System and process to ensure performance of mandated safety and maintenance inspections

Information

  • Patent Grant
  • 7944345
  • Patent Number
    7,944,345
  • Date Filed
    Friday, May 29, 2009
    15 years ago
  • Date Issued
    Tuesday, May 17, 2011
    13 years ago
Abstract
A handheld, portable device is used to store data that indicates an operator was sufficiently close to each of a plurality of components during a safety inspection to actually inspect the components. The portable device includes a sensor that detects tokens, such as radio frequency identification tags, which are affixed adjacent to the components. Messages appearing on a display of the portable device prompt the operator to proceed to each checkpoint, determine a state of the component disposed there, and if the component is not operating properly, indicate a plurality of predefined conditions from which the operator can choose to identify the observed condition of the component. The state and condition of each component entered during the safety inspection are stored as data that are subsequently transferred to a remote data storage site over a wire or wireless link.
Description
BACKGROUND

It is widely accepted that a significant reduction in accidents involving commercial trucks and trailers is likely to be achieved by ensuring that key components of such equipment are inspected on a regular basis. Such inspections can detect worn tires and brakes before they cause an accident.


To avoid accidents caused by defective equipment, Federal law presently requires that commercial drivers make a visual inspection of specific components on a truck (i.e., tractor and trailer), such as the brake system, fuel system, warning lights, tires, etc., performing pre- and post-trip inspections of these basic, but critical components. An exemplary vehicle inspection report listing the components and systems that must be inspected by a driver to satisfy the DOT regulations is illustrated in FIG. 7. However, under the current system, a driver is only required to fill out a paper log and keep it on file for 90 days. Many experts report that less than half of the drivers ever perform the check. Instead, many drivers simply fill out the report while seated in the cab of the truck or in a coffee shop. The report is meaningless unless the listed components and systems have actually been inspected. For example, a driver who fails to actually inspect components on his vehicle will fail to detect that brake fluid is leaking from a hydraulic master brake cylinder. As a result, the brakes on the driver's truck may fail, potentially causing a serious accident.


A signed inspection report does not provide any assurance that a driver actually inspected the components included on the report. It would be desirable to provide technology to at least ensure that a driver (or other person doing an inspection) was physically present in the vicinity of each component requiring inspection, even if the driver is not compelled to affirmatively inspect all of the components. Most people, if required to actually walk to a component such as a tire of a truck, will then be more willing to at least look at the condition of the component, particularly if the task of indicating the condition of the component if there is a problem, is made relatively simple and efficient.


Encouraging safety inspections of equipment by creating a record providing evidence that a person doing the inspection actually visited each component that must be inspected has utility in many other applications and for many other types of equipment than trucks in the transportation industry. The concept is also useful in confirming the safe operating condition of machinery and components in other systems in which accidents related to equipment malfunction and failure must be avoided. For example, such a need exists in high-risk chemical and petrochemical operations, where periodic inspections of valves, pressure vessels, gages, and other components must be carried out to avoid potentially disastrous and costly accidents in which significant loss of life and property might occur.


SUMMARY

This application specifically incorporates by reference the disclosures and drawings of each patent application and issued patent identified above as a related application.


Disclosed herein are a method is defined for providing a record indicating that a location or component of a vehicle or other type of apparatus or system was visited during an inspection. In this method, a portable device is provided for use in recording data related to the inspection. The portable device includes a sensor that produces a signal indicative that an operator has positioned the portable device proximate a location or component. A record of the signal produced by the sensor is made and is stored within the portable device, providing evidence that the operator was sufficiently close to the location or component to make an inspection of the location or component.


The method further includes the step of enabling the operator to store an indication of a condition of the location or component in the portable device. Preferably, the portable device provides a prompt that indicates the location or component the operator is to inspect. After the operator has inspected the location or component, a plurality of different states of the location or component are displayed to the operator, enabling the operator to select the state observed during the inspection. If the location or component needs servicing or is unusable, the operator can select one of a plurality of different possible conditions to indicate an observed condition of the location or component. A record of the condition selected by the operator is then stored in the portable device. The record of the signal, the state, and any condition selected by the operator are transferred from the portable device to a more permanent storage at a remote site that is separate from the portable device, either immediately after the inspection or at a later time. Preferably, each record is transmitted to the remote site using a data signal conveyed over a wire network and/or a wireless network.


The method further includes the step of affixing a token adjacent to the location or component. The sensor responds to the token to detect when the portable device is proximate the location or component. The token causes the signal produced by the sensor to identify the location or component, e.g., a specific tire on a vehicle or a specific system component of a system or other apparatus, or a particular location. In most applications, a plurality of tokens are provided, each token being associated with and affixed adjacent to a different one of the plurality of components or locations. The token then causes the signal produced by the sensor to identify the location or component when the portable device is proximate the location or component associated with the token. Also, different predetermined ranges can be specified for the plurality of location or components, so that an appropriate predetermined range can be specified for each location or component.


Another aspect of the concepts disclosed herein are directed to a system for providing evidence that a plurality of components were visited during an inspection. The system includes a plurality of tokens, each of which is associated with a different location or component that is to be checked during the inspection and affixed adjacent to the location or component. Also included in the system is the portable device, which is adapted to be transported to each location or component to be inspected during the inspection. The portable device includes a housing, a display, an operator interface, and a memory in which machine instructions and data are stored. A sensor included with the portable device detects when the portable device is proximate each of the plurality of tokens, and thus, within a predetermined maximum distance from each of the locations or components with which the plurality of tokens are separately associated. The sensor then produces a signal indicative that the portable device is within the predetermined maximum distance from the location or component. A controller is coupled to the display, the memory, the operator interface, and the sensor and executes the machine instructions causing the memory to store data indicative of each component visited during the inspection in response to the signal produced by the sensor. Other functions implemented by the system are generally consistent with the steps of the method described above.


