System and process for image rescaling using adaptive interpolation kernal with sharpness and de-ringing control

Information

  • Patent Grant
  • 9390469
  • Patent Number
    9,390,469
  • Date Filed
    Friday, August 22, 2014
    11 years ago
  • Date Issued
    Tuesday, July 12, 2016
    9 years ago
Abstract
A digital video rescaling system is provided. The system includes an image data input configured to receive input support pixels y1 to yn and a sharpness control module configured to generate a sharpness control parameter Kshp. The system further includes an interpolated pixel generator configured to use an adaptive interpolation kernel to generate an interpolated pixel ys based on the input support pixels, and adjust a sharpness of the interpolated pixel ys based at least partly upon the sharpness control parameter Kshp. The system also includes a de-ringing control unit to adjust the ringing effect of the interpolated pixel based on a local image feature Kfreq, and an output module configured to output the adjusted interpolated pixel for display.
Description
TECHNICAL FIELD OF THE INVENTION

The present invention generally relates to the field of digital image processing, and more particularly to a system and process for rescaling digital images for display.


BACKGROUND OF THE INVENTION

Digital images have become more popular in the field of image display because they offer clarity and less distortion during processing. Furthermore, a wider range of image processing algorithms can be applied to digital images. Interpolation is a common stage in image processing to improve the appearance of the processed image on the output imaging medium. Interpolation is often performed during rescaling or resizing of digital images.


Rescaling or resizing of digital images includes magnification or reduction of image. For example, large screen displays have a native resolution that reaches or exceeds the well-known high-definition TV (HDTV) standard. In order to display a low-resolution digital image on a large screen display, it is desirable to rescale the image to a full screen resolution.


Traditionally, linear interpolation techniques such as bilinear or bicubic interpolation are used to rescale digital images. The bilinear interpolation method interpolates an input signal using a 2-tap filter. In this method, only the two pixels immediately on either side of the location of the new pixel are used. The bicubic interpolation method interpolates an input signal using a 4-tap filter. In this method, two pixels on either side of the location of the new pixel are used.


2-tap and 4-tap filters all have degradation in the high frequency region. These filters often suffer from image quality issues, such as blurring, aliasing, and staircase edges. 8-tap interpolation, such as that performed by an 8-tap polyphase filter, improves reconstruction in the high frequency region and reduces the staircase and aliasing issues. However, 8-tap interpolation introduces ringing artifacts along the edges, and the conventional 8-tap interpolation is not flexible in sharpness control.


SUMMARY OF THE INVENTION

A digital video rescaling system is provided. The system includes an image data input configured to receive input support pixels y1 to yn and a sharpness control module configured to generate a sharpness control parameter Kshp. The system further includes an interpolated pixel generator configured to use an adaptive interpolation kernel to generate an interpolated pixel ys based on the input support pixels, and adjust a sharpness of the interpolated pixel ys based at least partly upon the sharpness control parameter Kshp. The system also includes an output module configured to output the adjusted interpolated pixel ys for display.


A method of rescaling digital video is provided. The method includes receiving input support pixels y1 to yn at an image data input, generating a sharpness control parameter Kshp at a sharpness control module, and generating an interpolated pixel ys based on the input support pixels y1 to yn at an interpolated pixel generator. The method further includes adjusting a sharpness of the interpolated pixel ys based at least partly upon the sharpness control parameter Kshp at the interpolated pixel generator, and outputting the adjusted interpolated pixel ys for display.


A digital video rescaling system is provided. The system includes an image data input configured to receive input support pixels y1 to yn, and an interpolated pixel generator configured to use an adaptive interpolation kernel to generate an interpolated pixel value ys based on the input support pixels y1 to yn. The system also includes a de-ringing control unit configured to modify the interpolated pixel value ys adaptively to a local image feature Kfreq to generate an output yout, and an output module configured to output the output yout for display.


A method of rescaling digital video is provided. The method includes receiving support pixels y1 to yn at an image data input, and using an adaptive interpolation kernel to generate an interpolated pixel ys based on the input support pixels y1 to yn at an interpolated pixel generator. The method also includes modifying the interpolated pixel ys adaptively to a local image feature Kfreq to generate an output yout at a de-ringing control unit, and outputting the output yout for display.


