry 610 may be realized as one or more hardware logic components and circuits. For example, and without limitation, illustrative types of hardware logic components that can be used include field programmable gate arrays (FPGAs), application-specific integrated circuits (ASICs), Application-specific standard products (ASSPs), system-on-a-chip systems (SOCs), general-purpose microprocessors, microcontrollers, digital signal processors (DSPs), and the like, or any other hardware logic components that can perform calculations or other manipulations of information. In an embodiment, the processing circuitry 610 may be realized as an array of at least partially statistically independent computational cores. The properties of each computational core are set independently of those of each other core, as described further herein above.


The memory 620 may be volatile (e.g., RAM, etc.), non-volatile (e.g., ROM, flash memory, etc.), or a combination thereof. In one configuration, computer readable instructions to implement one or more embodiments disclosed herein may be stored in the storage 630.


In another embodiment, the memory 620 is configured to store software. Software shall be construed broadly to mean any type of instructions, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise. Instructions may include code (e.g., in source code format, binary code format, executable code format, or any other suitable format of code). The instructions, when executed by the processing circuitry 610, cause the processing circuitry 610 to perform the various processes described herein. Specifically, the instructions, when executed, cause the processing circuitry 610 to provide recommendations of trending content based on context as described herein.


The storage 630 may be magnetic storage, optical storage, and the like, and may be realized, for example, as flash memory or other memory technology, CD-ROM, Digital Versatile Disks (DVDs), or any other medium which can be used to store the desired information.


The network interface 640 allows the trending content recommendation generator 130 to communicate with the signature generator system 140 for the purpose of, for example, sending multimedia content elements, receiving signatures, and the like. Further, the network interface 640 allows the trending content recommendation generator to communicate with the user device 120 for the purpose of, for example, receiving queries, sending recommendations of content, and the like. Additionally, the network interface 640 allows the trending content recommendation generator 130 to communicate with the data sources 170 in order to search for multimedia content elements.


It should be understood that the embodiments described herein are not limited to the specific architecture illustrated in FIG. 6, and other architectures may be equally used without departing from the scope of the disclosed embodiments. In particular, the trending content recommendation generator 130 may further include a signature generator system configured to generate signatures as described herein without departing from the scope of the disclosed embodiments.


The various embodiments disclosed herein can be implemented as hardware, firmware, software, or any combination thereof. Moreover, the software is preferably implemented as an application program tangibly embodied on a program storage unit or computer readable medium consisting of parts, or of certain devices and/or a combination of devices. The application program may be uploaded to, and executed by, a machine comprising any suitable architecture. Preferably, the machine is implemented on a computer platform having hardware such as one or more central processing units (“CPUs”), a memory, and input/output interfaces. The computer platform may also include an operating system and microinstruction code. The various processes and functions described herein may be either part of the microinstruction code or part of the application program, or any combination thereof, which may be executed by a CPU, whether or not such a computer or processor is explicitly shown. In addition, various other peripheral units may be connected to the computer platform such as an additional data storage unit and a printing unit. Furthermore, a non-transitory computer readable medium is any computer readable medium except for a transitory propagating signal.


All examples and conditional language recited herein are intended for pedagogical purposes to aid the reader in understanding the disclosed embodiments and the concepts contributed by the inventor to furthering the art, and are to be construed as being without limitation to such specifically recited examples and conditions. Moreover, all statements herein reciting principles, aspects, and embodiments of the invention, as well as specific examples thereof, are intended to encompass both structural and functional equivalents thereof. Additionally, it is intended that such equivalents include both currently known equivalents as well as equivalents developed in the future, i.e., any elements developed that perform the same function, regardless of structure.


It should be understood that any reference to an element herein using a designation such as “first,” “second,” and so forth does not generally limit the quantity or order of those elements. Rather, these designations are generally used herein as a convenient method of distinguishing between two or more elements or instances of an element. Thus, a reference to first and second elements does not mean that only two elements may be employed there or that the first element must precede the second element in some manner. Also, unless stated otherwise, a set of elements comprises one or more elements.


As used herein, the phrase “at least one of” followed by a listing of items means that any of the listed items can be utilized individually, or any combination of two or more of the listed items can be utilized. For example, if a system is described as including “at least one of A, B, and C,” the system can include A alone; B alone; C alone; A and B in combination; B and C in combination; A and C in combination; or A, B, and C in combination.

Claims
  • 1. A method for recommending tags for a multimedia content element to be tagged, comprising: obtaining a plurality of signatures for the multimedia content element to be tagged, wherein each of the plurality of represents a concept, wherein each concept is a collection of signatures and metadata representing the concept;correlating between the plurality of signatures to determine at least one context of the multimedia content element to be tagged;searching for at least one contextually related multimedia content element, wherein each contextually related multimedia content element matches at least one of the determined at least one context;identifying at least one tag, wherein each identified tag is associated with at least one of the at least one contextually related multimedia content element; andgenerating a recommendation including the identified at least one tag.
  • 2. The method of claim 1, wherein obtaining the plurality of signatures further comprises: generating, by a signature generator system, the plurality of signatures for the multimedia content element, wherein the signature generator system includes a plurality of at least partially statistically independent computational cores, wherein the properties of each core are set independently of the properties of each other core.
  • 3. The method of claim 1, wherein searching for the at least one contextually related multimedia content element further comprises: generating, based on the determined at least one context, at least one query, wherein the search is based on the at least one query.
  • 4. The method of claim 3, wherein the at least one query includes a textual representation of the at least one context.
  • 5. The method of claim 1, wherein identifying the at least one tag further comprising: determining at least one trendy tag from among tags associated with the at least one contextually related multimedia content element, wherein the identified at least one tag is the determined at least one trendy tag.
  • 6. The method of claim 5, wherein determining the at least one trendy tag further comprises at least one of: calculating a number of mentions of each tag associated with the at least one contextually related multimedia content element, and analyzing comments including each tag associated with the at least one contextually related multimedia content element.
  • 7. The method of claim 1, further comprising at least one of: sending the generated recommendation to a user device, and storing the generated recommendation in a storage.
  • 8. The method of claim 1, wherein obtaining the plurality of signatures further comprises: sending, to a deep content classification system, the multimedia content element to be tagged, wherein the deep content classification system is configured to create concepts for a wide variety of multimedia content elements; andreceiving, from the deep content classification system, the plurality of signatures, wherein the plurality of signatures includes signature reduced clusters representing concepts related to the multimedia content element to be tagged.