This Summary has been provided to introduce a few concepts in a simplified form that are further described in detail below in the Description. However, this Summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.





DRAWINGS

Various aspects and attendant advantages of one or more exemplary embodiments and modifications thereto will become more readily appreciated as the same becomes better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:



FIG. 1 is a schematic diagram of a tractor and trailer equipped with tokens at each component to be inspected, illustrating a person using a portable device in accord with the concepts disclosed herein;



FIG. 2 is a top plan view of a portable device for use in making a safety inspection of a tractor and trailer, showing a message that prompts the operator to inspect the left rear tires of the tractor;



FIG. 3 is a schematic block diagram of the functional components included in the portable device of FIG. 2;



FIG. 4 is a top plan view of the portable device of FIG. 2, illustrating a menu that indicates possible conditions of tires in need of service;



FIG. 5 is a flow chart showing the steps followed in carrying out a safety inspection in accord with the concepts disclosed herein;



FIG. 6 is a flow chart illustrating the steps employed in recording a condition of a component that is being inspected using the portable device of FIGS. 2 and 4; and



FIG. 7 (Prior Art) is an exemplary manually-completed inspection record used for safety inspections of tractors and trailers, illustrating the specific components and systems that are required to be inspected.





DESCRIPTION

Figures and Disclosed Embodiments are not Limiting


Exemplary embodiments are illustrated in referenced Figures of the drawings. It is intended that the embodiments and Figures disclosed herein are to be considered illustrative rather than restrictive. No limitation on the scope of the technology and of the claims that follow is to be imputed to the examples shown in the drawings and discussed herein.


Utility of the Concepts Disclosed Herein


The concepts disclosed herein are applicable in recording data resulting from a safety inspection of almost any type of equipment, apparatus, or system and is applicable to other types of inspections in which it is desirable to maintain a data record as evidence that the person making the inspection was actually physically present at a checkpoint or component requiring inspection. While the data accumulated with the concepts disclosed herein are not conclusively presumptive evidence that each component of a system was indeed carefully inspected, in most cases, if a person is required to visit a checkpoint or component, it is very likely that the person will actually inspect the component. By encouraging a person making an inspection to be physically close enough to a component to carry out an inspection, and by providing evidence of that fact in the data recorded, there is at least a justifiable presumption that the person actually did the inspection.



FIG. 1 illustrates a tractor-trailer 10 with which an embodiment of the concepts disclosed herein are usable to carry out a safety inspection. Tractor-trailer 10 is provided with a plurality of tokens affixed adjacent to each checkpoint or component that is to be inspected. While only a few of the tokens are illustrated in FIG. 1, FIG. 7 lists all of the components or systems that should be inspected if a driver is to be in compliance with the DOT regulations regarding pre- and post-inspections of such vehicles. A token will be affixed adjacent to the components and systems listed in FIG. 7, although several components might be associated with the same token. For example, in the engine compartment, one token might be used for both the radiator and the belts. As a driver moves about the tractor and trailer, evidence that the driver or the person doing the inspection moved sufficiently close to the components being inspected so that the inspection could actually take place is recorded in a portable device 20. Further details of portable device 20 are described below.


For the few tokens illustrated in FIG. 1, the relevance of the disposition of the token adjacent to a corresponding component of the tractor-trailer 10 should be evident. For example, token 12 is disposed adjacent to tandem dual rear tires 14 on the trailer. Since all the tires of the tandem dual rear wheels on the left rear of the trailer are readily visible from a position adjacent to token 12, a single token is sufficient to determine that the driver was sufficiently close so that all four tires at the left rear of the trailer could be readily inspected. Similarly, tandem dual wheels 18 on the left rear of the tractor are readily inspected when an observer 22 is positioned as shown in FIG. 1. In this position, the observer moves portable device 20 within a maximum predefined range of token 16, which is exposed above tandem dual wheels 18. Portable device 20, detects and responds to token 16, recording data indicating that the driver was in a position to inspect tandem dual rear wheels 18 on the tractor. It is contemplated that the operator may initiate the recognition of a token by activating a switch, or the portable device can instead simply respond when a token is sufficiently close to the portable device.


Other tokens 24, 26, 30, and 32 are illustrated adjacent other components of the tractor that are part of the safety inspection. For example, token 26 is affixed adjacent a tire 28 on the right front of the tractor, while tokens 30 and 32 are accessible if the front hood of the tractor is opened and are disposed adjacent the hydraulic brake master cylinder and the engine belts/radiator, respectively (not shown separately).


For each token there is a predetermined maximum distance that portable device 20 can be held from the token that will enable the portable device to detect the token, and thus the component that is associated with it in order to produce a record as evidence that the person holding the portable device was in a position to inspect the component. Depending upon the component to be inspected and the type of token, different predetermined maximum distances may be assigned to the various components. The different predetermined maximum distances might be implemented by partially shielding a token to vary the distance at which the portable device can detect the token.


Operator 20 is prompted to approach the next component in a series of components that must be checked during the safety inspection by a message 58 appearing on a display 40 of portable device 20, as shown in FIG. 2. For example, if operator 22 has just completed the inspection of tandem dual tires 14 on the left rear of the truck, display 40 provides a prompt 58 indicating that the operator should “verify tire condition—left rear of tractor.” A sensor 46 on portable device 20 responds to token 16 when the portable device is held less than the predetermined maximum distance from token 16 by producing a signal indicating that the portable device was within the required range of tandem dual tires 18 to enable the operator to inspect the tires. Display 40 also provides a prompt 60 to operator 22 requesting that the operator indicate whether the tire condition is okay. If so, the operator presses a green control button 52 corresponding to the message “YES, OK.” However, if during the visual inspection of the tires the operator determines that they require servicing, the operator is prompted to depress a yellow control button 54 on the portable device. Certain conditions such as a tread separation or a nail or other sharp object lodged in the tire would likely lead the person doing the inspection to depress a red control button 56, indicating a safety problem that requires the operator to refer to a supervisor who will likely elect to delay the trip until the tire is repaired and/or replaced or take other appropriate action depending upon the nature of the component and the type of problem that makes the component unsafe to use. Portable device 20 also includes a cursor control 50, which is a four-position switch that enables a cursor (not shown in this figure) to be moved up or down, and left or right. Cursor control 50, green, yellow, and red control buttons 52, 54, and 56 and display 40 are all disposed on a front surface of a housing 42 of portable device 20. Sensor 46 is disposed on the top edge of housing 42, while an optional universal serial bus (USB) port 48 is disposed on the edge of housing 42, opposite from sensor 46.