Before undertaking the DETAILED DESCRIPTION OF THE INVENTION below, it may be advantageous to set forth definitions of certain words and phrases used throughout this patent document: the terms “include” and “comprise,” as well as derivatives thereof, mean inclusion without limitation; the term “or,” is inclusive, meaning and/or; the phrases “associated with” and “associated therewith,” as well as derivatives thereof, may mean to include, be included within, interconnect with, contain, be contained within, connect to or with, couple to or with, be communicable with, cooperate with, interleave, juxtapose, be proximate to, be bound to or with, have, have a property of, or the like; and the term “controller” means any device, system or part thereof that controls at least one operation, such a device may be implemented in hardware, firmware or software, or some combination of at least two of the same. It should be noted that the functionality associated with any particular controller may be centralized or distributed, whether locally or remotely. Definitions for certain words and phrases are provided throughout this patent document, those of ordinary skill in the art should understand that in many, if not most instances, such definitions apply to prior, as well as future uses of such defined words and phrases.





BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present disclosure and its advantages, reference is now made to the following description taken in conjunction with the accompanying drawings, in which like reference numerals represent like parts:



FIG. 1 illustrates a digital video rescaling system according to an embodiment of this disclosure;



FIG. 2 illustrates the generation of an interpolated pixel based on eight input support pixels according to an embodiment of the present disclosure;



FIG. 3 illustrates an interpolation kernel generated according to an embodiment of the present disclosure;



FIG. 4 illustrates an interpolation kernel driven by a sharpness control kernel according to an embodiment of the present disclosure;



FIG. 5 illustrates interpolation kernels having varying sharpness control values according to an embodiment of the present disclosure;



FIG. 6 illustrates the frequency responses of interpolation kernels having varying sharpness control values according to an embodiment of the present disclosure;



FIG. 7 illustrates an implementation of an adaptive 8-tap interpolation according to an embodiment of the present disclosure;



FIG. 8 illustrates an implementation of a de-ringing system according to an embodiment of the present disclosure; and



FIG. 9 illustrates a method of rescaling digital video according to an embodiment of the present disclosure.





DETAILED DESCRIPTION OF THE INVENTION


FIGS. 1 through 9, discussed below, and the various embodiments used to describe the principles of the present disclosure in this patent document are by way of illustration only and should not be construed in any way to limit the scope of the disclosure. Those skilled in the art will understand that the principles of the present disclosure may be implemented in any suitably arranged system.


The present disclosure provides an effective system and method of video image rescaling. The present disclosure describes the use of adaptive interpolation kernels with sharpness and de-ringing control to reduce ringing artifacts while maintaining the quality of the reconstruction in the high frequency region. The sharpness and ringing effect of the interpolated image are controlled using a sharpness control parameter and a de-ringing control parameter.


In some embodiments, a controllable interpolation kernel is used to generate the interpolated outputs, which solves the issues of aliasing and staircase edges. With the adaptive sharpness and de-ringing control, the present disclosure provides a system and method to improve the sharpness of the output image without introducing ringing artifacts that are a common issue in conventional 8-tap interpolation methods.


In particular embodiments, a controllable interpolation kernel with the following key components is provided:


(1): an 8-tap interpolation filter to maintain the quality of the reconstruction in the high frequency region and solve aliasing and staircase problems in the interpolated images;


(2) sharpness control functionality to generate the interpolated images with the visual qualities ranging from relative sharpness to softness; and


(3) de-ringing control functionality to adjust the levels of ringing effects along the edges in the interpolated images.


The system and method of the present disclosure can be applied to a generic video image processing system and can be used to both upscale and downscale images with controllable sharpness levels.



FIG. 1 illustrates a digital video rescaling system 100 according to an embodiment of this disclosure.


As shown in FIG. 1, the rescaling system 100 includes an image data input 101, an adaptive 8-tap interpolation unit 102, a de-ringing control unit 103, and a local feature analysis unit 104. The final output of the system 100 is sent from an image data output module 105. The image data input 101 receives a plurality of discrete sample values and sends the sample values to the adaptive 8-tap interpolation unit 102 and the local feature analysis 104. The adaptive 8-tap interpolation unit 102 uses the discrete sample values received from the image data input 101 to generate an interpolated pixel with controllable sharpness value. The de-ringing control unit 103 receives the interpolated pixel from the adaptive 8-tap interpolation unit 102 and modifies the interpolated pixel according to the local feature that was estimated by the local feature analysis unit 104. The local feature analysis unit 104 uses the discrete sample values received from the image data input 101 to estimate local features used by the de-ringing control unit 103.