  • 9. The method of claim 1, wherein the context is determined as the correlation between a plurality of concepts represented by the obtained plurality of signatures.
  • 10. A non-transitory computer readable medium having stored thereon instructions for causing a processing circuitry to execute a process, the process comprising: obtaining a plurality of signatures for the multimedia content element to be tagged, wherein each of the generated signatures represents a concept, wherein each concept is a collection of signatures and metadata representing the concept;correlating between the plurality of signatures to determine at least one context of the multimedia content element to be tagged;searching for at least one contextually related multimedia content element, wherein each contextually related multimedia content element matches at least one of the determined at least one context;identifying at least one tag, wherein each identified tag is associated with at least one of the at least one contextually related multimedia content element; and
  • 11. A system for recommending tags for a multimedia content element to be tagged, comprising: a processing circuitry; anda memory connected to the processing circuitry, the memory containing instructions that, when executed by the processing circuitry; configure the system to:obtain a plurality of signatures for the multimedia content element to be tagged, wherein each of the generated signatures represents a concept, wherein each concept is a collection of signatures and metadata representing the concept;correlate between the plurality of signatures to determine at least one context of the multimedia content element to be tagged;search for at least one contextually related multimedia content element, wherein each contextually related multimedia content element matches at least one of the determined at least one context;identify at least one tag, wherein each identified tag is associated with at least one of the at least one contextually related multimedia content element; andgenerate a recommendation including the identified at least one tag.
  • 12. The system of claim 11, further comprising: a signature generator system including a plurality of at least partially statistically independent computational cores, wherein the properties of each core are set independently of the properties of each other core, wherein the system is further configured to: generate, by the signature generator system, the plurality of signatures for the multimedia content element.
  • 13. The system of claim 11, wherein the system is further configured to: generate, based on the determined at least one context, at least one query, wherein the search is based on the at least one query.
  • 14. The system of claim 13, wherein the at least one query includes a textual representation of the at least one context.
  • 15. The system of claim 11, wherein the system is further configured to: determine at least one trendy tag from among tags associated with the at least one contextually related multimedia content element, wherein the identified at least one tag is the determined at least one trendy tag.
  • 16. The system of claim 15, wherein the system is further configured to perform at least one of: calculate a number of mentions of each tag associated with the at least one contextually related multimedia content element, and analyze comments including each tag associated with the at least one contextually related multimedia content element.
  • 17. The system of claim 11, wherein the system is further configured to perform at least one of: send the generated recommendation to a user device, and store the generated recommendation in a storage.
  • 18. The system of claim 11, wherein the system is further configured to: send, to a deep content classification system, the multimedia content element to be tagged, wherein the deep content classification system is configured to create concepts for a wide variety of multimedia content elements; andreceive, from the deep content classification system, the plurality of signatures, wherein the plurality of signatures includes signature reduced clusters representing concepts related to the multimedia content element to be tagged.
  • 19. The system of claim 11, wherein the context is determined as the correlation between a plurality of concepts represented by the obtained plurality of signatures.
Priority Claims (3)
Number Date Country Kind
171577 Oct 2005 IL national
173409 Jan 2006 IL national
185414 Aug 2007 IL national
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 62/316,603 filed on Apr. 1, 2016. This application is also a continuation-in-part of U.S. patent application Ser. No. 13/770,603 filed on Feb. 19, 2013, now pending, which is a continuation-in-part (CIP) of U.S. patent application Ser. No. 13/624,397 filed on Sep. 21, 2012, now U.S. Pat. No. 9,191,626. The Ser. No. 13/624,397 Application is a CIP of: (a) U.S. patent application Ser. No. 13/344,400 filed on Jan. 5, 2012, now U.S. Pat. No. 8,959,037, which is a continuation of U.S. patent application Ser. No. 12/434,221 filed on May 1, 2009, now U.S. Pat. No. 8,112,376; (b) U.S. patent application Ser. No. 12/195,863 filed on Aug. 21, 2008, now U.S. Pat. No. 8,326,775, which claims priority under 35 USC 119 from Israeli Application No. 185414, filed on Aug. 21, 2007, and which is also a continuation-in-part of the below-referenced U.S. patent application Ser. No. 12/084,150; and, (c) U.S. patent application Ser. No. 12/084,150 filed on Apr. 25, 2008, now U.S. Pat. No. 8,655,801, which is the National Stage of International Application No. PCT/IL2006/001235, filed on Oct. 26, 2006, which claims foreign priority from Israeli Application No. 171577 filed on Oct. 26, 2005, and Israeli Application No. 173409 filed on Jan. 29, 2006. All of the applications referenced above are herein incorporated by reference.

