The accompanying drawings are included to provide a further understanding of embodiments and are incorporated in and constitute a part of this specification. The drawings illustrate embodiments and together with the description serve to explain principles of embodiments. Other embodiments and many of the intended advantages of embodiments will be readily appreciated as they become better understood by reference to the following detailed description. The elements of the drawings are not necessarily to scale relative to each other. Like reference numerals designate corresponding similar parts.
In the following Detailed Description, reference is made to the accompanying drawings which form a part hereof, and in which is shown by way of illustration specific embodiments in which the invention may be practiced. In this regard, directional terminology, such as “top,” “bottom,” “front,” “back,” “leading,” “trailing,” etc., is used with reference to the orientation of the Figure(s) being described. Because components of the embodiments can be positioned in a number of different orientations, the directional terminology is used for purposes of illustration and is in no way limiting. It is to be understood that other embodiments may be utilized and structural or logical changes may be made without departing from the scope of the disclosure. The following detailed description, therefore, is not to be taken in a limiting sense, and the scope of the present invention is defined by the appended claims.
The disk duplication system 20 is provided as a stand-alone powered assembly in one embodiment, although in other embodiments the system 20 is provided as a component in a computer-based duplication network. In this regard, the system 20 can be electrically coupled to various peripheral electronic components, such as monitors, graphical user interfaces, personal computers, and the like.
In one embodiment, the digital information subassembly 22 includes a write head 32 configured to write digital information to the disks 25 during duplication. In general, the write head 32 is electrically coupled to a memory device (not shown) of the digital information subassembly 22. The write head 32 writes information to the disks 25 being duplicated and can include any suitable optical head, including read/write heads and other such optical heads.
The disk input spindle 24 and the disk output spindle 26 can include any suitable device that stations the disks entering and exiting the digital information subassembly 22 and the image duplication subassembly 30. In one embodiment, the disk input spindle 24 is a stanchion-styled device that is configured to maintain the disks within a perimeter of three, for example, vertical riser posts 33, although other suitable stationing devices are also acceptable such as the skewer-styled device 35 illustrated as the exemplary disk output spindle 26.
The tower 28 is an electromechanical device including a servomotor (not shown) and a controller (not shown) that are configured to move the movable arm 29 to facilitate staging of the disks 25 as they flow through the duplication system 20. In one embodiment, the movable arm 29 is movable in at least two axes: up/down for moving disks 25 away from the spindles 24, 26, and in an arc that traverses a picker 37 of the movable arm 29 between the spindles 24, 26 and the subassemblies 22, 30. Thus, the movable arm 29 is operable through a range of motions having multiple degrees of freedom.
In one embodiment, the image duplication subassembly 30 includes an inkjet printer (See
The disk changer 36 is operable by the system 20 to move virgin disks 25 into the digital information subassembly 22 and into the image duplication subassembly 30 during a duplication process. For example, the movable arm 29 moves vertically along the tower 28 (relative to the orientation of
In one embodiment, the disk 25 is a CD disk including a strata 42 that culminates in the backside 40. With this in mind, in one embodiment the strata 42 includes a 1.2 mm substrate, a dye layer including a recording layer, a reflector layer, and an inkjet receptor layer that is exposed on the backside 40.
In another embodiment, the disk 25 is a DVD disk and the strata 42 includes two substrates bonded together such that a data surface is encapsulated between the two substrates, and has a receptor layer that is exposed on the backside 40.
Generally, then, the backside 40 includes some form of a receptor layer in any one of the many formats of the disk 25. The backside 40 is preferably porous and suited for receiving an ink printed image. In this regard, in one embodiment the backside 40 defines a microporous surface configured to absorb inkjet printed inks.