FIG. 2 illustrates the generation of an interpolated pixel 200 based on eight input support pixels 201-208 according to an embodiment of the present disclosure.


As shown in FIG. 2 in particular embodiments, the adaptive 8-tap interpolation unit 102 uses controllable third order polynomial functions based on the eight input support pixels 201-208 to generate the interpolated pixel 200.


In one embodiment, the interpolated pixel 200 can be calculated, for example, by Equation 1 below:










y
s

=




n
=
1

8








y
n

*



f
n



(
s
)


.







[

Eqn
.




1

]







The eight control synthesis functions fn(s) that can be expressed, for example, by Equations 2-9 below:

f1(s)=C(0,0)*s3+C(0,1)*s2+C(0,2)*s+C(0,3),  [Eqn. 2],
f2(s)=C(1,0)*s3+C(1,1)*s2+C(1,2)*s+C(1,3),  [Eqn. 3]
f3(s)=C(2,0)*s3+C(2,1)*s2+C(2,2)*s+C(2,3),  [Eqn. 4]
f4(s)=C(3,0)*s3+C(3,1)*s2+C(3,2)*s+C(3,3),  [Eqn. 5]
f5(s)=f4(1−s),  [Eqn. 6]
f6(s)=f3(1−s),  [Eqn. 7]
f7(S)=f2(1−s), and  [Eqn. 8]
f8(s)=f1(1−s).  [Eqn. 9]


The C(i,j) coefficient metrics of the above control synthesis functions can be calculated, for example, by Equation 10 below:

C(i,j)=A(i,j)+Kshp*B(i,j),  [Eqn. 10]


In Equation 10,






A
=

[




a


(

0
,
0

)





a


(

0
,
1

)





a


(

0
,
2

)





a


(

0
,
3

)







a


(

1
,
0

)





a


(

1
,
1

)





a


(

1
,
2

)





a


(

1
,
3

)







a


(

2
,
0

)





a


(

2
,
1

)





a


(

2
,
2

)





a


(

2
,
3

)







a


(

3
,
0

)





a


(

3
,
1

)





a


(

3
,
2

)





a


(

3
,
3

)





]






and





B
=

[




b


(

0
,
0

)





b


(

0
,
1

)





b


(

0
,
2

)





b


(

0
,
3

)







b


(

1
,
0

)





b


(

1
,
1

)





b


(

1
,
2

)





b


(

1
,
3

)







b


(

2
,
0

)





b


(

2
,
1

)





b


(

2
,
2

)





b


(

2
,
3

)







b


(

3
,
0

)





b


(

3
,
1

)





b


(

3
,
2

)





b


(

3
,
3

)





]





are two coefficient matrices, for example, used to generate interpolation kernel and sharpness control kernel.


The coefficient matrices A and B are defined, for example, as shown in Equations 11 and 12 below:










A
=

[




-
21



52



-
32



0




52



-
150



97


1





-
154



412



-
256



0




304



-
587



28


254



]


,




and




[

Eqn
.




11

]






B
=


[




-
9



21



-
11




-
2





15



-
38



18


3





-
32



69



-
23




-
11





51



-
88



5


21



]

.





[

Eqn
.




12

]







Of course one of ordinary skill in the art would recognize that matrices A and B are just one example of coefficient matrices that may be used to generate an 8-tap interpolation kernel and an 8-tap sharpness control kernel, respectively, and that any number of coefficient matrices may be used without departing from the scope or spirit of the present disclosure.


Accordingly, the interpolated pixel 200 also can be calculated, for example, by Equation 13 below:












y
s



(
s
)


=




n
=
1

8








y
n

*


f
n



(

s
,
Kshp

)





,




[

Eqn
.




