I. Field of the Invention
The present invention relates generally to marine transportation and, more particularly, to an improved system and related methods for manned and/or unmanned marine transportation.
II. Discussion of the Prior Art
Various challenges exist in creating unmanned transportation for marine applications. The present invention is directed at overcoming, or at least improving upon, the disadvantages of the prior art.
The present invention comprises a vehicle for unmanned marine transportation. According to one embodiment of the present invention, this is accomplished by equipping a marine vessel or boat with a bank of batteries to power the various systems on the vessel, a plurality of solar cells to augment and/or supplant the battery bank, a computer guidance system for guiding and operating the various systems on the vessel, an antenna for sending and/or receiving data or signals, a plurality of sensors for providing feedback or input to the various systems on the vessel, a motor capable of being swiveled between a stability-providing position and a drive position, and one or more rudders for steering the vessel.
In a preferred embodiment, the motor comprises a linear pump that produces power on all strokes and allows full six degrees of freedom (6DOF) vectoring for rapid and efficient directional control. There are very few parts thereby significantly reducing the maintenance, life cycle cost, energy consumption, weight, and volume. By way of example only, the linear pump may be of a type generally shown and described in U.S. Pat. Nos. 6,352,455 and 6,607,368, the entire contents of which are hereby incorporated into this disclosure as if set forth in their entirety herein.
In another embodiment of the present invention, the linear pump is similar to the linear pumps of the '455 and '368 patents in that it includes an inner chamber disposed within an outer chamber, each having one or more inlets and outlets for passing fluid into and out of each respective chamber to pump fluid. The linear pump of the present invention is different from (and improved relative to) the linear pump of the '455 and '368 patents in that the outer chamber and inner chamber are both generally rigid, wherein the circumference of the inner chamber may be adjusted via a plurality of generally rigid ribs and linear motors, and wherein the end plates do NOT move relative to one another.
In one embodiment, the outer chamber of linear pump is generally rigid, and includes a plurality of intake ports to permit fluid to enter into the outer chamber (including but not limited to one-way check valves) and a plurality of outlet ports to permit movement of the fluid or relative fluid of the device (including but not limited to one-way check valves). The inner chamber is constructed from a plurality of generally rigid plate members or “slat-like” ribs which run the length of the pumping system of the present invention. Each rib member cooperates with one or more linear motors such that the rib members may be selectively forced in a radial (i.e. outward) direction and medical (i.e. inward) direction.
To facilitate this radial and medial motion, each rib member is equipped with an articulating member which engages into a groove formed within an adjacent rib member. As an example, both the rib members and the articulating members are generally curved such that the inner chamber is generally cylindrical. As the linear motors are operated, the rib members are caused to expand and contract within the generally rigid outer chamber. In a preferred embodiment, the linear motors include permanent magnets, but any of a variety of suitable linear drive mechanisms may be employed without departing from the scope of the present invention, including but not limited to hydraulic and pneumatic systems. To ensure no pressure loss during operation, the articulating member may be equipped with any of a variety of sealing feature, including but not limited to O-rings or the like to prevent the passage of fluid in between the adjacent rib members during contraction and/or expansion.
One advantage of this design is that, unlike the linear pump systems shown and described in the '455 or '368 patents, the inner chamber is not a bladder which will stretch and recover. The power is 90-degree opposition, which provides close to a 100% power exchange instead of the 70% with the flexible bladder of the '455 or '368 patents. This is a significant distinction in that it will allow the pump of the present invention, when attached to a vehicle or appropriate size and construction, to actually propel the vehicle from a position on top of or under the water to an airborne state out of the water.
In an alternative embodiment, the outer chamber of linear pump has inlets and outlets disposed along the outer periphery of the outer chamber. Each embodiment of the linear pump disclosed herein is capable of simultaneously discharging the fluid within the inner chamber while fluid is charged or delivered into the outer chamber according to the present invention. The inverse is also true, wherein the linear pump is capable of simultaneously discharging the fluid within the outer chamber while fluid is charged or delivered into the inner chamber according to the present invention.
Although described herein as suitable for unmanned use, it will be appreciated that the marine vessel of the present invention may also be equipped to be manned with one or more users.