US Referenced Citations (437)
Number Name Date Kind
4733353 Jaswa Mar 1988 A
4932645 Schorey et al. Jun 1990 A
4972363 Nguyen et al. Nov 1990 A
5307451 Clark Apr 1994 A
5568181 Greenwood et al. Oct 1996 A
5745678 Herzberg et al. Apr 1998 A
5806061 Chaudhuri et al. Sep 1998 A
5852435 Vigneaux et al. Dec 1998 A
5870754 Dimitrova et al. Feb 1999 A
5873080 Coden et al. Feb 1999 A
5887193 Takahashi et al. Mar 1999 A
5978754 Kumano Nov 1999 A
6052481 Grajski et al. Apr 2000 A
6076088 Paik et al. Jun 2000 A
6122628 Castelli et al. Sep 2000 A
6128651 Cezar Oct 2000 A
6137911 Zhilyaev Oct 2000 A
6144767 Bottou et al. Nov 2000 A
6147636 Gershenson Nov 2000 A
6243375 Speicher Jun 2001 B1
6243713 Nelson et al. Jun 2001 B1
6275599 Adler et al. Aug 2001 B1
6329986 Cheng Dec 2001 B1
6381656 Shankman Apr 2002 B1
6411229 Kobayashi Jun 2002 B2
6422617 Fukumoto et al. Jul 2002 B1
6507672 Watkins et al. Jan 2003 B1
6523046 Liu et al. Feb 2003 B2
6524861 Anderson Feb 2003 B1
6550018 Abonamah et al. Apr 2003 B1
6594699 Sahai et al. Jul 2003 B1
6611628 Sekiguchi et al. Aug 2003 B1
6618711 Ananth Sep 2003 B1
6640015 Lafruit Oct 2003 B1
6643620 Contolini et al. Nov 2003 B1
6643643 Lee et al. Nov 2003 B1
6665657 Dibachi Dec 2003 B1
6704725 Lee Mar 2004 B1
6732149 Kephart May 2004 B1
6751363 Natsev et al. Jun 2004 B1
6751613 Lee et al. Jun 2004 B1
6754435 Kim Jun 2004 B2
6763069 Divakaran et al. Jul 2004 B1
6763519 McColl et al. Jul 2004 B1
6774917 Foote et al. Aug 2004 B1
6795818 Lee Sep 2004 B1
6804356 Krishnamachari Oct 2004 B1
6819797 Smith et al. Nov 2004 B1
6845374 Oliver et al. Jan 2005 B1
6901207 Watkins May 2005 B1
6938025 Lulich et al. Aug 2005 B1
7006689 Kasutani Feb 2006 B2
7013051 Sekiguchi et al. Mar 2006 B2
7020654 Najmi Mar 2006 B1
7043473 Rassool et al. May 2006 B1
7047033 Wyler May 2006 B2
7158681 Persiantsev Jan 2007 B2
7199798 Echigo et al. Apr 2007 B1
7215828 Luo May 2007 B2
7260564 Lynn et al. Aug 2007 B1
7277928 Lennon Oct 2007 B2
7302117 Sekiguchi et al. Nov 2007 B2
7313805 Rosin et al. Dec 2007 B1
7340458 Vaithilingam et al. Mar 2008 B2
7353224 Chen et al. Apr 2008 B2
7376672 Weare May 2008 B2
7376722 Sim et al. May 2008 B1
7433895 Li et al. Oct 2008 B2
7464086 Black et al. Dec 2008 B2
7519238 Robertson et al. Apr 2009 B2
7526607 Singh et al. Apr 2009 B1
7536417 Walsh et al. May 2009 B2
7574668 Nunez et al. Aug 2009 B2
7577656 Kawai et al. Aug 2009 B2
7657100 Gokturk et al. Feb 2010 B2
7660468 Gokturk et al. Feb 2010 B2
7660737 Lim et al. Feb 2010 B1
7689544 Koenig Mar 2010 B2
7694318 Eldering et al. Apr 2010 B2
7697791 Chan et al. Apr 2010 B1
7769221 Shakes et al. Aug 2010 B1
7788132 Desikan et al. Aug 2010 B2
7788247 Wang et al. Aug 2010 B2
7801893 Gulli Sep 2010 B2
7836054 Kawai et al. Nov 2010 B2
7860895 Scofield Dec 2010 B1
7904503 De Mar 2011 B2
7920894 Wyler Apr 2011 B2
7921107 Chang et al. Apr 2011 B2
7933407 Keidar et al. Apr 2011 B2
7974994 Li et al. Jul 2011 B2
7987194 Walker et al. Jul 2011 B1
7987217 Long et al. Jul 2011 B2
7991715 Schiff et al. Aug 2011 B2
8000655 Wang et al. Aug 2011 B2
8036893 Reich Oct 2011 B2
8098934 Vincent Jan 2012 B2
8112376 Raichelgauz et al. Feb 2012 B2
8266185 Raichelgauz et al. Sep 2012 B2
8275764 Jeon Sep 2012 B2
8312031 Raichelgauz et al. Nov 2012 B2
8315442 Gokturk et al. Nov 2012 B2
8316005 Moore Nov 2012 B2
8326775 Raichelgauz et al. Dec 2012 B2
8332478 Levy et al. Dec 2012 B2
8345982 Gokturk et al. Jan 2013 B2
RE44225 Aviv May 2013 E
8527978 Sallam Sep 2013 B1
8548828 Longmire Oct 2013 B1
8634980 Urmson Jan 2014 B1
8655801 Raichelgauz et al. Feb 2014 B2
8677377 Cheyer et al. Mar 2014 B2
8682667 Haughay Mar 2014 B2
8688446 Yanagihara Apr 2014 B2
8706503 Cheyer et al. Apr 2014 B2
8775442 Moore et al. Jul 2014 B2
8781152 Momeyer Jul 2014 B2
8782077 Rowley Jul 2014 B1
8799195 Raichelgauz et al. Aug 2014 B2
8799196 Raichelquaz et al. Aug 2014 B2
8818916 Raichelgauz et al. Aug 2014 B2
8868619 Raichelgauz et al. Oct 2014 B2
8880539 Raichelgauz et al. Nov 2014 B2
8880566 Raichelgauz et al. Nov 2014 B2
8886648 Procopio et al. Nov 2014 B1
8898568 Bull et al. Nov 2014 B2
8922414 Raichelgauz et al. Dec 2014 B2
8959037 Raichelgauz et al. Feb 2015 B2
8990125 Raichelgauz et al. Mar 2015 B2
9009086 Raichelgauz et al. Apr 2015 B2
9031999 Raichelgauz et al. May 2015 B2
9087049 Raichelgauz et al. Jul 2015 B2
9104747 Raichelgauz et al. Aug 2015 B2
9165406 Gray et al. Oct 2015 B1
9191626 Raichelgauz et al. Nov 2015 B2
9197244 Raichelgauz et al. Nov 2015 B2
9218606 Raichelgauz et al. Dec 2015 B2
9235557 Raichelgauz et al. Jan 2016 B2
9256668 Raichelgauz et al. Feb 2016 B2
9298763 Zack Mar 2016 B1
9323754 Ramanathan et al. Apr 2016 B2
9330189 Raichelgauz et al. May 2016 B2
9438270 Raichelgauz et al. Sep 2016 B2