An antenna 44 is also disposed on the top edge of the housing for transmitting radio frequency (RF) transmissions to a remote data storage site 61 that is used for long-term storage of data resulting from safety inspections. The data produced by a safety inspection indicates each of the components of the vehicle (or other system or apparatus being inspected) that were visited by the operator, so that the portable device was positioned within the predetermined maximum distance from the token associated with the component, and also indicates the status of the component. In the event that the component appears to need service or represents a safety problem (as would be evident if the operator depressed yellow control button 54 or red control button 56, respectively), the operator is prompted to select one of a plurality of predefined conditions that justify the state of the component determined by the operator and best represent its observed condition.


If the state of the component is okay so that green control button 52 is depressed, i.e., if the component does not require any service and is usable or otherwise within its nominal operating parameters, there is no need to provide an indication of the condition of the component. The condition need only be recorded as part of the data stored in the portable device if either yellow control button 54 or red control button 56 is depressed by the operator to indicate the state of the component being other than “OK.”


A further example illustrating the selection of a condition relating to the example shown in FIG. 2 is included in FIG. 4. As shown in FIG. 4, if the operator has indicated that the state of the tires is such that they need service by pressing yellow control button 54, portable device 20 automatically displays several possible conditions that would have led an operator to indicate that state. In the example shown, message 58 prompts the operator to use the arrow button (i.e., cursor control 50) to select a possible condition from among the listed options that best describes the observed condition of the tires. Display 40 includes five possible conditions, the last of which covers any condition that might not be included among the first four that are listed. Using cursor control 50, the operator can move the cursor to the displayed statement that best describes the observed condition of the tire and then can depress red control 56, which corresponds to an “Enter” menu option 70 on display 40 for this screen. Green control 52 can be depressed to select a “Previous” display, if the operator elects to reconsider the state of the component that was previously selected.



FIG. 3 illustrates functional components 60 that are included in portable device 20, either on or inside housing 42. A central processing unit (CPU) 62 comprises the controller for portable device 20 and is coupled bi-directionally to a memory 64 that includes both random access memory (RAM) and read only memory (ROM). Memory 64 is used for storing data in RAM and machine instructions in ROM that control the functionality of CPU 62 when executed by it. CPU 62 is also coupled to receive operator input from controls 68. Collectively, controls 68 include green control button 52, yellow control button 54, red control button 56, and cursor control 50. In addition, CPU 62 provides text and graphics to display 40 for the prompts and other messages, and menu items and options from which the operator can select using cursor control 50.


After operator 22 has visited each of the checkpoints required for the safety inspection, the operator can optionally transmit the data that has been collected during the inspection to remote data storage site 61 through a RF transmission via antenna 44. The data provide evidence that the operator has visited the components and indicate the state and condition of the components that were visited and inspected. Alternatively, optional USB port 48 on portable device 20 can be coupled to a network interface 63 on an external cradle (not shown), which is in communication with remote data storage 65, as shown in FIG. 2. In FIG. 3, CPU 62 is shown communicating data to transmitter 66 (or through another data link) using a wire and/or wireless data communication link. The data collected and stored in memory 64 of portable device 20 during the safety inspection can thus be safely transferred to the remote data storage site and retained for as long as the data might be needed.


In some cases, it may be preferable to transmit the data to the remote site immediately after making a safety inspection to ensure that the data retained in memory 64 are not lost should an accident occur that destroys portable device 20. An accident destroying the evidence that the safety inspection was implemented could have an adverse effect during any litigation related to the accident. However, since the risk of such an accident is relatively remote, it is contemplated that an operator may collect the data from a number of safety inspections in memory 64 and then subsequently upload the data to remote data storage 65 by coupling the data to a cradle (not shown) that includes a USB port terminal and network interface. The cradle might be maintained by a carrier at a freight terminal.


Alternatively, the cradle might be disposed at a different site and/or connect to the remote data storage site through other types of communication links. One example of such a communication system is the OMNITRACS™ satellite mobile communication system sold by Qualcomm Corporation that enables drivers on the road and carriers to remain in communication with each other and enables the carrier to monitor the location of a tractor-trailer during a trip. By linking portable device 20 through USB port 48 to such a data communication system, the data stored within memory 64 can readily be transmitted to a remote site maintained by the carrier for long-term storage, even while a trip is in progress.


The tokens that are affixed at various points on the tractor-trailer (or adjacent components of other types of systems or apparatus unrelated to a vehicle) can be of several different types, depending upon the type of sensor 46 that is included on portable device 20. In a preferred embodiment, the token that is preferably employed is a radio frequency identification (RFID) tag that is attached with a fastener or an adhesive to a point on a frame or other support (not shown) adjacent to the component associated with the token. One type of RFID tag that is suitable for this purpose is the WORLDTAG™ token that is sold by Sokymat Corporation. This tag is excited by an RF transmission from portable device 20 via antenna 44. In response to the excitation energy received, the RFID tag modifies the RF energy that is received from antenna 44 in a manner that specifically identifies the component associated with the RFID tag, and the modified signal is detected by sensor 46.