13

]







where yn, n=(1 . . . 8) are the eight support pixels 201-208 from the image data input 101. s is the phase of the interpolation which is the distance from interpolation position to the position of the support pixel y4. The range of phase is from 0 to 1. The number of phases can be defined by the precision of the interpolation. fn(s,Kshp) (n=1 . . . 8) are eight control synthesis functions that can be expressed, for example, by Equations 14-21 below:











f
1



(

s
,
Kshp

)


=



(


a


(

0
,
0

)


+

Kshp
*

b


(

0
,
0

)




)

*

s
3


+


(


a


(

0
,
1

)


+

Kshp
*

b


(

0
,
1

)




)

*

s
2


+

(



a


(

0
,
2

)


+

Kshp
*

b


(

0
,
2

)


*
s

+

(


a


(

0
,
3

)


+

Kshp
*

b


(

0
,
3

)




)


,







[

Eqn
.




14

]








f
2



(

s
,
Kshp

)


=



(


a


(

1
,
0

)


+

Kshp
*

b


(

1
,
0

)




)

*

s
3


+


(


a


(

1
,
1

)


+

Kshp
*

b


(

1
,
1

)




)

*

s
2


+

(



a


(

1
,
2

)


+

Kshp
*

b


(

1
,
2

)


*
s

+

(


a


(

0
,
3

)


+

Kshp
*

b


(

1
,
3

)




)


,







[

Eqn
.




15

]








f
3



(

s
,
Kshp

)


=



(


a


(

2
,
0

)


+

Kshp
*

b


(

2
,
0

)




)

*

s
3


+


(


a


(

2
,
1

)


+

Kshp
*

b


(

2
,
1

)




)

*

s
2


+

(



a


(

2
,
2

)


+

Kshp
*

b


(

2
,
2

)


*
s

+

(


a


(

2
,
3

)


+

Kshp
*

b


(

2
,
3

)




)


,







[

Eqn
.




16

]








f
4



(

s
,
Kshp

)


=



(


a


(

3
,
0

)


+

Kshp
*

b


(

3
,
0

)




)

*

s
3


+


(


a


(

3
,
1

)


+

Kshp
*

b


(

3
,
1

)




)

*

s
2


+

(



a


(

3
,
2

)


+

Kshp
*

b


(

3
,
2

)


*
s

+

(


a


(

3
,
3

)


+

Kshp
*

b


(

3
,
3

)




)


,







[

Eqn
.




17

]














f
5



(

s
,
Kshp

)


=


f
4



(


(

1
-
s

)

,
Kshp

)



,





[

Eqn
.




18

]














f
6



(

s
,
Kshp

)


=


f
3



(


(

1
-
s

)

,
Kshp

)



,





[

Eqn
.




19

]














f
7



(

s
,
Kshp

)


=


f
2



(


(

1
-
s

)

,
Kshp

)



,








and





[

Eqn
.




20

]













f
8



(

s
,
Kshp

)


=



f
1



(


(

1
-
s

)

,
Kshp

)


.






[

Eqn
.




21

]








FIG. 3 illustrates an interpolation kernel 300 generated according to an embodiment of the present disclosure.


In this particular embodiment, the interpolation kernel 300 was generated by the coefficient matrix A.



FIG. 4 illustrates an interpolation kernel 401 driven by a sharpness control kernel 403 according to an embodiment of the present disclosure.


As shown in FIG. 4, an interpolation kernel 401 is driven by a sharpness control kernel 403. The interpolation kernel 401 may be generated, for example, by coefficient matrix A, and the sharpness control kernel 403 may be generated, for example, by coefficient matrix B. The sharpness control kernel 403 is combined with the interpolation kernel 401 to generate a resulting interpolation kernel 405 having sharpness control. In a particular embodiment, Kshp in Equation 13 is the sharpness control parameter used to adjust the sharpness of the interpolated pixel.



FIG. 5 illustrates adaptive interpolation kernels having varying sharpness control values according to an embodiment of the present disclosure.



FIG. 6 illustrates the frequency responses of adaptive interpolation kernels having varying sharpness control values according to an embodiment of the present disclosure.


As shown in FIGS. 5 and 6, the adaptive interpolation kernels are driven by varying sharpness control values, and their frequency responses vary with the sharpness control values. From the frequency responses, it can be seen that the magnitudes of the high frequency region are adjusted accordingly to the sharpness control parameter.



