1. Field of the Invention
The invention relates to a catheter assembly for positioning a medical device, such as a stent, at or near the site of an ostial lesion.
2. Background of the Invention
In medicine, a “stent” is a man-made tube that is inserted into a natural passage/conduit in the body to prevent, or counteract a disease-induced, localized flow constriction. http://en.wikipedia/org/wiki/stent#peripheralvascular. As used herein, the term “stent” includes for example an endovascular, cylindrical, mesh-like but dilatible structure which is inserted into various atherosclerotic arteries to maintain the patency of the vessel. Usually the diseased artery has been dilated to remove the blockage with an angioplasty balloon, which has been introduced percutaneously within a tube or catheter inserted into the right femoral artery, for instance, and guided to the diseased arterial site. Conventionally, after the stent is inserted, it is left in place to maintain the opening in the previously blocked artery. Predictable, repeatable and precise placement of the stent may be challenging using conventional techniques.
During interventional vascular procedures, situations arise where a stent must be placed at the ostium of an artery. The ostium is the opening (or mouth) of an artery into another artery, such as the aorta. Ostial lesions involve for example the junction of the aorta and the origin of the right coronary artery, left main stem or a saphenous vein graft. Such lesions are called “aorto-ostial”. Other ostial lesions occur at the origin of the left anterior descending artery of the left circumflex artery arising from the bifurcation of the distal left main stem. Still other lesions may recur in the iliac and/or femoropopliteal arteries. As used herein, the term “ostial lesions” is used to describe these types of lesions. Inaccurate placement of the stent at the ostium of an artery can result in multiple risks to the patient, repeated procedures and related costs.
The location of ostial lesions makes them difficult to treat by percutaneous coronary intervention. Accurate stent positioning to avoid stent protrusion into the left main stem, for example, remains challenging. Aziz & Ramsdale, “S
There are devices that aid in the placement of stents at the ostium of vessels. One such device is the “Ostial Pro™” from Ostial Solutions, LLC. The Ostial Pro is a nitinol device that is positioned within a guiding catheter. http://www3.interscience.wiley.com/journal/117916410/abstract. It has distal, self-expanding legs that are advanced just ahead of the tip of the guiding catheter after the ostial lesion has been crossed by a coronary guidewire and stent delivery system. Id. The expanded nitinol legs prevent the entry of the guiding catheter into the target vessel, mark the plane of the aortic wall, and align the tip of the guide with the aorto-ostial plane. Id. Such devices include products which travel within a guide catheter to aid in locating the ostium and thus occupy a portion of the limited internal diameter of such catheters.
To locate the true ostium of an artery, a suitable positioning device must create a visual or tactile feedback system that can be utilized during an interventional procedure. Visual and tactile indicators come in many forms. A visual indicator utilizes radio-opaque materials that can be seen under fluoroscopy. These indicators create a reference point for locating the ostial interface. A tactile indicator utilizes a feature that transfers a tactile feel to the proximal end of the device to inform the surgeon, who may be located one meter away from the lesion, that the device is in the proper position. But accurate tactile feedback requires unimpeded, smooth axial movement of such features along and within the length of a catheter that may have a small internal diameter.
The typical guide catheter for delivering, retrieving or re-positioning stents is made of a reinforced tubular polymer. The guide catheter comes in various French sizes. Typically, these sizes range between 6, 7, and 8 French. The French catheter scale is commonly used to measure the outer diameter of cylindrical catheters. http://en.wikipedia.org/wiki/Frenchcatheterscale. The diameter in millimeters of the catheter equals the French size divided by 3. For example, if the French size is 9, the diameter is 3 mm. Id.
As used herein, the term “catheter” means a tube that can be inserted into a body cavity, duct or vessel. http://en.wikipedia.org/wiki/catheter. Catheters allow drainage, injection of fluids or access by surgical devices or instruments. The process of inserting a catheter is called “catheterization”. In most uses, a catheter is a thin, flexible tube. But in some uses, it may be a larger solid tube, for example, to facilitate placement into a particular part of the body. Various catheter tips or guide wires can be used to guide the catheter into the target vessel.
A guide catheter is a conduit for introducing interventional devices during an endovascular procedure. The proximal (extracorporeal) end of the guide catheter may incorporate a luer lock. Conventionally, a luer lock is a system of small-scale fluid fittings that is used for making leak-free connections between a male-taper fitting and its mating female part on medical instruments. http://en.wikipedia.org/wiki/LuerTaper. Luer lock fittings are securely joined by a tabbed hub on the female fitting which screws into threads in a sleeve on the male fitting. Id. Luer components are manufactured from metal or plastic and are available from many companies worldwide. Id. “Luer-LOK” is a registered trademark of Becton Dickinson. In the literature and in this patent application, a “Luer-Lok” style connector is generically referred to as a “luer-lock connector”.