An alternative type of token that can also be used in this invention is an IBUTTON™ computer chip, which is armored in a stainless steel housing and is readily affixed to a frame or other portion of the vehicle (or other type of apparatus or system), adjacent to the component associated with the IBUTTON chip. The IBUTTON chip is programmed with JAVA™ to provide a recognition signal when interrogated by a signal received from a nearby transmitter, such as from antenna 44 on portable device 20. The signal produced by the IBUTTON chip is received by sensor 46, which determines the type of component associated with a token. This type of token is less desirable since it is more expensive, although the program instructions that it executes can provide greater functionality.


Yet another type of token that might be used is an optical bar code in which a sequence of lines of varying width encode light reflected from the bar code tag. The encoded reflected light is received by sensor 46, which is then read by an optical detector. Bar code technology is well understood in the art and readily adapted for identifying a particular type of component and location of the component on a vehicle or other system or apparatus. One drawback to the use of a bar code tag as a token is that the bar code can be covered with dirt or grime that must be cleaned before the sequence of bar code lines can be properly read. If the bar code is applied to a plasticized adhesive strip, it can readily be mounted to any surface and then easily cleaned with a rag or other appropriate material.


Yet another type of token usable in the concepts disclosed herein are a magnetic strip in which a varying magnetic flux encodes data identifying the particular component associated with the token. Such magnetic strips are often used in access cards that are read by readers mounted adjacent to doors or in an elevator that provides access to a building. However, in the concepts disclosed herein, the magnetic flux reader comprises sensor 46 on portable device 20. The data encoded on such a token is readily read as the portable device is brought into proximity of the varying magnetic flux encoded strip comprising such a token.


As yet another alternative, an active token can be employed that conforms to the BLUETOOTH™ specification for short distance data transfer between computing devices. However, it is likely that the range of the signal transmitted by the token would need to be modified so that it is substantially less than that normally provided by a device conforming to the BLUETOOTH specification. It is important that the portable device be able to detect that it is proximate to the component only within a predetermined maximum range selected to ensure that the operator is positioned to actually carry out an inspection of the component.


Logical Steps Implemented in the Concepts Disclosed Herein



FIG. 5 illustrates the logical steps implemented in connection with the concepts disclosed herein to carry out a safety inspection of a vehicle or other apparatus or system. From a start block 80, a step 82 provides for manual entry of an operator identification (ID) into a data record, or the operator ID can already be stored in memory of the portable device, or can be automatically entered in response to a special operator ID tag disposed on the vehicle. Cursor control 50 is employed to sequentially select digits from a displayed list, to input the operator ID for the individual making the safety inspection. The operator ID might be a four (or more) digit number or alphanumeric code. Alternatively, a plurality of possible operator IDs might be displayed as a list on portable device 20, enabling the operator to select his/her operator ID from the list using cursor control 50 and one of the three control buttons.


Once the operator ID is entered, portable device 20 prompts the operator to proceed to a first inspection point. For example, as indicated in FIG. 2, message 58 prompts the operator to verify the tire condition on the left rear of the tractor. A decision step 85 determines if the portable device has detected the token associated with the component that is next to be inspected. If not, the logic loops until the component is detected. Once sensor 46 on portable device 20 has detected the token associated with the current component to be inspected, the logic then advances to a step 86 in which the operator is prompted to indicate a state of the component (and possibly, its condition). In a step 88, the operator performs the inspection, which may involve visually observing the state and condition of the component, or carrying out other steps that might be required to confirm the state and condition of the component. It is contemplated that in some types of inspections, a series of steps might be required to test the component to determine if it is operating properly, needs maintenance or repair, or is unusable. Again, portable device 20 can be programmed to provide appropriate prompts to direct the operator through a series of steps required to carry out the inspection of such a component. Accordingly, in a step 90 the operator selectively enters the condition of the component into portable device 20 using the control buttons and cursor control 50.


A decision step 92 determines if there are further inspection points in the safety inspection being carried out. If not, a step 94 provides for transmitting or loading the inspection data into storage at a remote site; this step can be done immediately after the inspection is completed, or at some later time, perhaps after additional safety inspections have been completed. Once the data are transmitted to the remote site for long-term storage, the process is completed in a step 96.


Assuming that further inspection points remain in the safety inspection at decision step 92, a step 98 provides for the operator to proceed to the next inspection point, which will again be determined by a prompt displayed to the operator on display 40 of portable device 20. The logic then loops back to decision step 85, which determines if the sensor on the portable device has detected the component, indicating that the portable device is within the predefined maximum range of the token, thus ensuring that the operator is sufficiently close to the component to inspect it.


Further details of step 90 are illustrated in FIG. 6. From a start block 100, a decision step 102 determines if the inspected component is okay. If so, the operator presses green control button 52 in a step 104. Since the component is okay, nothing further is required for that component, and the logic then proceeds to a step 106, which provides that the operator can continue with the inspection, i.e., proceed with decision step 92 in FIG. 5.


However, if the determination in decision step 102 indicates that the inspected component is not okay, a decision step 108 enables the operator to determine if immediate attention is required. If so, the operator presses red control button 56 at a step 110 and enters the condition of the component on the handheld unit. For example, if the operator is inspecting a tire and determines that the tread of the tire is separating, the tire should not be used, but should instead be replaced, the operator would use the cursor control on the portable device to select an option for the condition “tread separating from tire” at a step 112. In most inspections, the operator would be required to contact a supervisor for instructions regarding the safety condition at a step 114. In the example just noted, the supervisor would likely arrange for the tire to be replaced by maintenance or repair personnel.


In some cases, a supervisor might override the operator's determination of the state of the component based upon the reported condition. Therefore, a decision step 116 determines if the supervisor has given authorization to the operator to make the trip, scheduling a later repair of the component. If so, the logic proceeds to step 106, in which the operator continues with the inspection as described above. If not, there is no further need to inspect the remainder of the vehicle at that point, since the complete inspection will need to be carried out again after the unsafe condition has been corrected, e.g., by replacing the defective tire. The logic is then done, as indicated in step 118.