9440647 Sucan Sep 2016 B1
9734533 Givot Aug 2017 B1
10133947 Yang Nov 2018 B2
10347122 Takenaka Jul 2019 B2
10491885 Hicks Nov 2019 B1
20010019633 Tenze Sep 2001 A1
20010038876 Anderson Nov 2001 A1
20010056427 Yoon et al. Dec 2001 A1
20020010682 Johnson Jan 2002 A1
20020019881 Bokhari et al. Feb 2002 A1
20020019882 Bokhani Feb 2002 A1
20020037010 Yamauchi Mar 2002 A1
20020038299 Zernik et al. Mar 2002 A1
20020059580 Kalker et al. May 2002 A1
20020072935 Rowse et al. Jun 2002 A1
20020087530 Smith et al. Jul 2002 A1
20020099870 Miller et al. Jul 2002 A1
20020107827 Benitez-Jimenez et al. Aug 2002 A1
20020123928 Eldering et al. Sep 2002 A1
20020126872 Brunk et al. Sep 2002 A1
20020129140 Peled et al. Sep 2002 A1
20020129296 Kwiat et al. Sep 2002 A1
20020143976 Barker et al. Oct 2002 A1
20020147637 Kraft et al. Oct 2002 A1
20020152267 Lennon Oct 2002 A1
20020157116 Jasinschi Oct 2002 A1
20020159640 Vaithilingam et al. Oct 2002 A1
20020161739 Oh Oct 2002 A1
20020163532 Thomas Nov 2002 A1
20020174095 Lulich et al. Nov 2002 A1
20020178410 Haitsma et al. Nov 2002 A1
20030028660 Igawa et al. Feb 2003 A1
20030037010 Schmelzer Feb 2003 A1
20030041047 Chang et al. Feb 2003 A1
20030050815 Seigel et al. Mar 2003 A1
20030078766 Appelt et al. Apr 2003 A1
20030086627 Berriss et al. May 2003 A1
20030089216 Birmingham et al. May 2003 A1
20030101150 Agnihotri May 2003 A1
20030105739 Essafi et al. Jun 2003 A1
20030126147 Essafi et al. Jul 2003 A1
20030182567 Barton et al. Sep 2003 A1
20030191764 Richards Oct 2003 A1
20030200217 Ackerman Oct 2003 A1
20030217335 Chung et al. Nov 2003 A1
20030229531 Heckerman et al. Dec 2003 A1
20040003394 Ramaswamy Jan 2004 A1
20040025180 Begeja et al. Feb 2004 A1
20040059736 Willse Mar 2004 A1
20040068510 Hayes et al. Apr 2004 A1
20040091111 Levy May 2004 A1
20040107181 Rodden Jun 2004 A1
20040111465 Chuang et al. Jun 2004 A1
20040117367 Smith et al. Jun 2004 A1
20040128142 Whitham Jul 2004 A1
20040128511 Sun et al. Jul 2004 A1
20040133927 Sternberg et al. Jul 2004 A1
20040153426 Nugent Aug 2004 A1
20040215663 Liu et al. Oct 2004 A1
20040230572 Omoigui Nov 2004 A1
20040249779 Nauck et al. Dec 2004 A1
20040260688 Gross Dec 2004 A1
20040267774 Lin et al. Dec 2004 A1
20050021394 Miedema et al. Jan 2005 A1
20050114198 Koningstein et al. May 2005 A1
20050131884 Gross et al. Jun 2005 A1
20050144455 Haitsma Jun 2005 A1
20050172130 Roberts Aug 2005 A1
20050177372 Wang et al. Aug 2005 A1
20050193015 Logston Sep 2005 A1
20050238238 Xu et al. Oct 2005 A1
20050245241 Durand et al. Nov 2005 A1
20050262428 Little et al. Nov 2005 A1
20050281439 Lange Dec 2005 A1
20050289163 Gordon et al. Dec 2005 A1
20050289590 Cheok et al. Dec 2005 A1
20060004745 Kuhn et al. Jan 2006 A1
20060013451 Haitsma Jan 2006 A1
20060020860 Tardif et al. Jan 2006 A1
20060020958 Allamanche et al. Jan 2006 A1
20060026203 Tan et al. Feb 2006 A1
20060031216 Semple et al. Feb 2006 A1
20060041596 Stirbu et al. Feb 2006 A1
20060048191 Xiong Mar 2006 A1
20060064037 Shalon et al. Mar 2006 A1
20060100987 Leurs May 2006 A1
20060112035 Cecchi et al. May 2006 A1
20060120626 Perlmutter Jun 2006 A1
20060129822 Snijder et al. Jun 2006 A1
20060143674 Jones et al. Jun 2006 A1
20060153296 Deng Jul 2006 A1
20060159442 Kim et al. Jul 2006 A1
20060173688 Whitham Aug 2006 A1
20060184638 Chua et al. Aug 2006 A1
20060204035 Guo et al. Sep 2006 A1
20060217818 Fujiwara Sep 2006 A1
20060217828 Hicken Sep 2006 A1
20060224529 Kermani Oct 2006 A1
20060236343 Chang Oct 2006 A1
20060242130 Sadri Oct 2006 A1
20060242139 Butterfield et al. Oct 2006 A1
20060242554 Gerace et al. Oct 2006 A1
20060247983 Dalli Nov 2006 A1
20060248558 Barton Nov 2006 A1
20060251339 Gokturk Nov 2006 A1
20060253423 McLane et al. Nov 2006 A1
20070019864 Koyama et al. Jan 2007 A1
20070033163 Epstein et al. Feb 2007 A1
20070038614 Guha Feb 2007 A1
20070042757 Jung et al. Feb 2007 A1
20070061302 Ramer et al. Mar 2007 A1
20070067304 Ives Mar 2007 A1
20070067682 Fang Mar 2007 A1
20070071330 Oostveen et al. Mar 2007 A1
20070074147 Wold Mar 2007 A1
20070083611 Farago et al. Apr 2007 A1
20070091106 Moroney Apr 2007 A1
20070130159 Gulli et al. Jun 2007 A1
20070168413 Barletta et al. Jul 2007 A1
20070195987 Rhoads Aug 2007 A1
20070196013 Li Aug 2007 A1
20070220573 Chiussi et al. Sep 2007 A1
20070244902 Seide et al. Oct 2007 A1
20070253594 Lu et al. Nov 2007 A1
20070255785 Hayashi et al. Nov 2007 A1
20070294295 Finkelstein et al. Dec 2007 A1
20070298152 Baets Dec 2007 A1
20080019614 Robertson et al. Jan 2008 A1
20080040277 DeWitt Feb 2008 A1
20080046406 Seide et al. Feb 2008 A1
20080049629 Morrill Feb 2008 A1
20080072256 Boicey et al. Mar 2008 A1
20080091527 Silverbrook et al. Apr 2008 A1
20080109433 Rose May 2008 A1
20080152231 Gokturk Jun 2008 A1
20080163288 Ghosal et al. Jul 2008 A1
20080165861 Wen Jul 2008 A1
20080166020 Kosaka Jul 2008 A1
20080201299 Lehikoinen et al. Aug 2008 A1
20080201314 Smith et al. Aug 2008 A1
20080204706 Magne et al. Aug 2008 A1
20080228995 Tan et al. Sep 2008 A1
20080237359 Silverbrook et al. Oct 2008 A1
20080253737 Kimura Oct 2008 A1
20080263579 Mears et al. Oct 2008 A1
20080270373 Oostveen et al. Oct 2008 A1
20080270569 McBride Oct 2008 A1
20080294278 Borgeson Nov 2008 A1
20080313140 Pereira et al. Dec 2008 A1
20090013414 Washington et al. Jan 2009 A1
20090022472 Bronstein Jan 2009 A1