Thus, the luer lock is the conduit that allows a guide catheter to interface with external devices to introduce wires, balloons, stents, contrast, and/or prevent the back flow of blood out of the guide catheter. The distal (intracorporeal) end of the guide catheter is typically formed into a shape to help the introduction of devices into the vasculature. The shape is formed during the manufacturing of the catheter. Differently shaped catheters are used in different vascular applications.
During a typical procedure, the guide catheter is engaged into the artery to be stented. When engaged, the distal end of the guide catheter is located within the ostial interface. Due to the proximity of the distal end of guide catheter to the ostial interface, it would be desirable to use the distal end of the guide catheter itself to position an ostial locator device.
Illustrative of the prior art are U.S. Pat. Nos. 5,749,890; 6,458,151; and 6,659,981; and U.S. Publication Nos. 2007/0225790, 2008/0082155 and 2008/0228146.
One consequence of having an ostial locating device inside the catheter, as described in U.S. Publication Nos. 2007/0225790 and 2008/0082155 is that the effective inside diameter of the catheter is reduced. As a consequence, less space is available without interference for use by other devices, such as stents.
For example, a typical inside diameter of a catheter may be 1/80,000 inches. A locating device having a wall thickness of 1/5,000 inches may be used, which when doubled leaves an effective amount of useful space of 1/70,000 inches. This may make it difficult to manipulate uninterruptedly and without interference a stent that may be suitable for use in a patient's legs, which may other things being equal, require a larger stent. Simply stated, the stent needs room to maneuver within the internal diameter of the catheter and locating device. Such clearance issues affect the feel that is transmitted to the physician.
One adverse consequence of such arrangements is that a stent may become damaged. In some cases, the stent may be fragile and easily bent by unwanted interference with a surrounding structure. If bent, fracture may result. Stent fracture may not be apparent during an operational procedure. Indeed, it may not be evident until some time later when the stent exhibits fatigue fracture upon repeated exposure to blood flow that may pulsate, for example, every two seconds. Another adverse consequence is that a ruptured stent may pierce a balloon that is used in angioplasty, or cause the balloon to inflate non-uniformly.
In light of such observations, it would be desirable to have an ostial locating device that is located on the outside of the catheter so that there is less risk of interference between the inside lumen of the catheter and a medical device such as a stent that passes therethrough.
The inventive catheter system solves ostial-aorta positioning problems by creating an assembly that precisely and predictably locates the ostium of an artery using a guide catheter. The invention offers design variations of the guide catheters currently on the market. In one embodiment, the assembly incorporates a locating member that can be deployed on and when actuated lies preferably ahead of the distal outside diameter of the guide catheter, thereby liberating scarce space within the catheter. The inventive locating member is actuated by a mechanism which interfaces with the surgeon at the proximal end of the catheter near a luer lock.
In several embodiments, (1) the luer lock is incorporated into a proximal assembly, and (2) the guide catheter lies within a thin walled sheath that is associated with the locating members. Preferably, a typical guide catheter reinforced tube is used. The cavity created between the guide catheter (inner tube) and the sheath (outer tube) creates an annular path that houses one or more connecting components that are positioned between the proximal actuation and the distal ostial locating member.
In each embodiment, actuation at the proximal end of the remotely situated locating member is performed by a sliding mechanism that is provided extracorporeally, proximal to the surgeon. This mechanism may take many forms, such as helical or rotational forms, but for simplification, a linear mechanism is shown in all embodiments.
One recommended procedure for placing a medical device such as a stent proximate ostial lesion involves positioning the locating device on an outside surface of the guiding catheter. The locating device in one embodiment has flexible distal, radially and outwardly extending struts that are advanced to a deployed position that is just ahead of the distal end of the guiding catheter after the ostial lesion has been crossed. After the struts have been deployed, they prevent further incursion of the guiding catheter into the artery into which the stent is to be placed. When deployed, the struts define the plane of the aortic wall. The catheter tip may then be advanced so that it lies in or near the ostial plane. In that position, the struts help align the distal end of the guiding catheter with the ostial plane. A stent or other device can then be predictably and accurately placed in the ostial lesion by a controlled emergence from the catheter tip, unimpeded by the locating member.