In the event that the operator determines that immediate attention is not required at decision step 108, at a step 120, the operator presses yellow control button 54 on portable device 20. The operator then selects and enters the condition noted on the portable device, as indicated in a step 122. In the example shown in FIG. 4, six possible conditions are indicated by statements on display screen 40 for a tire that is still usable but needs service. In this case, the operator employs cursor control 50 to move the cursor to a selected statement that thus describes the observed condition of the component and then depresses red control button 56 to enter the condition, creating a record of the state and condition of the component currently being inspected that is retained within the memory of the portable device. Thereafter, the logic proceeds to step 106, in which the operator continues with the inspection.


Alternative to Portable Device


While it is likely that an initial preferred embodiment will employ portable device 20, it is also contemplated that an accessory might be provided for a personal digital assistant (PDA), such as the PALM™ PDA, that would enable the PDA to be used for the same functions as portable device 20. The accessory to the PDA will include a sensor to detect when the PDA is within the predetermined maximum range from the token associated with the component currently being inspected. The conventional controls on the PDA can be used to make and enter a selection. Furthermore, instead of using a cursor control, it is also contemplated that a touch screen display might instead be used for making selections of menu items and other options presented to the operator. In addition, the PDA would need to be programmed to carry out the functions implemented by portable device 20, as described above.


Other Applications of the Concepts Disclosed Herein


Although the concepts disclosed herein will initially be used in connection with safety inspections of tractors and trailers in the commercial trucking industry, there are many other types of safety inspections unrelated to vehicles in which it is equally applicable. For example, in a chemical processing plant or a petroleum refinery it is common for technicians to make periodic safety inspections of valves, gauges, reactors, pressure vessels, and other types of processing equipment and system components to ensure that they are operating properly and within nominal or acceptable limits. During an inspection, a technician may note that a valve is leaking slightly, and schedule it for repair or replacement at a later date. Clearly, if the leak is of a non-hazardous substance and is insignificant in volume, there might well be no reason to shut down the process line in which the valve is installed simply because of the leaking valve. However, if the valve is used in controlling an extremely hazardous or toxic substance, even a small leak may be unacceptable. In this case, the technician should immediately report the condition to a supervisor who would then likely shut down the process or divert the flow of hazardous substance to a different process line to enable the condition to be corrected by immediate replacement or repair of the valve. Based upon the preceding discussion that discloses how a first preferred embodiment of the concepts disclosed herein are used in recording data related to safety inspections of a vehicle, it should be evident that portable device 20 is also readily adapted to recording data from other inspections. In the example just noted, a technician would be prompted to inspect the valve, and once the portable unit was within a predetermined distance of the valve, would be prompted to indicate a state of the valve. If the technician depressed either yellow control button 54 or red control button 56, the display would provide a menu of possible conditions from which the technician could select, using cursor control 50 and red control button 56 to indicate the observed condition of the valve.


Although the concepts disclosed herein have been described in connection with the preferred form of practicing them and modifications thereto, those of ordinary skill in the art will understand that many other modifications can be made thereto within the scope of the claims that follow. Accordingly, it is not intended that the scope of these concepts in any way be limited by the above description, but instead be determined entirely by reference to the claims that follow.