Many advantages of the present invention will be apparent to those skilled in the art with a reading of this specification in conjunction with the attached drawings, wherein like reference numerals are applied to like elements and wherein:
Illustrative embodiments of the invention are described below. In the interest of clarity, not all features of an actual implementation are described in this specification. It will of course be appreciated that in the development of any such actual embodiment, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which will vary from one implementation to another. Moreover, it will be appreciated that such a development effort might be complex and time-consuming, but would nevertheless be a routine undertaking for those of ordinary skill in the art having the benefit of this disclosure. The linear pump of the present invention disclosed herein boasts a variety of inventive features and components that warrant patent protection, both individually and in combination.
In a preferred embodiment, the motor 26 comprises a linear pump that produces power on all strokes and allows full six degrees of freedom (6DOF) vectoring for rapid and efficient directional control. There are very few parts thereby significantly reducing the maintenance, life cycle cost, energy consumption, weight, and volume. By way of example only, the linear pump may be of a type generally shown and described in U.S. Pat. Nos. 6,352,455 and 6,607,368, the entire contents of which are hereby incorporated into this disclosure as if set forth in their entirety herein.
In one embodiment, the outer chamber 114 of linear pump 110 is generally rigid, and includes a plurality of intake ports 115 to permit fluid to enter into the outer chamber 114 (including but not limited to one-way check valves) and a plurality of outlet ports to permit movement of the fluid or relative fluid of the device (including but not limited to one-way check valves). The inner chamber 112 is constructed from a plurality of generally rigid plate members or “slat-like” ribs 116 which run the length of the pumping system of the present invention. Each rib member 116 cooperates with one or more linear motors 118 such that the rib members 116 may be selectively forced in a radial (i.e. outward) direction and medial (i.e. inward) direction.
To facilitate this radial and medial motion, each rib member 116 is equipped with an articulating member 122 which engages into a groove 124 formed within an adjacent rib member 116. As an example, both the rib members 116 and the articulating members 122 are generally curved such that the inner chamber 112 is generally cylindrical. As the linear motors 118 are operated, the rib members 116 are caused to expand and contract within the generally rigid outer chamber 114. In a preferred embodiment, the linear motors 118 include permanent magnets, but any of a variety of suitable linear drive mechanisms may be employed without departing from the scope of the present invention, including but not limited to hydraulic and pneumatic systems. To ensure no pressure loss during operation, the articulating member may be equipped with any of a variety of sealing features, including but not limited to O-rings or the like to prevent the passage of fluid in between the adjacent rib members 116 during contraction and/or expansion. As illustrated in
One advantage of this design is that, unlike the linear pump systems shown and described in the '455 or '368 patents, the inner chamber 112 is not a bladder which will stretch and recover. The power is 90-degree opposition, which provides close to a 100% power exchange instead of the 70% with the flexible bladder of the '455 or '368 patents. This is a significant distinction in that it will allow the pump 110 of the present invention, when attached to a vehicle or appropriate size and construction, to actually propel the vehicle from a position on top of or under the water to an airborne state out of the water.
Although described herein as suitable for unmanned use, it will be appreciated that the marine vessel of the present invention may also be equipped to be manned with one or more users.
The marine vehicle 10 of the present invention, including any or all its constituent parts, may be dimensioned in any size depending upon the application.
While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof have been shown by way of example in the drawings and are herein described in detail. It should be understood, however, that the description herein of specific embodiments is not intended to limit the invention to the particular forms disclosed, but on the contrary, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined herein and claimed below.
The present application is a division of U.S. patent application Ser. No. 10/926,626, filed on Aug. 25, 2004 and issued as U.S. Pat. No. 7,445,531 on Nov. 4, 2008, which claims the benefit of priority under 35 U.S.C. §119(e) from U.S. Provisional Patent Application Ser. No. 60/497,806 (filed Aug. 25, 2003) and Ser. No. 60/497,836 (filed Aug. 25, 2003), the entire contents of which are hereby expressly incorporated by reference into this disclosure as if set forth fully herein.