Turning first to
Further distally, guide catheter 14 in one embodiment can be considered as a reinforced tubing with a single lumen 52 (
Returning to
Continuing with primary reference to
In the description of various alternative inventive embodiments, it will be appreciated that the luer-lock 19 or comparable subsystem will preferably be incorporated into proximal assembly associated with the linear actuator 38. A feature that is also common to the alternate inventive embodiments is the guide catheter 14, including a covering sheath 22 or tubing. In the catheter system described and depicted, the sheath 22 preferably has a thin wall. In one embodiment, an actuation cavity 32 is created between the guide catheter (inner tube) 14 and the sheath (outer tube) 22. That cavity 32, which may be annular or crescent-shaped, houses for example ribbon-like, arcuate connecting or actuating components 34 between the proximal actuating mechanism 38 and distal ostial locating member 42. (
Actuation of the alternative ostial locating members 42 is enabled by the linear or axial sliding of one or more connecting components 34. Optionally, actuation could be achieved by other means for actuation, such as those to be described below.
Various alternative embodiments of the inventive ostial locating member 42 of the catheter system 10 will now be discussed.
In the embodiment depicted in
When the linear actuator 38 is moved to the open position 64 (
Preferably, the actuating mechanism 38 is biased to the distal position so that upon release, the cage 56 opens. Accordingly, the material for the distal cage 56 is preferably a shape memory material (e.g., nitinol).
As contemplated herein, the disc-shaped distal end of the guide catheter preferably is made from a shape memory alloy that can be deformed and then instantly revert to its original shape when the stress is removed. This is the result of pseudo-elasticity. Accordingly, the disc-shaped distal end can be bent, twisted and pulled before reforming its shape when released. Thus, they have the attribute of longevity because it appears that almost no amount of bending will result in permanent plastic deformation. As used herein, the term “shape memory material” include alloys or polymers that remember their shape to which they return after being deformed, often by applying heat to the material. http://en.wikipedia.org/wiki/Shapememoryalloy. The three main types of shape memory alloy are the cooper-zinc-aluminum-nickel, copper-aluminum-nickel, and nickel-titanium (NiTi) alloys. NiTi alloys are generally more expensive. One of their medical uses involves using pseudo-elastic properties of the alloy. Id. If desired, all or part (e.g., the tips) of the distal portions of the catheter assembly 10 include a radio opaque alloy to facilitate fluoroscopic visualization. When the distal cage 56 is in the open position, it can lie flush with the beginning of the ostium of the vessel, and be used to locate its proximal portion—the ostial interface.
In operation, the same catheter assembly 10 that delivers a stent has a distal end 42 that can be located adjacent to the ostium by engagement of the locating member 42 where the opening lies.
In embodiment 2, a mesh of wires forms a cage 56 that serves as a distal locating member 42.
The distal cage 56 is attached to the outside diameter of the distal end of the sheath 22. The base 58 of the distal cage 56 is fixedly attached to the far end 28 of the sheath 22. The base 58 of the cage 56 is fixedly attached to a wire, ribbon, or similar connecting component 34 which extends rearwardly to the linear actuator 38 (
When the linear actuator is moved to the open position, the cage 56 expands to form a disk-like shape. A preferred embodiment is shown in
When the links 62 of the cage 56 is in the open position, the links 62 preferably lie ahead of the distal end 18 of the catheter 14. In that placement, the links 62 can interface with ostium of the vessel, thus locating the ostial interface predictably, speedily and precisely before emplacing a balloon on stent.
The embodiment of the cage 56 shown in
Upon inspection of
It will be appreciated that the embodiment depicted in
In a fourth embodiment (
The distal legs 70 are slid onto the catheter 14, but are not fixedly attached to the outside diameter of the catheter 14. The distal legs 70 can move relative to the catheter 14. they lie outside the catheter 14, but inside the sheat 22.
The proximal end of the distal legs 70 is fixedly attached to a connecting component 34 which extends back to the linear actuator 38. The entire distal leg component 70 can move along the outside diameter of the guide catheter 14 tubing within the actuation cavity 32.
When the linear actuator 38 is moved to the open position, the distal legs 70 slide axially within the actuation cavity 32. When moved to the completely open position, the distal legs 70 extend beyond the distal end 18 of the catheter 14. When extended, the multi-pronged structure forms a landing surface (
When the distal legs 70 are in the open position, they can interface with ostium of the vessel, and be used to locate the ostial interface.
In the sixth embodiment (
Designs depicted in
Here are the reference numerals and respective design components:
While embodiments of the invention have been illustrated and described, it is not intended that these embodiments illustrate and describe all possible forms of the invention. Rather, the words used in the specification are words of description rather than limitation, and it is understood that various changes may be made without departing from the spirit and scope of the invention.