Claims
  • 1. A method for providing a record that a location was visited during an inspection, comprising the steps of: (a) providing a portable device for use in recording data related to the inspection, said portable device including a sensor that detects when the portable device is disposed proximate the location, producing a signal indicative thereof;(b) enabling an operator to move the portable device proximate the location;(c) in response to the sensor detecting that the portable device is disposed proximate the location, displaying to the operator a plurality of different possible conditions associated with the location;(d) enabling the operator to select one of the plurality of different possible conditions, to indicate a condition associated with the location as determined by the operator; and(e) storing in the portable device a record of said one of the plurality of different possible conditions selected by the operator, the record further including an indication that the sensor detected the portable device as being disposed proximate to the location, said record providing evidence that the operator was sufficiently close to the location to make an inspection of the location.
  • 2. The method of claim 1, wherein the plurality of conditions include: (a) a first condition in which the location is safe for use;(b) a second condition in which the location requires servicing, but is still usable; and(c) a third condition in which the location is not safe for use.
  • 3. The method of claim 2, wherein if either the second condition or the third condition is identified by the operator who making the inspection, further comprising the step of displaying a plurality of possible states of the location to enable the operator to select one of the states to indicate why the operator selected either the second condition or the third condition, and including the state in the record.
  • 4. The method of claim 3, wherein the plurality of states is unique for at least one location.
  • 5. The method of claim 1, wherein the plurality of conditions are unique for at least one location.
  • 6. The method of claim 1, wherein the sensor is configured to detect a token exhibiting a predefined characteristic, further comprising the step of a positioning a token exhibiting the predefined characteristic proximate each location to be inspected, such that: (a) a first token is disposed proximate a first location, and the sensor must be disposed within at least a first distance from the first token in order to detect the first token;(b) a second token is disposed proximate a second location, and the sensor must be disposed within at least a second distance from the second token in order to detect the second token; and(c) the first distance is greater than the second distance, such that when the sensor is disposed within at least the second distance of the first token, the sensor will detect the first token, but when the sensor is disposed within at least the first distance of the second token, the sensor will not detect the second token.
  • 7. The method of claim 6, wherein each token comprises a radio frequency tag.
  • 8. A method for providing a record that a location was visited during an inspection, comprising the steps of: (a) providing: (i) a portable device for use in recording data related to the inspection, said portable device including a sensor that detects when the portable device is disposed proximate a token exhibiting a predefined characteristic, producing a signal indicative thereof;(ii) a first token that is disposed proximate a first location, such that the sensor must be disposed within at least a first distance from the first token in order to detect the first token; and(ii) a second token that is disposed proximate a second location, such that the sensor must be disposed within at least a second distance from the second token in order to detect the second token, the first distance being greater than the second distance;(b) enabling an operator to move the portable device proximate to the first and second locations;(c) in response to the sensor detecting that the portable device is disposed at least within the first distance from the first location, storing in the portable device a first record including an indication that the sensor detected that the portable device was disposed proximate the first location, said first record providing evidence that the operator was sufficiently close to the first location to make an inspection of the first location; and(d) in response to the sensor detecting that the portable device is disposed at least within the second distance from the second location, storing in the portable device a second record including an indication that the sensor detected that the portable device was disposed proximate the second location, said second record providing evidence that the operator was sufficiently close to the second location to make an inspection of the second location.
  • 9. The method of claim 8, further comprising the steps of: (a) in response to the sensor detecting that the portable device is disposed proximate a location to be inspected, displaying to the operator a plurality of different possible conditions associated with the location;(b) enabling the operator to select one of the plurality of different possible conditions, to indicate a condition associated with the location as determined by the operator; and(c) adding to the record for the location said one of the plurality of different possible conditions selected by the operator.
  • 10. The method of claim 9, wherein the plurality of conditions include: (a) a first condition in which the location is safe for use;(b) a second condition in which the location requires servicing, but is still usable; and(c) a third condition in which the location is not safe for use.
  • 11. The method of claim 10, wherein if either the second condition or the third conditions is identified by the operator making the inspection, further comprising the step of displaying a plurality of possible states of the location to enable the operator to select one of the states to indicate why the operator selected either the second condition or the third condition, and then including the state in the record.
  • 12. The method of claim 9, wherein the plurality of conditions is unique for at least one location.
  • 13. The method of claim 8, wherein each token comprises a radio frequency tag.
  • 14. A system for providing evidence that a plurality of locations were visited during an inspection, comprising: (a) a portable device adapted to be transported to each of the plurality of locations to be inspected during the inspection, said portable device including: (i) a housing;(ii) a display;(iii) an operator interface;(iv) a memory in which machine instructions and data are stored;(v) a sensor for detecting when the portable device is proximate any of the plurality of locations, and in response thereto producing a signal indicating that the portable device is proximate to one of the plurality of locations; and(vi) a controller coupled to the display, the memory, the operator interface, and the sensor, said controller executing the machine instructions and causing the memory to store a record indicative of each location visited during the inspection, in response to the signal produced by the sensor, such that whenever the sensor produces the signal indicating that the portable device is proximate to one of the plurality of locations, the controller further executes machine instructions causing a plurality of different possible conditions associated with the location to be presented to the operator on the display, the condition selected by the operator being added to the record for that location.
  • 15. The system of claim 14, further comprising a plurality of tokens to which the sensor responds, each token being associated with a different location that is to be visited during the inspection and being disposed and affixed proximate to said location.
  • 16. A system for providing evidence that a plurality of locations were visited during an inspection, comprising: (a) a first token disposed proximate a first location, the first token being configured to be detected when a sensor is disposed within at least a first distance from the first token;(b) a second token disposed proximate a second location, the second token being configured to be detected when the sensor is disposed within at least a second distance from the second token, the first distance being greater than the second distance; and(c) a portable device adapted to be transported to each location to be visited and inspected during the inspection, said portable device including: (i) a housing;(ii) a display;(iii) an operator interface;(iv) a memory in which machine instructions and data are stored;(v) the sensor for detecting when the portable device is proximate one of the first and second locations, said sensor producing a signal whenever the portable device is disposed within the first distance from the first token and whenever the portable device is disposed within the second distance from the second token; and(vi) a controller coupled to the display, the memory, the operator interface, and the sensor, said controller executing the machine instructions and causing the memory to store a record indicative of each location visited during the inspection, in response to the signal produced by the sensor.
  • 17. The system of claim 16, such that whenever the sensor produces the signal indicating that the portable device is proximate one of the first and second locations, the controller further executes machine instructions causing a plurality of different possible conditions associated with the location to be displayed to enable an operator to select one of the conditions, the condition selected by the operator being added to the record for that location to indicate the condition of said location determined by the operator.
  • 18. A method for providing a record that a mandated vehicle inspection has been performed, comprising the steps of: (a) identifying a plurality of components that must be inspected to comply with the mandated vehicle inspection;(b) for each component, identifying a location on the vehicle at which the component can be inspected;(c) installing a token at each such location;(d) providing a portable device for use in recording data related to the mandated vehicle inspection, said portable device including a sensor capable of detecting the token installed at each location, the portable device producing a sensor signal when the portable device is proximate to each token;(e) enabling an operator to move the portable device proximate to the token installed at each location; and(f) automatically producing a record of the sensor signal produced by the sensor, the sensor signal comprising data that are stored in the record within the portable device, said record providing evidence that the operator was actually present at each location on the vehicle at which the mandated inspection could have been performed.
  • 19. The method of claim 18, further comprising the steps of: (a) after the sensor detects the token at a location, displaying to the operator a plurality of different possible conditions of the component at the location;(b) enabling the operator to select one of the plurality of different possible conditions, to indicate a condition of the component determined by the operator; and(c) adding said one of the plurality of different possible conditions selected by the operator to the record stored within the portable device for the location.
  • 20. A method for providing a record that a mandated inspection has been performed, comprising the steps of: (a) identifying a plurality of components that must be inspected to comply with the mandated inspection;(b) for each component, identifying a location from which the component can be inspected;(c) installing a token at each such location;(d) providing a portable device for use in recording data related to the mandated inspection, said portable device including a sensor capable of detecting the token installed at each location, the portable device producing a sensor signal when the portable device is proximate to each token;(e) enabling an operator to move the portable device proximate to the token installed at each location; and(f) automatically producing a record of the sensor signal produced by the sensor, the sensor signal comprising data that are stored in the record within the portable device, said record providing evidence that the operator was actually present at each location from which the mandated inspection could have been performed.
RELATED APPLICATIONS