FIG. 7 illustrates an implementation of an adaptive 8-tap interpolation according to an embodiment of the present disclosure.


In this embodiment, coefficient A and B are stored in two register arrays 701 and 703. The coefficient C is calculated in calculation unit 705, for example, by C=A+Kshp*B. Kshp is provided by a sharpness control module 707. The coefficient C is passed to synthesis function unit 709 to generate the synthesis functions fi(s) (i=1 . . . 8). The fi(s) are then used as filter coefficients in interpolated pixel generator 711 to generate the interpolated pixel ys by an 8-tap filter.


As shown in FIG. 1, the process at de-ringing control unit 103 is used to modify the interpolated pixel adaptively to the local image feature, the local image feature being related to the local frequency characteristics. In particular embodiments, the control in the high frequency region should be less to maintain quality reconstruction in the high frequency region. In the edge or low frequency region, the control should be higher to reduce the ringing effect.



FIG. 8 illustrates an implementation of a de-ringing process according to an embodiment of the present disclosure.



FIG. 8 shows a local frequency analysis unit 801, a local max/min analysis unit 802, a comparator 803 and a de-ringing control unit 804. The local frequency analysis 801 is used to calculate a feature value that is related to the local frequency. In some embodiments, the local feature is estimated, for example, using Equation 22 below:

Kfreq=min(dev1,dev2,dev3,dev4)/N,  [Eqn. 22]


where dev1,dev2,dev3 and dev4 are defined as shown in Equations 23-26 below:

dev1=max(|y1−2*y2+y3|,|y2−2*y3+y4|),  [Eqn. 23]
dev2=max(|y3−2*y4+y5|,|y4−2*y5+y6|),  [Eqn. 24]
dev3=max(|y5−2*y6+y7|,|y6−2*y7+y8, and  [Eqn. 25]
dev4=min(|y2−y4|,|y3−y5|).  [Eqn. 26]


N is a constant value used to normalize Kfreq so that Kfreq is in the range of [0,1]. Of course one of ordinary skill in the art would recognize that this is just one way of determining the local feature and that other means of determining the local feature may be utilized without departing from the scope or spirit of the present disclosure.


The local max/min analysis unit 802 is used to discriminate between the larger and smaller value of the support pixels y4 and y5 as shown in Equations 27 and 28 below:

Lmax=max(y4y5), and  [Eqn. 27]
Lmin=min(y4,y5).  [Eqn. 28]


The outputs of the local max/min analysis unit 802 are then compared with the output of the adaptive 8-tap interpolation unit 102 (ys) in the comparator 803 to generate the output (ym) as shown in Equation 29 below:










y
m

=

{





L





max




if


(


y
s

>

L





max


)







L





min




if


(


y
s

<

L





min


)







y
s



else



.






[

Eqn
.




29

]







The outputs ys and ym are then subtracted and multiplied by the local image feature Kfreq in the de-ringing control unit 804 to generate the final output yout as shown in Equation 30 below:

yout=Kfreq*(ys−ym)+ym.  [Eqn. 30]



FIG. 9 illustrates a method 900 of rescaling digital video according to an embodiment of the present disclosure.


As shown in FIG. 9, the method 900 includes receiving input support pixels y1 to yn (block 901), generating a sharpness control parameter Kshp (block 903), and generating an interpolated pixel ys based on the input support pixels y1 to yn (block 905). The method 900 also includes adjusting a sharpness of the interpolated pixel ys based at least partly upon the sharpness control parameter Kshp (block 907). The method 900 further includes generating a local image feature Kfreq (block 909) and modifying the interpolated pixel ys adaptively to the local image feature Kfreq to generate an output yout (block 911). The method 900 also includes outputting the output yout for display (block 913).


Although the present disclosure has been described with an exemplary embodiment, various changes and modifications may be suggested to one skilled in the art. It is intended that the present disclosure encompass such changes and modifications as fall within the scope of the appended claims.

