This disclosure relates to an ocean thermal energy conversion (OTEC) system, and to cooling a working fluid pump motor used in the OTEC system.
In a conventional OTEC system, many components are located below the water line. One such component is the working fluid condenser heat exchanger. Due to net positive suction head required, the working fluid pumps must be located below the condensers, and so the working fluid pumps must also be located below the water line.
Commercial Off The Shelf (COTS) working fluid pumps are not available for water submergence. As a result, the working fluid pump(s) must be located inside a pressure vessel to isolate the pump(s) from the ocean environment and pressure differences. This complicates heat dissipation. Heat must be dissipated from the motor to keep the major working components, such as motor windings, seals, bearings and lubricant, cool.
The inefficiency of the motor (nominally 5%) will be directly converted to mechanical work in the form of heat. This heat must be extracted at the rate it is produced. Furthermore, the motor temperature cannot exceed a certain temperature, generally 40 degrees Celsius. One solution is to use the sea water surrounding the pressure vessel as the heat sink. Unfortunately, the pressure vessel may not account for enough surface area to rely on air convection on the inside of the pressure vessel and natural sea water convection on the outside of the pressure vessel. Even if water is forced around the vessel to create forced convection while air is circulated to create forced convection on the inside of the pressure vessel, enough heat may not dissipate quickly enough to sufficiently cool the motor.
Another option is to use sea water that is pumped through a heat exchanger located inside the pressure vessel or located outside the pressure vessel in order to cool the motor. Unfortunately, this option requires a sea water inlet and a sea water outlet (in the case of an internal heat exchanger), or an additional working fluid inlet and outlet to the heat exchanger (in the case of an external heat exchanger), a sea water filter (failure point), an additional pump (failure point), additional seals (failure points), and uses sea water directly, which is highly corrosive (increases failure potential).
A cooling system and process in an OTEC system are described where the sub-cooled working liquid from the working fluid pump outlet is used to cool the working fluid pump motor, either directly or indirectly via heat exchange with a secondary fluid.
In one embodiment, direct cooling can include passing the working fluid through the jacket of the motor for direct forced convection cooling, as shown in
The working fluid for cooling would be taken from the high pressure side of the working fluid pump outlet, passed through the heat exchanger or directly to the motor, and then either be reintroduced into the pump outlet to continue on to the evaporator with a certain amount of de-subcooling, or the working fluid can be introduced back into the cooling loop prior to the pump inlet. The de-subcooling option would allow some amount of subcool to be taken out of the working fluid thereby alleviating heat that would otherwise come from the evaporator. Also, because the evaporator is designed as a two-phase heat exchanger, working fluid with less subcooling is evaporated more efficiently. Therefore, heat energy that would otherwise be wasted on both sides of the system is put back into the system for net benefit.
In one embodiment, a pump system is provided that includes a pressure vessel defining an interior space containing air or an inert gas such as nitrogen, a fluid inlet into the interior space and a fluid outlet from the interior space. A pump is disposed within the interior space, with the pump having an inlet fluidly connected to the fluid inlet of the pressure vessel and an outlet fluidly connected to the fluid outlet of the pressure vessel. In addition, a motor is disposed within the interior space and connected to the pump for driving the pump. A motor cooling flow path is disposed within the interior space and in heat exchange relationship with the motor. The motor cooling flow path includes an inlet portion that is fluidly connected to the pump outlet to receive fluid from the pump outlet and an outlet portion that is fluidly connected to the pump outlet or the pump inlet.
In another embodiment, an ocean thermal energy conversion system is provided that includes a working fluid circuit that includes a condenser, an evaporator, a working fluid pump, and a closed loop conduit interconnecting the condenser, the evaporator and the working fluid pump. A two-phase working fluid is in the working fluid circuit. The working fluid pump, the evaporator and the condenser are disposed under the surface of a body of water, and the working fluid pump is disposed within a pressure vessel that defines an interior space containing air or an inert gas such as nitrogen, a fluid inlet into the interior space that is fluidly connected to the closed loop conduit, and a fluid outlet from the interior space that is fluidly connected to the closed loop conduit. The pump has an inlet fluidly connected to the fluid inlet of the pressure vessel and an outlet fluidly connected to the fluid outlet of the pressure vessel. A motor is disposed within the interior space and is connected to the pump for driving the pump. In addition, a motor cooling flow path is disposed within the interior space and in heat exchange relationship with the motor. The motor cooling flow path includes an inlet portion that is fluidly connected to the pump outlet to receive working fluid from the pump outlet and an outlet portion that is fluidly connected to the pump outlet or the pump inlet.
In another embodiment, in an ocean thermal energy conversion system, a method of cooling a pump motor that drives a pump is provided, where the pump and the pump motor are disposed within an interior space of a pressure vessel that is disposed under the surface of a body of water, and the pump pumps a two-phase working fluid. In the method, within the interior space of the pressure vessel, working fluid is directed from an outlet of the pump to exchange heat with the pump motor, and after exchanging heat with the pump motor, the working fluid is directed back into the pump outlet or into an inlet of the pump.
A cooling system and process in an OTEC system are described where the sub-cooled working liquid from the working fluid pump outlet is used to cool the working fluid pump motor, either directly or indirectly via heat exchange with a secondary fluid.