20090034791 Doretto Feb 2009 A1
20090043637 Eder Feb 2009 A1
20090043818 Raichelgauz Feb 2009 A1
20090080759 Bhaskar Mar 2009 A1
20090089587 Brunk et al. Apr 2009 A1
20090119157 Dulepet May 2009 A1
20090125529 Vydiswaran et al. May 2009 A1
20090125544 Brindley May 2009 A1
20090148045 Lee et al. Jun 2009 A1
20090157575 Schobben et al. Jun 2009 A1
20090172030 Schiff et al. Jul 2009 A1
20090175538 Bronstein et al. Jul 2009 A1
20090204511 Tsang Aug 2009 A1
20090216639 Kapczynski et al. Aug 2009 A1
20090216761 Raichelgauz Aug 2009 A1
20090245573 Saptharishi et al. Oct 2009 A1
20090245603 Koruga et al. Oct 2009 A1
20090253583 Yoganathan Oct 2009 A1
20090254824 Singh Oct 2009 A1
20090277322 Cai et al. Nov 2009 A1
20090278934 Ecker Nov 2009 A1
20100023400 DeWitt Jan 2010 A1
20100042646 Raichelqauz Feb 2010 A1
20100082684 Churchill Apr 2010 A1
20100088321 Solomon et al. Apr 2010 A1
20100104184 Bronstein Apr 2010 A1
20100106857 Wyler Apr 2010 A1
20100111408 Matsuhira May 2010 A1
20100125569 Nair May 2010 A1
20100162405 Cook Jun 2010 A1
20100173269 Puri et al. Jul 2010 A1
20100191567 Lee et al. Jul 2010 A1
20100268524 Nath et al. Oct 2010 A1
20100306193 Pereira Dec 2010 A1
20100318493 Wessling Dec 2010 A1
20100322522 Wang et al. Dec 2010 A1
20110029620 Bonforte Feb 2011 A1
20110035289 King et al. Feb 2011 A1
20110038545 Bober Feb 2011 A1
20110052063 McAuley et al. Mar 2011 A1
20110055585 Lee Mar 2011 A1
20110106782 Ke et al. May 2011 A1
20110125727 Zou et al. May 2011 A1
20110145068 King et al. Jun 2011 A1
20110202848 Ismalon Aug 2011 A1
20110208822 Rathod Aug 2011 A1
20110246566 Kashef Oct 2011 A1
20110251896 Impollonia et al. Oct 2011 A1
20110313856 Cohen et al. Dec 2011 A1
20120082362 Diem et al. Apr 2012 A1
20120131454 Shah May 2012 A1
20120133497 Sasaki May 2012 A1
20120150890 Jeong et al. Jun 2012 A1
20120167133 Carroll Jun 2012 A1
20120179751 Ahn Jul 2012 A1
20120185445 Borden et al. Jul 2012 A1
20120191686 Hjelm et al. Jul 2012 A1
20120197857 Huang Aug 2012 A1
20120239694 Avner et al. Sep 2012 A1
20120299961 Ramkumar et al. Nov 2012 A1
20120330869 Durham Dec 2012 A1
20120331011 Raichelgauz et al. Dec 2012 A1
20130031489 Gubin et al. Jan 2013 A1
20130066856 Ong et al. Mar 2013 A1
20130067035 Amanat et al. Mar 2013 A1
20130067364 Berntson et al. Mar 2013 A1
20130086499 Dyor et al. Apr 2013 A1
20130089248 Remiszewski Apr 2013 A1
20130103814 Carrasco Apr 2013 A1
20130104251 Moore et al. Apr 2013 A1
20130159298 Mason et al. Jun 2013 A1
20130173635 Sanjeev Jul 2013 A1
20130212493 Krishnamurthy Aug 2013 A1
20130226820 Sedota, Jr. Aug 2013 A1
20130325550 Varghese et al. Dec 2013 A1
20130332951 Gharaat et al. Dec 2013 A1
20140019264 Wachman et al. Jan 2014 A1
20140025692 Pappas Jan 2014 A1
20140059443 Tabe Feb 2014 A1
20140095425 Sipple Apr 2014 A1
20140111647 Atsmon Apr 2014 A1
20140125703 Roveta May 2014 A1
20140147829 Jerauld May 2014 A1
20140152698 Kim et al. Jun 2014 A1
20140176604 Venkitaraman et al. Jun 2014 A1
20140188786 Raichelgauz et al. Jul 2014 A1
20140193077 Shiiyama et al. Jul 2014 A1
20140201330 Lozano Lopez Jul 2014 A1
20140250032 Huang et al. Sep 2014 A1
20140282655 Roberts Sep 2014 A1
20140300722 Garcia Oct 2014 A1
20140310825 Raichelgauz et al. Oct 2014 A1
20140330830 Raichelgauz et al. Nov 2014 A1
20140379477 Sheinfeld Dec 2014 A1
20150033150 Lee Jan 2015 A1
20150117784 Lin Apr 2015 A1
20150134688 Jing May 2015 A1
20150286742 Zhang et al. Oct 2015 A1
20150289022 Gross Oct 2015 A1
20150363644 Wnuk Dec 2015 A1
20160026707 Ong et al. Jan 2016 A1
20160210525 Yang Jul 2016 A1
20160221592 Puttagunta Aug 2016 A1
20160342683 Kwon Nov 2016 A1
20160357188 Ansari Dec 2016 A1
20170032257 Sharifi Feb 2017 A1
20170041254 Agara Venkatesha Rao Feb 2017 A1
20170109602 Kim Apr 2017 A1
20170255620 Raichelgauz Sep 2017 A1
20170262437 Raichelgauz Sep 2017 A1
20170323568 Inoue Nov 2017 A1
20180081368 Watanabe Mar 2018 A1
20180101177 Cohen Apr 2018 A1
20180157916 Doumbouya Jun 2018 A1
20180158323 Takenaka Jun 2018 A1
20180204111 Zadeh Jul 2018 A1
20190005726 Nakano Jan 2019 A1
20190039627 Yamamoto Feb 2019 A1
20190043274 Hayakawa Feb 2019 A1
20190045244 Balakrishnan Feb 2019 A1
20190056718 Satou Feb 2019 A1
20190065951 Luo Feb 2019 A1
20190188501 Ryu Jun 2019 A1
20190220011 Della Penna Jul 2019 A1
20190317513 Zhang Oct 2019 A1
20190364492 Azizi Nov 2019 A1
20190384303 Muller Dec 2019 A1
20190384312 Herbach Dec 2019 A1
20190385460 Magzimof Dec 2019 A1
20190389459 Berntorp Dec 2019 A1
20200004248 Healey Jan 2020 A1
20200004251 Zhu Jan 2020 A1
20200004265 Zhu Jan 2020 A1
20200005631 Visintainer Jan 2020 A1
20200018606 Wolcott Jan 2020 A1
20200018618 Ozog Jan 2020 A1
20200020212 Song Jan 2020 A1
20200050973 Stenneth Feb 2020 A1
20200073977 Montemerlo Mar 2020 A1
20200090484 Chen Mar 2020 A1
20200097756 Hashimoto Mar 2020 A1
20200133307 Kelkar Apr 2020 A1
20200043326 Tao Jun 2020 A1
Foreign Referenced Citations (8)
Number Date Country
0231764 Apr 2002 WO
2003005242 Jan 2003 WO
2003067467 Aug 2003 WO
2004019527 Mar 2004 WO
2005027457 Mar 2005 WO
20070049282 May 2007 WO
2014137337 Sep 2014 WO
2016040376 Mar 2016 WO
Non-Patent Literature Citations (85)
Entry
Johnson, John L., “Pulse-Coupled Neural Nets: Translation, Rotation, Scale, Distortion, and Intensity Signal Invariance for Images.” Applied Optics, vol. 33, No. 26, 1994, pp. 6239-6253.