Claims
  • 1. A digital video rescaling system comprising: an image data input configured to receive input support pixels y1 to yn;an interpolated pixel generator circuit configured to generate an interpolated pixel value ys from the input support pixels y1 to yn based upon a sharpness control parameter Kshp;a de-ringing control circuit configured to modify the interpolated pixel value ys adaptively to a local image feature Kfreq to generate an output yout;a local frequency analysis circuit configured to calculate the local image feature Kfreq;a local max/min analysis circuit configured to distinguish between a larger and a smaller value of two support pixels ya and yb and generate outputs Lmax and Lmin; anda comparator circuit configured to compare the interpolated pixel value ys with the output Lmax and Lmin and generate a comparison result ym.
  • 2. The digital video rescaling system in accordance with claim 1 wherein the local image feature Kfreq is related to local frequency characteristics.
  • 3. The digital video rescaling system in accordance with claim 1 wherein the comparator circuit is configured to generate the comparison result ym as follows:
  • 4. The digital video rescaling system in accordance with claim 1 wherein the de-ringing control circuit is further configured to: subtract the comparison result ym from the interpolated pixel value ys;multiply a difference by the local image feature Kfreq; andadd a product to comparison result to generate yout.
  • 5. The digital video rescaling system in accordance with claim 1 wherein the local frequency analysis circuit is configured to calculate the local image feature Kfreq as follows: Kfreq=min(dev1,dev2,dev3,dev4)/N, where dev1, dev2, dev3 and dev4 are defined as:dev1=max(|y1−2*y2+y3|,|y2−2*y3+y4|),dev2=max(|y3−2*y4+y5|,|y4−2*y5+y6|),dev3=max(|y5−2*y6+y7|,|y6−2*y7+y8|), anddev4=max(|y2−y4|,|y3−y5|), andwhere N is a constant value used to normalize Kfreq so that Kfreq is in the range of [0, 1].
  • 6. The digital video rescaling system in accordance with claim 1 wherein the interpolated pixel generator circuit is configured to generate a first coefficient matrix C(i,j) based on a second coefficient matrix A(i,j), a third coefficient matrix B(i,j) and the sharpness control parameter Kshp; and wherein the interpolated pixel generator circuit is configured to generate the interpolated pixel value ys using the first coefficient matrix C(i,j).
  • 7. The digital video rescaling system in accordance with claim 1 wherein the interpolated pixel generator circuit is configured to generate the interpolated pixel value ys using third order polynomial functions based at least partly upon eight input support pixels y1 to y8.
  • 8. The digital video rescaling system in accordance with claim 1 wherein the interpolated pixel value ys is generated based upon:
  • 9. The digital video rescaling system in accordance with claim 8 wherein the coefficient matrices A and B are:
  • 10. A digital video rescaling system comprising: an image data input configured to receive input support pixels;an interpolated pixel generator circuit configured to generate an interpolated pixel value from the input support pixels based upon a sharpness control parameter; anda de-ringing control circuit configured to modify the interpolated pixel value to a local image feature;a local frequency analysis circuit configured to calculate the local image feature;a local max/min analysis circuit configured to distinguish between a larger and a smaller value of two support pixels and generate outputs; anda comparator circuit configured to compare the interpolated pixel value with the outputs and generate a comparison result.
  • 11. The digital video rescaling system in accordance with claim 10 wherein the de-ringing control circuit is configured to modify the interpolated pixel value based upon a local image feature.
  • 12. The digital video rescaling system in accordance with claim 10 wherein the interpolated pixel generator circuit is configured to generate a first coefficient matrix based on a second coefficient matrix, a third coefficient matrix and the sharpness control parameter; and wherein the interpolated pixel generator circuit is configured to generate the interpolated pixel value using the first coefficient matrix.