This application is a continuation of a patent application, Ser. No. 10/915,957, filed on Aug. 11, 2004, now issued as U.S. Pat. No. 7,557,696, which itself is a continuation-in-part of prior application Ser. No. 10/219,892, filed on Aug. 15, 2002 and now issued as U.S. Pat. No. 6,804,626 on Oct. 12, 2004, which itself is a continuation-in-part of prior application Ser. No. 09/951,104, filed on Sep. 11, 2001 and now issued as U.S. Pat. No. 6,671,646 on Dec. 30, 2003, the benefit of the filing dates of which is hereby claimed under 35 U.S.C. §120.

US Referenced Citations (201)
Number Name Date Kind
3573620 Ashley et al. Apr 1971 A
3990067 Van Dusen et al. Nov 1976 A
4025791 Lennington et al. May 1977 A
4092718 Wendt May 1978 A
4258421 Juhasz et al. Mar 1981 A
4263945 Van Ness Apr 1981 A
4325057 Bishop Apr 1982 A
4469149 Walkey et al. Sep 1984 A
4602127 Neely et al. Jul 1986 A
4658371 Walsh et al. Apr 1987 A
4763356 Day, Jr. et al. Aug 1988 A
4799162 Shinakawa et al. Jan 1989 A
4804937 Barbiaux et al. Feb 1989 A
4846233 Fockens Jul 1989 A
4897792 Hosoi Jan 1990 A
4934419 Lamont et al. Jun 1990 A
5058044 Stewart et al. Oct 1991 A
5068656 Sutherland Nov 1991 A
5072380 Randelman et al. Dec 1991 A
5120942 Holland Jun 1992 A
5128651 Heckart Jul 1992 A
5204819 Ryan Apr 1993 A
5206643 Eckelt Apr 1993 A
5223844 Mansell et al. Jun 1993 A
5243323 Rogers Sep 1993 A
5321629 Shirata et al. Jun 1994 A
5337003 Carmichael et al. Aug 1994 A
5359522 Ryan Oct 1994 A
5394136 Lammers et al. Feb 1995 A
5399844 Holland Mar 1995 A
5442553 Parillo Aug 1995 A
5459304 Eisenmann Oct 1995 A
5459660 Berra Oct 1995 A
5488352 Jasper Jan 1996 A
5499182 Ousborne Mar 1996 A
5541845 Klein Jul 1996 A
5546305 Kondo Aug 1996 A
5557254 Johnson et al. Sep 1996 A
5557268 Hughes et al. Sep 1996 A
5572192 Berube Nov 1996 A
5585552 Heuston et al. Dec 1996 A
5596501 Comer et al. Jan 1997 A
5600323 Boschini Feb 1997 A
5610596 Petitclerc Mar 1997 A
5623258 Dorfman Apr 1997 A
5629678 Gargano et al. May 1997 A
5671158 Fournier et al. Sep 1997 A
5680328 Skorupski et al. Oct 1997 A
5719771 Buck et al. Feb 1998 A
5731893 Dominique Mar 1998 A
5742915 Stafford Apr 1998 A
5745049 Akiyama et al. Apr 1998 A
5758299 Sandborg et al. May 1998 A
5758300 Abe May 1998 A
5781871 Mezger et al. Jul 1998 A
5808565 Matta et al. Sep 1998 A
5809437 Breed Sep 1998 A
5815071 Doyle Sep 1998 A
5838251 Brinkmeyer et al. Nov 1998 A
5839112 Schreitmueller et al. Nov 1998 A
5874891 Lowe Feb 1999 A
5884202 Arjomand Mar 1999 A
5890061 Timm et al. Mar 1999 A
5890520 Johnson, Jr. Apr 1999 A
5913180 Ryan Jun 1999 A
5922037 Potts Jul 1999 A
5923572 Pollock Jul 1999 A
5942753 Dell Aug 1999 A
5956259 Hartsell, Jr. et al. Sep 1999 A
5995898 Tuttle Nov 1999 A
6009363 Beckert et al. Dec 1999 A
6016795 Ohki Jan 2000 A
6024142 Bates Feb 2000 A
6043661 Gutierrez Mar 2000 A
6054950 Fontana Apr 2000 A
6061614 Carrender et al. May 2000 A
6064299 Lesesky et al. May 2000 A
6070156 Hartsell, Jr. May 2000 A
6078255 Dividock et al. Jun 2000 A
6084870 Wooten et al. Jul 2000 A
6092021 Ehlbeck et al. Jul 2000 A
6107915 Reavell et al. Aug 2000 A
6107917 Carrender et al. Aug 2000 A
6112152 Tuttle Aug 2000 A
6128551 Davis et al. Oct 2000 A
6128959 McGovern et al. Oct 2000 A
6169938 Hartsell, Jr. Jan 2001 B1
6169943 Simon et al. Jan 2001 B1
6208948 Klingler et al. Mar 2001 B1
6236911 Kruger May 2001 B1
6240365 Bunn May 2001 B1
6253129 Jenkins et al. Jun 2001 B1
6256579 Tanimoto Jul 2001 B1
6259358 Fjordbotten Jul 2001 B1
6263273 Henneken et al. Jul 2001 B1
6285953 Harrison et al. Sep 2001 B1
6339745 Novik Jan 2002 B1
6370454 Moore Apr 2002 B1
6374176 Schmier et al. Apr 2002 B1
6396413 Hines et al. May 2002 B2
6411203 Lesesky et al. Jun 2002 B1
6411891 Jones Jun 2002 B1
6417760 Mabuchi et al. Jul 2002 B1
6438472 Tano et al. Aug 2002 B1
6450411 Rash et al. Sep 2002 B1