Queluz, “Content-Based Integrity Protection of Digital Images”, SPIE Conf. on Security and Watermarking of Multimedia Contents, San Jose, Jan. 1999, pp. 85-93, downloaded from http://proceedings.spiedigitallibrary.org/ on Aug. 2, 2017.
Schneider, et. al., “A Robust Content Based Digital Signature for Image Authentication”, Proc. ICIP 1996, Laussane, Switzerland, Oct. 1996, pp. 227-230.
The International Search Report and the Written Opinion for PCT/US2016/050471, ISA/RU, Moscow, RU, dated May 4, 2017.
The International Search Report and the Written Opinion for PCT/US2016/054634 dated Mar. 16, 2017, ISA/RU, Moscow, RU.
The International Search Report and the Written Opinion for PCT/US2017/015831, ISA/RU, Moscow, Russia, dated Apr. 20, 2017.
Zou, et al., “A Content-Based Image Authentication System with Lossless Data Hiding”, ICME 2003, pp. 213-216.
Ma Et El. (“Semantics modeling based image retrieval system using neural networks” 2005 (Year: 2005).
Boari et al, “Adaptive Routing for Dynamic Applications in Massively Parallel Architectures”, 1995 IEEE, Spring 1995.
Brecheisen, et al., “Hierarchical Genre Classification for Large Music Collections”, ICME 2006, pp. 1385-1388.
Burgsteiner et al.: “Movement Prediction From Real-World Images Using a Liquid State Machine”, Innovations in Applied Artificial Intelligence Lecture Notes in Computer Science, Lecture Notes in Artificial Intelligence, LNCS, Springer-Verlag, BE, vol. 3533, Jun. 2005, pp. 121-130.
Cernansky et al., “Feed-forward Echo State Networks”; Proceedings of International Joint Conference on Neural Networks, Montreal, Canada, Jul. 31-Aug. 4, 2005; Entire Document.
Chuan-Yu Cho, et al., “Efficient Motion-Vector-Based Video Search Using Query by Clip”, 2004, IEEE, Taiwan, pp. 1-4.
Clement, et al. “Speaker Diarization of Heterogeneous Web Video Files: A Preliminary Study”, Acoustics, Speech and Signal Processing (ICASSP), 2011, IEEE International Conference on Year: 2011, pp. 4432-4435, DOI: 10.1109/ICASSP.2011.5947337 IEEE Conference Publications, France.
Cococcioni, et al, “Automatic Diagnosis of Defects of Rolling Element Bearings Based on Computational Intelligence Techniques”, University of Pisa, Pisa, Italy, 2009.
Emami, et al, “Role of Spatiotemporal Oriented Energy Features for Robust Visual Tracking in Video Surveillance, University of Queensland”, St. Lucia, Australia, 2012.
Fathy et al., “A Parallel Design and Implementation for Backpropagation Neural Network Using NIMD Architecture”, 8th Mediterranean Electrotechnical Corsfe rersce, 19'96. MELECON '96, Date of Conference: May 13-16, 1996, vol. 3, pp. 1472-1475.
Foote, Jonathan et al., “Content-Based Retrieval of Music and Audio”; 1997, Institute of Systems Science, National University of Singapore, Singapore (Abstract).
Freisleben et al., “Recognition of Fractal Images Using a Neural Network”, Lecture Notes in Computer Science, 1993, vol. 6861, 1993, pp. 631-637.
Garcia, “Solving the Weighted Region Least Cost Path Problem Using Transputers”, Naval Postgraduate School, Monterey, California, Dec. 1989.
Gomes et al., “Audio Watermaking and Fingerprinting: For Which Applications?” University of Rene Descartes, Paris, France, 2003.
Gong, et al., “A Knowledge-based Mediator for Dynamic Integration of Heterogeneous Multimedia Information Sources”, Video and Speech Processing, 2004, Proceedings of 2004 International Symposium on Year: 2004, pp. 467-470, DOI: 10.1109/ISIMP.2004.1434102 IEEE Conference Publications, Hong Kong.
Guo et al, “AdOn: An Intelligent Overlay Video Advertising System”, SIGIR, Boston, Massachusetts, Jul. 19-23, 2009.
Howlett et al., “A Multi-Computer Neural Network Architecture in a Virtual Sensor System Application”, International Journal of Knowledge-based Intelligent Engineering Systems, 4 (2). pp. 86-93, 133N 1327-2314; first submitted Nov. 30, 1999; revised version submitted Mar. 10, 2000.
Ihab Al Kabary, et al., “SportSense: Using Motion Queries to Find Scenes in Sports Videos”, Oct. 2013, ACM, Switzerland, pp. 1-3.
International Search Authority: “Written Opinion of the International Searching Authority” (PCT Rule 43bis.1) Including International Search Report for International Patent Application No. PCT/US2008/073852; dated Jan. 28, 2009.
International Search Authority: International Preliminary Report on Patentability (Chapter I of the Patent Cooperation Treaty) including “Written Opinion of the International Searching Authority” (PCT Rule 43bis. 1) for the corresponding International Patent Application No. PCT/IL2006/001235; dated Jul. 28, 2009.
International Search Report for the corresponding International Patent Application PCT/IL2006/001235; dated Nov. 2, 2008.