  • 13. The digital video rescaling system in accordance with claim 10 wherein the interpolated pixel generator circuit is configured to generate the interpolated pixel value using third order polynomial functions.
  • 14. The digital video rescaling system in accordance with claim 10 wherein the interpolated pixel generator circuit is configured to generate the interpolated pixel value based at least partly upon eight input support pixels.
  • 15. A digital video rescaling method comprising: receiving input support pixels from an image data input;generating an interpolated pixel value from the input support pixels based upon a sharpness control parameter using an interpolated pixel generator circuit coupled to the image data input; andmodifying the interpolated pixel value to a local image feature using a de-ringing control circuit coupled to the interpolated pixel generator;calculating the local image feature using a local frequency analysis circuit;distinguishing between a larger and a smaller value of two support pixels and generating outputs using a local max/min analysis circuit; andcomparing the interpolated pixel value with the outputs and generating a comparison result using a comparator circuit.
  • 16. The digital video rescaling method in accordance with claim 15 wherein the de-ringing control circuit modifies the interpolated pixel value based upon a local image feature.
  • 17. The digital video rescaling method in accordance with claim 15 wherein the interpolated pixel generator circuit generates a first coefficient matrix based on a second coefficient matrix, a third coefficient matrix and the sharpness control parameter; and wherein the interpolated pixel generator circuit generates the interpolated pixel value using the first coefficient matrix.
  • 18. The digital video rescaling method in accordance with claim 15 wherein the interpolated pixel generator circuit generates the interpolated pixel value using third order polynomial functions.
  • 19. The digital video rescaling method in accordance with claim 15 wherein the interpolated pixel generator circuit generates the interpolated pixel value based at least partly upon eight input support pixels.
US Referenced Citations (55)
Number Name Date Kind
4866647 Farrow Sep 1989 A
5008752 Van Nostrand Apr 1991 A
5054100 Tai Oct 1991 A
5268758 Nakayama et al. Dec 1993 A
5294998 Piovoso et al. Mar 1994 A
5327257 Hrytzak et al. Jul 1994 A
5418714 Sarver May 1995 A
5422827 Niehaus Jun 1995 A
5768482 Winter et al. Jun 1998 A
5774601 Mahmoodi Jun 1998 A
5838371 Hirose et al. Nov 1998 A
5949924 Noguchi et al. Sep 1999 A
6195394 Arbeiter et al. Feb 2001 B1
6198545 Ostromoukhov et al. Mar 2001 B1
6233277 Ozcelik et al. May 2001 B1
6373535 Shim et al. Apr 2002 B1
6810155 Ting et al. Oct 2004 B1
6847738 Scognamiglio Jan 2005 B1
6928196 Bradley et al. Aug 2005 B1
7151863 Bradley et al. Dec 2006 B1
7197194 Ratcliffe Mar 2007 B1
7224371 Serizawa May 2007 B2
7321400 Chou et al. Jan 2008 B1
7379626 Lachine et al. May 2008 B2
7391933 Wang et al. Jun 2008 B2
7437018 Amirghodsi Oct 2008 B1
7782401 Chou Aug 2010 B1
8248493 Higashi Aug 2012 B2
8249395 Peng et al. Aug 2012 B2
20020012464 Han et al. Jan 2002 A1
20020030762 Kishimoto Mar 2002 A1
20030001867 Matsumoto Jan 2003 A1
20030231714 Kjeldsen et al. Dec 2003 A1
20040091174 Wang et al. May 2004 A1
20040207758 Sai et al. Oct 2004 A1
20040234165 Lee Nov 2004 A1
20050226538 Di Federico et al. Oct 2005 A1
20060018562 Ruggiero Jan 2006 A1
20060022984 Ruggiero Feb 2006 A1
20060033936 Lee et al. Feb 2006 A1
20060061690 De Haan et al. Mar 2006 A1
20060110062 Chiang May 2006 A1
20060133693 Hunt Jun 2006 A1
20060139376 Le Dinh Jun 2006 A1
20060146935 Winger Jul 2006 A1
20060153473 Ruggiero Jul 2006 A1
20060269166 Zhong Nov 2006 A1
20070081743 Kim Apr 2007 A1
20080151101 Tian Jun 2008 A1
20090027559 Higashi Jan 2009 A1
20090262247 Huang et al. Oct 2009 A1
20100165204 Huang et al. Jul 2010 A1
20100272376 Hsu Oct 2010 A1
20100283799 Li Nov 2010 A1
20110216985 Peng Sep 2011 A1
Foreign Referenced Citations (3)
Number Date Country
1533899 May 2005 EP
04157988 May 1992 JP
05056306 Mar 1993 JP
Non-Patent Literature Citations (1)
Entry
Li et al./ “An arbitrary ratio resizer for MPET applications”, IEEE Transactions on Consumer Electronics, vol. 46, issue 3, 2000, pp. 467-473.
Related Publications (1)
Number Date Country
20140362288 A1 Dec 2014 US
Continuations (1)
Number Date Country
Parent 12802382 Jun 2010 US
Child 14466274 US