In this embodiment, the system 100 includes an offshore platform 102, a turbogenerator 104, a working fluid circuit that includes an evaporator 110-1, a condenser 110-2, a working fluid pump 114, and a closed-loop working fluid conduit 106 that fluidly interconnects the condenser, the evaporator and the working fluid pump and that also extends through the turbogenerator 104. A two-phase working fluid 108, for example but not limited to ammonia, is contained in the working fluid circuit. The system 100 further includes sea-water pumps 116 and 124, and fluid conduits 120, 122, 128, and 130.
As indicated in
The evaporator 110-1 can be of conventional construction and includes a heat exchanger that is configured to transfer heat from warm seawater at the surface region into the working fluid 108 thereby inducing the working fluid to vaporize. The condenser 110-2 can also be of conventional construction and includes a heat exchanger that is configured to transfer heat from vaporized working fluid 108 to cold seawater from the deep-water region thereby inducing condensation of vaporized working fluid 108 back into liquid form.
With reference to
A working fluid pump motor 22 is disposed within the interior space 12 and is connected to the pump 114 for driving the pump. In the embodiment illustrated in
In this example, the heat exchanger 30 is part of a liquid cooling circuit 32 disposed within the pressure vessel 10. The cooling circuit 32 includes a closed loop cooling liquid flow path 34 containing a cooling liquid, such as clean water, between the heat exchanger 30 and the interior of the motor 22. The liquid in the flow path 34 picks up heat from the motor components needing to be cooled. The heated liquid is then directed to the heat exchanger 30 where the liquid exchanges heat with the working fluid in the flow path 24. The cooled liquid is then returned back to the motor 22 to continue the cycle.
The working fluid being returned via the outlet portion 28 is heated in the heat exchanger 30. Because heat is rejected to the working fluid just prior to the evaporator 110-1, the heat duty in the evaporator is reduced which means more potential for the evaporator to create energy. Also, because 2-phase evaporators, such as those in an OTEC system, are less efficient than single-phase HXs at single-phase heating, this pre-heating of the working fluid prior to the evaporator will help the evaporator performance substantially.
Instead of the outlet portion 28 returning the working fluid back to the pump outlet, the outlet portion 28 can return the working fluid to the inlet of the pump 114 via the conduit 16 as shown in dashed line 28′ in
In addition, although the working fluid is described and illustrated in
Instead of the outlet portion 44 returning the working fluid back to the pump outlet, the outlet portion can return the working fluid to the inlet of the pump 114 via the conduit 16 as shown in dashed line 44′ in
The examples disclosed in this application are to be considered in all respects as illustrative and not limitative. The scope of the invention is indicated by the appended claims rather than by the foregoing description; and all changes which come within the meaning and range of equivalency of the claims are intended to be embraced therein.
Number | Name | Date | Kind |
---|---|---|---|
3331216 | Rayner | Jul 1967 | A |
3805547 | Eber | Apr 1974 | A |
5513494 | Flynn et al. | May 1996 | A |
5642987 | Taricco | Jul 1997 | A |
7735321 | Howard | Jun 2010 | B2 |
7900452 | Howard et al. | Mar 2011 | B2 |
8117843 | Howard et al. | Feb 2012 | B2 |
8146362 | Howard et al. | Apr 2012 | B2 |
20080314043 | Howard et al. | Dec 2008 | A1 |
20100024422 | Henderson | Feb 2010 | A1 |
20110120126 | Srinivasan | May 2011 | A1 |
20110173978 | Rekret et al. | Jul 2011 | A1 |
20110173979 | Krull et al. | Jul 2011 | A1 |
20120125561 | Levings et al. | May 2012 | A1 |
20130042612 | Shapiro et al. | Feb 2013 | A1 |
20130042613 | Ross et al. | Feb 2013 | A1 |
20130042996 | Hwang et al. | Feb 2013 | A1 |
Number | Date | Country |
---|---|---|
993208 | Jul 1976 | CA |
102213199 | Mar 2013 | CN |
10231211 | Feb 2003 | DE |
04-000237 | Jan 1992 | JP |
04-317533 | Nov 1992 | JP |
04-317543 | Nov 1992 | JP |
05-340342 | Dec 1993 | JP |
2012-225177 | Nov 2012 | JP |
2012225177 | Nov 2012 | JP |
2011028402 | Mar 2011 | WO |
2012121605 | Sep 2012 | WO |
Entry |
---|
International Search Report for application No. PCT/US2014/021860, dated Jun. 25, 2014 (3 pages). |
Written Opinion for application No. PCT/US2014/021860, dated Jun. 25, 2014 (8 pages). |
M.A. Wurm et al., “Ram Water Ocean Thermal Energy Conversion Heat Exchanger Concept,” published at ip.com as publication No. IPCOM000220896D, dated Aug. 14, 2012 (2 pages). |
R.H. Yeh at al., “Maximum output of an OTEC power plant,” Ocean Engineering, vol. 32 (2005), p. 685-700. |
D. Bharathan, “Staging Rankine Cycles Using Ammonia for OTEC Power Production,” National Renewable Energy Laboratory Technical Report NREL/TP-5500-49121, Mar. 2011 (18 pages). |
International Preliminary Report on Patentability for U.S. Appl. No. PCT/US2014/021860, mailed Sep. 24, 2015, 10 pages. |
1 Patent Acts 1977: Search Report Under Section 17(5) for U.K. Patent Application No. GB1404272.5, mailed Oct. 10, 2014, 3 pages. |
Number | Date | Country | |
---|---|---|---|
20140260248 A1 | Sep 2014 | US |
Number | Date | Country | |
---|---|---|---|
61778699 | Mar 2013 | US |