IPO Examination Report under Section 18(3) for corresponding UK application No. GB1001219.3, dated May 30, 2012.
IPO Examination Report under Section 18(3) for corresponding UK application No. GB1001219.3, dated Sep. 12, 2011; Entire Document.
Iwamoto, K.; Kasutani, E.; Yamada, A.: “Image Signature Robust to Caption Superimposition for Video Sequence Identification”; 2006 IEEE International Conference on Image Processing; pp. 3185-3188, Oct. 8-11, 2006; doi: 10.1109/ICIP.2006.313046.
Jaeger, H.: “The “echo state” approach to analysing and training recurrent neural networks”, GMD Report, No. 148, 2001, pp. 1-43, XP002466251 German National Research Center for Information Technology.
Jianping Fan et al., “Concept-Oriented Indexing of Video Databases: Towards Semantic Sensitive Retrieval and Browsing”, IEEE, vol. 13, No. 7, Jul. 2004, pp. 1-19.
Lau, et al., “Semantic Web Service Adaptation Model for a Pervasive Learning Scenario”, 2008 IEEE Conference on Innovative Technologies in Intelligent Systems and Industrial Applications Year: 2008, pp. 98-103, DOI: 10.1109/CITISIA.2008.4607342 IEEE Conference Publications.
Li, et al., “Matching Commercial Clips from TV Streams Using a Unique, Robust and Compact Signature,” Proceedings of the Digital Imaging Computing: Techniques and Applications, Feb. 2005, vol. 0-7695-2467, Australia.
Lin, C.; Chang, S.: “Generating Robust Digital Signature for Image/Video Authentication”, Multimedia and Security Workshop at ACM Mutlimedia '98; Bristol, U.K., Sep. 1998; pp. 49-54.
Lin, et al., “Robust Digital Signature for Multimedia Authentication: A Summary”, IEEE Circuits and Systems Magazine, 4th Quarter 2003, pp. 23-26.
Lin, et al., “Summarization of Large Scale Social Network Activity”, Acoustics, Speech and Signal Processing, 2009, ICASSP 2009, IEEE International Conference on Year 2009, pp. 3481-3484, DOI: 10.1109/ICASSP.2009.4960375, IEEE Conference Publications, Arizona.
Liu, et al., “Instant Mobile Video Search With Layered Audio-Video Indexing and Progressive Transmission”, Multimedia, IEEE Transactions on Year: 2014, vol. 16, Issue: 8, pp. 2242-2255, DOI: 10.1109/TMM.2014.2359332 IEEE Journals & Magazines.
Lyon, Richard F.; “Computational Models of Neural Auditory Processing”; IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP '84, Date of Conference: Mar. 1984, vol. 9, pp. 41-44.
Maass, W. et al.: “Computational Models for Generic Cortical Microcircuits”, Institute for Theoretical Computer Science, Technische Universitaet Graz, Graz, Austria, published Jun. 10, 2003.
Mahdhaoui, et al, “Emotional Speech Characterization Based on Multi-Features Fusion for Face-to-Face Interaction”, Universite Pierre et Marie Curie, Paris, France, 2009.
Marti, et al, “Real Time Speaker Localization and Detection System for Camera Steering in Multiparticipant Videoconferencing Environments”, Universidad Politecnica de Valencia, Spain, 2011.
May et al., “The Transputer”, Springer-Verlag, Berlin Heidelberg, 1989, teaches multiprocessing system.
McNamara, et al., “Diversity Decay in Opportunistic Content Sharing Systems”, 2011 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks Year: 2011, pp. 1-3, DOI: 10.1109/WoWMoM.2011.5986211 IEEE Conference Publications.
Mei, et al., “Contextual In-Image Advertising”, Microsoft Research Asia, pp. 439-448, 2008.
Mei, et al., “VideoSense—Towards Effective Online Video Advertising”, Microsoft Research Asia, pp. 1075-1084, 2007.
Mladenovic, et al., “Electronic Tour Guide for Android Mobile Platform with Multimedia Travel Book”, Telecommunications Forum (TELFOR), 2012 20th Year: 2012, pp. 1460-1463, DOI: 10.1109/TELFOR.2012.6419494 IEEE Conference Publications.
Morad, T.Y. et al.: “Performance, Power Efficiency and Scalability of Asymmetric Cluster Chip Multiprocessors”, Computer Architecture Letters, vol. 4, Jul. 4, 2005 (Jul. 4, 2005), pp. 1-4, XP002466254.
Nagy et al, “A Transputer, Based, Flexible, Real-Time Control System for Robotic Manipulators”, UKACC International Conference on CONTROL '96, Sep. 2-5, 1996, Conference 1996, Conference Publication No. 427, IEE 1996.
Nam, et al., “Audio Visual Content-Based Violent Scene Characterization”, Department of Electrical and Computer Engineering, Minneapolis, MN, 1998, pp. 353-357.
Natsclager, T. et al.: “The “liquid computer”: A novel strategy for real-time computing on time series”, Special Issue on Foundations of Information Processing of Telematik, vol. 8, No. 1, 2002, pp. 39-43, XP002466253.
Nouza, et al., “Large-scale Processing, Indexing and Search System for Czech Audio-Visual Heritage Archives”, Multimedia Signal Processing (MMSP), 2012, pp. 337-342, IEEE 14th Intl. Workshop, DOI: 10.1109/MMSP.2012.6343465, Czech Republic.
Odinaev, et al., “Cliques in Neural Ensembles as Perception Carriers”, Technion—Israel Institute of Technology, 2006 International Joint Conference on Neural Networks, Canada, 2006, pp. 285-292.
Ortiz-Boyer et al., “CIXL2: A Crossover Operator for Evolutionary Algorithms Based on Population Features”, Journal of Artificial Intelligence Research 24 (2005), pp. 1-48 Submitted Nov. 2004; published Jul. 2005.
Park, et al., “Compact Video Signatures for Near-Duplicate Detection on Mobile Devices”, Consumer Electronics (ISCE 2014), The 18th IEEE International Symposium on Year: 2014, pp. 1-2, DOI: 10.1109/ISCE.2014.6884293 IEEE Conference Publications.
Raichelgauz, I. et al.: “Co-evolutionary Learning in Liquid Architectures”, Lecture Notes in Computer Science, [Online] vol. 3512, Jun. 21, 2005 (Jun. 21, 2005), pp. 241-248, XP019010280 Springer Berlin / Heidelberg ISSN: 1611-3349 ISBN: 978-3-540-26208-4.
Ribert et al. “An Incremental Hierarchical Clustering”, Visicon Interface 1999, pp. 586-591.