In one embodiment, the inkjet printer 50 includes an electronically controlled carriage 52 that communicates with the disk changer 36. In one embodiment, the print carriage 52 includes a first discharge head 60 coupled to an ink cartridge 62, a second discharge head 70 coupled to a protective ink cartridge (PIC) 72, and a shaft 80 along which the discharge heads 60, 70 and the ink cartridge 62 and the PIC 72 translate along. In general, the discharge heads 60, 70 are provided with energy generating means configured to discharge colored ink from the ink cartridge 62, and to discharge protective ink from the PIC 72. In this regard, the discharge heads 60, 70 can include thermal energy generating means, piezoelectric energy generating means, or suitable energy generating means configured to jet droplets of printable liquid from the cartridge 62 and the PIC 72.
When electrical signals are supplied to the electrodes 104, the region R is heated, and protective ink in the reservoir 110 in contact with the region R generates bubbles, the pressure of which produces a meniscus 114 along an orifice 96A. In this manner, protective ink from the reservoir 110 is discharged as droplets 116 and is delivered to, for example, the backside 40 of the information disk 25.
In this specification, protective ink is defined to include an ink formed of a colorless material capable of acting as a protective layer when dissolved or dispersed in a vehicle and delivered to an image on information disk. Protective inks include latex protective inks, resin protective inks, and curable protective inks. A latex protective ink includes a liquid vehicle having a substantially colorless latex particle dispersed within. A resin protective ink includes a liquid having a substantially colorless resin dissolved within. A curable protective ink includes a liquid vehicle having a substantially colorless curable material dissolved within.
A vehicle is any inkjettable liquid or fluid and can include water, alcohol, glycol, and/or glycerin.
Latex includes an emulsion of rubber or plastic globules in water, for example as used in paints, adhesives, inkjet materials, and synthetic rubber products.
A resin includes any of numerous physical similar polymerized synthetics or chemically modified natural resins including thermoplastic materials such as polyvinyl, polystyrene, and polyethylene, and thermosetting materials such as polyesters, epoxies, and silicones that are used with fillers, stabilizers, pigments, and/or other components to form plastics.
A curable material includes a material made of one or more monomer unit and a system capable of initiating a reaction which organizes the monomer units into organized repeating units. In this regard, the reaction can be initiated by either a photochemical or a thermo-initiated reaction.
Suitable latex containing protective inks include copolymers of latex prepared to have a latex particle size ranging from about 200 nanometers to 300 nanometers. In general, suitable latex containing protective inks are similar to and include those provided in Example 1 and Table 2 of Int'l Pub. No. WO2004/089639.
One suitable latex copolymer protective ink includes a copolymer including about 40 weight percent butyl methacrylate (BMA), about 49 weight percent 2-ethylhexyl methacylate (EHMA), about 10 weight percent methacrylolyoxy ethyl succinate (MES), and about 1 weight percent ethylene glycol dimethacrylate (EGDMA). Another suitable latex copolymer includes about 20 weight percent BMA, about 69 weight percent hexyl methacrylate (HMA), about 10 weight percent MES, and about 1 weight percent EGDMA. Other suitable latex copolymers include an HMA weight percent of between about 70 and 90%, and a balance of MES with EGDMA at about 1 percent. In another embodiment, a suitable latex copolymer protective ink includes about 20 weight percent styrene, about 73 weight percent HMA, about 6 weight percent methacrylic acid MMA, and about 1 weight percent EGDMA. It is to be understood that other suitable combinations of the above-identified compounds are also acceptable.
Suitable resin protective inks include a resin dissolved in an ink-jettable vehicle that is configured to be deposited and form a protective layer upon drying. In general, suitable resin protective inks are similar to and include anionic polymer overcoat compositions as provided in Example 4, Table 4 of U.S. Patent Appl. Pub. No. US2005/0225618A1.
One suitable resin protective ink includes a polymer overcoat composition having polymeric particulates dispersed in a liquid vehicle, such as, for example, latex particulates dispersed in a liquid vehicle and/or a latex dispersion of latex particles in a liquid. The polymeric particulates are selected to have a particle size ranging from about 20 nm to 500 nm, preferably the particle size ranges from about 100 nm to about 300 nm. Preferably, the resin protective ink is colorless or substantially colorless and is suited for overprinting of color images printed onto disks 25.