Number | Name | Date | Kind |
---|---|---|---|
1546973 | Ellis | Jul 1925 | A |
2056475 | Marx | Oct 1936 | A |
2726624 | Raicy | Dec 1955 | A |
2807216 | Bielstein | Sep 1957 | A |
2815715 | Tremblay | Dec 1957 | A |
2971471 | Huebschman | Feb 1961 | A |
3048121 | Sheesley | Aug 1962 | A |
3062002 | Shaffer | Nov 1962 | A |
3074351 | Foster | Jan 1963 | A |
3136257 | Smith et al. | Jun 1964 | A |
3190229 | Turowski | Jun 1965 | A |
3194170 | Ulbing | Jul 1965 | A |
3215084 | Cline | Nov 1965 | A |
3216413 | Mota | Nov 1965 | A |
3307358 | Roche Kerandraon et al. | Mar 1967 | A |
3359735 | Yeager, Sr. | Dec 1967 | A |
3552408 | Dowdican et al. | Jan 1971 | A |
3677667 | Morrison | Jul 1972 | A |
3765175 | Ohnaka | Oct 1973 | A |
3783453 | Bolie | Jan 1974 | A |
3826217 | Canova | Jul 1974 | A |
3836289 | Wolford et al. | Sep 1974 | A |
3839983 | McAusland | Oct 1974 | A |
3945201 | Entringer | Mar 1976 | A |
4026235 | Woodfill | May 1977 | A |
4031844 | Onal et al. | Jun 1977 | A |
4076467 | Persson | Feb 1978 | A |
4284902 | Borgren et al. | Aug 1981 | A |
4350478 | Oldershaw et al. | Sep 1982 | A |
4389169 | De Dionigi | Jun 1983 | A |
4424009 | Van Os | Jan 1984 | A |
4439112 | Kitsnik | Mar 1984 | A |
4449893 | Beckman et al. | May 1984 | A |
4488854 | Miller | Dec 1984 | A |
4541891 | Leatherman | Sep 1985 | A |
4744900 | Bratt | May 1988 | A |
4787823 | Hultman | Nov 1988 | A |
4925377 | Inacio et al. | May 1990 | A |
5085563 | Collins et al. | Feb 1992 | A |
5108426 | Biro et al. | Apr 1992 | A |
5209654 | Lofsjogard Nilsson et al. | May 1993 | A |
5298818 | Tada | Mar 1994 | A |
5333444 | Meng | Aug 1994 | A |
5401195 | Yocom | Mar 1995 | A |
5411381 | Perrodin | May 1995 | A |
5567131 | McNaull | Oct 1996 | A |
5620048 | Beauquin | Apr 1997 | A |
5676162 | Larson, Jr. et al. | Oct 1997 | A |
5676651 | Larson, Jr. et al. | Oct 1997 | A |
5693091 | Larson, Jr. et al. | Dec 1997 | A |
5717259 | Schexnayder | Feb 1998 | A |
5722930 | Larson, Jr. et al. | Mar 1998 | A |
5758666 | Larson, Jr. et al. | Jun 1998 | A |
5792106 | Mische | Aug 1998 | A |
5879375 | Larson, Jr. et al. | Mar 1999 | A |
5915930 | McNaull | Jun 1999 | A |
5964580 | Taga | Oct 1999 | A |
6000353 | De Leu | Dec 1999 | A |
6012910 | McNaull | Jan 2000 | A |
6273015 | Motsenbocker et al. | Aug 2001 | B1 |
6273771 | Buckley et al. | Aug 2001 | B1 |
6318237 | Muller | Nov 2001 | B1 |
6352455 | Guagliano et al. | Mar 2002 | B1 |
6464476 | Ross et al. | Oct 2002 | B2 |
6607368 | Ross et al. | Aug 2003 | B1 |
7445531 | Ross et al. | Nov 2008 | B1 |
7547199 | Ross et al. | Jun 2009 | B1 |
20020195252 | Maguire et al. | Dec 2002 | A1 |
Number | Date | Country |
---|---|---|
3004109 | Aug 1981 | DE |
0115906 | Oct 1978 | JP |
Number | Date | Country | |
---|---|---|---|
60497806 | Aug 2003 | US | |
60497836 | Aug 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10926626 | Aug 2004 | US |
Child | 12264906 | US |