Santos, et al., “SCORM-MPEG: an Ontology of Interoperable Metadata for Multimedia and e-Learning”, 2015 23rd International Conference on Software, Telecommunications and Computer Networks (SoftCOM) Year: 2015, pp. 224-228, DOI: 10.1109/SOFTCOM.2015.7314122 IEEE Conference Publications.
Scheper et al, “Nonlinear dynamics in neural computation”, ESANN'2006 proceedings—European Symposium on Artificial Neural Networks, Bruges (Belgium), Apr. 26-28, 2006, d-side publi, ISBN 2-930307-06-4.
Semizarov et al. “Specificity of Short Interfering RNA Determined through Gene Expression Signatures”, PNAS, 2003, pp. 6347-6352.
Shin-Fu Chang, et al., “VideoQ: A Fully Automated Video Retrieval System Using Motion Sketches”, 1998, IEEE, , New York, pp. 1-2.
Theodoropoulos et al, “Simulating Asynchronous Architectures on Transputer Networks”, Proceedings of the Fourth Euromicro Workshop on Parallel and Distributed Processing, 1996. PDP '96.
Vailaya, et al., “Content-Based Hierarchical Classification of Vacation Images,” I.E.E.E.: Multimedia Computing and Systems, vol. 1, 1999, East Lansing, MI, pp. 518-523.
Vallet, et al., “Personalized Content Retrieval in Context Using Ontological Knowledge,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 17, No. 3, Mar. 2007, pp. 336-346.
Verstraeten et al., “Isolated word recognition with the Liquid State Machine: a case study”; Department of Electronics and Information Systems, Ghent University, Sint-Pietersnieuwstraat 41, 9000 Gent, Belgium, Available online Jul. 14, 2005; Entire Document.
Wang et al. “A Signature for Content-based Image Retrieval Using a Geometrical Transform”, ACM 1998, pp. 229-234.
Ware et al., “Locating and Identifying Components in a Robot's Workspace using a Hybrid Computer Architecture”; Proceedings of the 1995 IEEE International Symposium on Intelligent Control, Aug. 27-29, 1995, pp. 139-144.
Wei-Te Li et al., “Exploring Visual and Motion Saliency for Automatic Video Object Extraction”, IEEE, vol. 22, No. 7, Jul. 2013, pp. 1-11.
Whitby-Strevens, “The Transputer”, 1985 IEEE, Bristol, UK.
Wilk, et al., “The Potential of Social-Aware Multimedia Prefetching on Mobile Devices”, 2015 International Conference and Workshops on Networked Systems (NetSys) Year: 2015, pp. 1-5, DOI: 10.1109/NetSys.2015.7089081 IEEE Conference Publications.
Xian-Sheng Hua et al.: “Robust Video Signature Based on Ordinal Measure” In: 2004 International Conference on Image Processing, ICIP '04; Microsoft Research Asia, Beijing, China; published Oct. 24-27, 2004, pp. 685-688.
Yanai, “Generic Image Classification Using Visual Knowledge on the Web,” MM'03, Nov. 2-8, 2003, Tokyo, Japan, pp. 167-176.
Zang, et al., “A New Multimedia Message Customizing Framework for Mobile Devices”, Multimedia and Expo, 2007 IEEE International Conference on Year: 2007, pp. 1043-1046, DOI: 10.1109/ICME.2007.4284832 IEEE Conference Publications.
Zeevi, Y. et al.: “Natural Signal Classification by Neural Cliques and Phase-Locked Attractors”, IEEE World Congress on Computational Intelligence, IJCNN2006, Vancouver, Canada, Jul. 2006 (Jul. 2006), XP002466252.
Zhou et al., “Ensembling neural networks: Many could be better than all”; National Laboratory for Novel Software Technology, Nanjing Unviersirty, Hankou Road 22, Nanjing 210093, PR China; Available online Mar. 12, 2002; Entire Document.
Zhou et al., “Medical Diagnosis With C4.5 Rule Preceded by Artificial Neural Network Ensemble”; IEEE Transactions on Information Technology in Biomedicine, vol. 7, Issue: 1, pp. 37-42, Date of Publication: Mar. 2003.
Zhu et al., Technology-Assisted Dietary Assessment. Computational Imaging VI, edited by Charles A. Bouman, Eric L. Miller, Ilya Pollak, Proc. of SPIE-IS&T Electronic Imaging, SPIE vol. 6814, 681411, Copyright 2008 SPIE-IS&T. pp. 1-10.
Jasinschi et al., A Probabilistic Layered Framework for Integrating Multimedia Content and Context Information, 2002, IEEE, p. 2057-2060. (Year: 2002).
Jones et al., “Contextual Dynamics of Group-Based Sharing Decisions”, 2011, University of Bath, p. 1777-1786. (Year: 2011).
Iwamoto, “Image Signature Robust to Caption Superimpostion for Video Sequence Identification”, IEEE, pp. 3185-3188 (Year: 2006).
Cooperative Multi-Scale Convolutional Neural, Networks for Person Detection, Markus Eisenbach, Daniel Seichter, Tim Wengefeld, and Horst-Michael Gross Ilmenau University of Technology, Neuroinformatics and Cognitive Robotics Lab (Year; 2016).
Chen, Yixin, James Ze Wang, and Robert Krovetz. “CLUE: cluster-based retrieval of images by unsupervised learning.” IEEE transactions on Image Processing 14.8 (2005); 1187-1201. (Year: 2005).
Wusk et al (Non-Invasive detection of Respiration and Heart Rate with a Vehicle Seat Sensor; www.mdpi.com/journal/sensors; Published: May 8, 2018). (Year: 2018).
Chen, Tiffany Yu-Han, et al. “Glimpse: Continuous, real-time object recognition on mobile devices.” Proceedings of the 13th ACM Confrecene on Embedded Networked Sensor Systems. 2015. (Year: 2015).
Related Publications (1)
Number Date Country
20170206196 A1 Jul 2017 US
Provisional Applications (1)
Number Date Country
62316603 Apr 2016 US
Continuations (1)
Number Date Country
Parent 12434221 May 2009 US
Child 13344400 US
Continuation in Parts (6)
Number Date Country
Parent 13770603 Feb 2013 US
Child 15474019 US
Parent 13624397 Sep 2012 US
Child 13770603 US
Parent 13344400 Jan 2012 US
Child 13624397 US
Parent 12084150 Apr 2009 US
Child 12434221 US
Parent 12084150 Apr 2009 US
Child 12084150 US
Parent 12195863 US
Child 12084150 US