Latex-based dispersions include polymeric particulates of polymerized monomers where the polymeric particulates are selected to have a molecular weight ranging from about 10,000 Mw to 2,000,000 Mw, preferably the molecular weight ranges from about 40,000 Mw to about 100,000 Mw. Such latex-based polymeric particulates can be characterized as having a glass transition temperature ranging from about 25° C. to about 100° C. Exemplary latexes are available from Rohm and Haas, Philadelphia, Pa., and are identified as NM3266-B and NM3270-B.
Suitable curable protective inks include inks having a sensitizer, an initiator, and a polymerizable component in a jettable vehicle. In general, suitable curable protective inks are similar to and include those provided in Example 1, Table 1 of U.S. Pat. No. 5,312,654.
One suitable curable protective ink is a photopolymerizable ink composition including a photopolymerizable compound at about 90% added to a photopolymerization initiator at about 7%, and including a silane coupling agent added at about 3%. Suitable photopolymerizable compounds include diethylene glycol dimethacrylate, dipropylene glycol dimethacrylate, polyethylene glycol dimethacrylate, glycerine dimethacrylate, trimethylolpropane trimethacrylate, and suitable reaction products of ethoxymethylacrylamide and dipropylene glycol. One suitable photopolymerization initiator is identified as IR-651 available from Ciba Geigy Company, Tarrytown, N.Y. One suitable silane coupling agent is identified as SZ-6030 available from Toray Silicone Company, Tokyo, Japan.
With additional reference to
In one embodiment, an image is printed by the color ink cartridge 62 as the carriage 52 traverses past the disk 25 and simultaneously thereafter a clear protective coating is inkjet printed from the PIC 72 over the image deposited by the ink cartridge 62. That is to say, in one embodiment the carriage speed is selected to enable printing and drying of a color inkjet image onto the porous backside 40 immediately ahead of the protective coating being deposited by the PIC 72.
In one embodiment, the disk 25 includes an image appliqué adhered to the backside 40, and the inkjet printer 50 is configured to inkjet print only the clear protective ink from the PIC 72 over the applique on the disk 25. In this regard, in one embodiment the protective ink delivered by the PIC 72 forms a glossy coating over the image printed on the disk 25. In another embodiment, the backside 40 is microporous surface, and a printing of a color image onto the microporous surface 40 results in a matte finished image. Subsequent printing of a clear protective ink from the PIC 72 over the matte image results in a glossy finished surface on the disk 25.
In one embodiment, a user of the system 200 inputs printing preferences into the computer 202 that are electronically communicated to the inkjet printer 204. In this regard, the user is able to select preferences related to image orientation, image size, image surface finish including glossy or matte finishes, and other imaging preferences including color and font size to name a few. In another embodiment, the user interface 208 of the inkjet printer 204 is configured to provide a gloss on demand option that is input by a user prior to printing an image on to the disk 25. In this regard, printing an image on the porous backside 40 results in the disk 25 having a matte-finished image. However, in one embodiment the computer 202 or the user interface 208 is configured to provide a gloss on demand option whereby the colorless protective inkjet printed from the PIC 72 (
Although specific embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that a variety of alternate and/or equivalent implementations may be substituted for the specific embodiments shown and described without departing from the scope of the present invention. This application is intended to cover any adaptations or variations of a system and a process for durably protecting an image applied to a digital information disk as discussed herein. Therefore, it is intended that this invention be limited only by the claims and the equivalents thereof.
This Non-Provisional Utility Patent Application claims the benefit of the filing date of U.S. Provisional Patent Application Ser. No. 60/851,031, filed Oct. 11, 2006, entitled “SYSTEM AND PROCESS FOR FORMING A DURABLE IMAGE ON AN OPTICAL DISK,” which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60851031 | Oct 2006 | US |