6456039 Lauper et al. Sep 2002 B1
6502030 Hilleary Dec 2002 B2
6505106 Lawrence Jan 2003 B1
6529808 Diem Mar 2003 B1
6539296 Diaz et al. Mar 2003 B2
6594579 Lowrey et al. Jul 2003 B1
6594621 Meeker Jul 2003 B1
6597973 Barich et al. Jul 2003 B1
6604033 Banet et al. Aug 2003 B1
6608554 Weant et al. Aug 2003 B2
6609082 Wagner Aug 2003 B2
6611740 Lowrey et al. Aug 2003 B2
6614392 Howard Sep 2003 B2
6616036 Streicher et al. Sep 2003 B2
6621452 Knockeart et al. Sep 2003 B2
6636790 Lightner et al. Oct 2003 B1
6664897 Pape et al. Dec 2003 B2
6671646 Manegold et al. Dec 2003 B2
6708113 Von Gerlach et al. Mar 2004 B1
6714859 Jones Mar 2004 B2
6727818 Wildman et al. Apr 2004 B1
6732031 Lowrey et al. May 2004 B1
6732032 Banet et al. May 2004 B1
6744352 Leseskey et al. Jun 2004 B2
6754183 Razavi et al. Jun 2004 B1
6804606 Jones Oct 2004 B2
6804626 Manegold et al. Oct 2004 B2
6834259 Nicholson et al. Dec 2004 B1
6856820 Kolls Feb 2005 B1
6880390 Emord Apr 2005 B2
6894617 Richman May 2005 B2
6897894 Miyazawa May 2005 B1
6899151 Latka et al. May 2005 B1
6904359 Jones Jun 2005 B2
6909947 Douros et al. Jun 2005 B2
6928348 Lightner et al. Aug 2005 B1
6946953 Leseskey et al. Sep 2005 B2
6957133 Hunt et al. Oct 2005 B1
6972668 Schauble Dec 2005 B2
6988033 Lowrey et al. Jan 2006 B1
7027955 Markwitz et al. Apr 2006 B2
7048185 Hart et al. May 2006 B2
7103460 Breed Sep 2006 B1
7113127 Banet et al. Sep 2006 B1
7117121 Brinton et al. Oct 2006 B2
7155199 Zalewski et al. Dec 2006 B2
7174243 Lightner et al. Feb 2007 B1
7174277 Vock et al. Feb 2007 B2
7225065 Hunt et al. May 2007 B1
7228211 Lowrey et al. Jun 2007 B1
7254516 Case, Jr. et al. Aug 2007 B2
7343252 Wiens Mar 2008 B2
7362229 Brinton et al. Apr 2008 B2
7447574 Washicko et al. Nov 2008 B1
7477968 Lowrey et al. Jan 2009 B1
7480551 Lowrey et al. Jan 2009 B1
7532962 Lowrey et al. May 2009 B1
7532963 Lowrey et al. May 2009 B1
7596437 Hunt et al. Sep 2009 B1
7604169 Demere Oct 2009 B2
7640185 Giordano et al. Dec 2009 B1
7650210 Breed Jan 2010 B2
7672756 Breed Mar 2010 B2
20010047283 Melick et al. Nov 2001 A1
20010053983 Reichwein et al. Dec 2001 A1
20020016655 Joao Feb 2002 A1
20020022979 Whipp et al. Feb 2002 A1
20020022984 Daniel et al. Feb 2002 A1
20020065698 Schick et al. May 2002 A1
20020107833 Kerkinni Aug 2002 A1
20020107873 Winkler et al. Aug 2002 A1
20020111725 Burge Aug 2002 A1
20020122583 Thompson Sep 2002 A1
20020133273 Lowrey et al. Sep 2002 A1
20020133275 Thibault Sep 2002 A1
20020147610 Tabe Oct 2002 A1
20020150050 Nathanson Oct 2002 A1
20020156558 Hanson et al. Oct 2002 A1
20020163449 Flick Nov 2002 A1
20020178147 Arroyo et al. Nov 2002 A1
20020188593 Moser et al. Dec 2002 A1
20030030550 Talbot Feb 2003 A1
20030033061 Chen et al. Feb 2003 A1
20030109973 Hensey et al. Jun 2003 A1
20030120745 Katagishi et al. Jun 2003 A1
20040009819 Koga Jan 2004 A1
20040236596 Chowdhary et al. Nov 2004 A1
20050273250 Hamilton et al. Dec 2005 A1
20060232406 Filibeck Oct 2006 A1
20070050193 Larson Mar 2007 A1
20070069947 Banet et al. Mar 2007 A1
20070179709 Doyle Aug 2007 A1
20080154489 Kaneda et al. Jun 2008 A1
20080154712 Wellman Jun 2008 A1
20090069999 Bos Mar 2009 A1
20100088127 Betancourt et al. Apr 2010 A1
Foreign Referenced Citations (12)
Number Date Country
2 138 378 Nov 1994 CA
2 326 892 Oct 1999 CA
2 388 572 May 2001 CA
0 755 039 Jun 1996 EP
0 814 447 May 1997 EP
1 067 498 Jul 2000 EP
1 271 374 Jun 2002 EP
2 116 968 Nov 2009 EP
WO 9803952 Jan 1998 WO
WO 9830920 Jul 1998 WO
WO 03023550 Mar 2003 WO
WO 2007092711 Aug 2007 WO
Related Publications (1)
Number Date Country
20090248362 A1 Oct 2009 US
Continuations (1)
Number Date Country
Parent 10915957 Aug 2004 US
Child 12475309 US
Continuation in Parts (2)
Number Date Country
Parent 10219892 Aug 2002 US
Child 10915957 US
Parent 09951104 Sep 2001 US
Child 10219892 US