System and sensor for early detection of shock or perfusion failure and technique for using the same

Information

  • Patent Grant
  • 8750978
  • Patent Number
    8,750,978
  • Date Filed
    Thursday, December 18, 2008
    15 years ago
  • Date Issued
    Tuesday, June 10, 2014
    10 years ago
Abstract
According to various embodiments, a system, method, and sensor are provided that is capable of monitoring electrical impedance of oral or nasal mucosal tissue. Such sensors may be appropriate for assessing gut hypoperfusion, gut ischemia, or the onset of shock. The electrical impedance of the oral mucosa or other tissues in the upper respiratory tract may be used to non-invasively assess the clinical state of gastrointestinal tissue.
Description
BACKGROUND

The present disclosure relates generally to medical devices and, more particularly, to a sensor placed on a mucosal tissue used for measuring physiological parameters of a patient.


This section is intended to introduce the reader to various aspects of art that may be related to various aspects of the present disclosure, which are described and/or claimed below. This discussion is believed to be helpful in providing the reader with background information to facilitate a better understanding of the various aspects of the present disclosure. Accordingly, it should be understood that these statements are to be read in this light, and not as admissions of prior art.


In the field of medicine, doctors often desire to monitor certain physiological characteristics of their patients. Accordingly, a wide variety of devices have been developed for monitoring many such characteristics of a patient. Such devices provide doctors and other healthcare personnel with the information they need to provide the best possible healthcare for their patients. As a result, such monitoring devices have become an indispensable part of modern medicine.


In some instances, physicians may wish to have information about the clinical state of tissues that are not easily accessible, such as gastrointestinal tissue. For example, clinicians may wish to assess certain parameters of gastrointestinal tissue to determine whether a patient is in shock. Shock is a clinical syndrome characterized by decreased blood flow to the capillary beds. This condition typically occurs when arterial pressure and subsequently tissue blood flow decrease to a degree that the amount of delivered oxygen is inadequate to meet the metabolic needs of the tissue. During shock, the body directs blood to the heart and the brain, often at the expense of relatively less important organs such as the liver, skin, muscle, and gut. Prolonged shock may result in ischemia in tissues that have experienced diminished blood flow for a sufficient length of time. Ischemia in the gut may disrupt the normal intestinal barrier function, resulting in gut-derived bacteria and their endotoxins being able to move from the gut into other organs via the blood. This, in turn, may lead to toxemia or sepsis. Therefore, early detection of gut tissue damage may prevent the onset of shock or organ failure.


As prolonged gut hypoperfusion typically precedes gut ischemia, early detection of perfusion failure in the gut may prevent widespread tissue damage and may also reduce the incidence of toxemia or sepsis. Accordingly, physicians have developed methods for assessing hypoperfusion in the gut. However, these methods are associated with certain disadvantages. For example, assessing the hypoperfusion of gastrointestinal tissue by impedance spectroscopy may provide clinical information regarding shock, mucosal perfusion, or ischemia. This procedure involves insertion of an intestinal catheter, which is labor-intensive for a clinician to perform and uncomfortable for patients. An alternative technique uses an ion-sensitive field-effect transistor (ISFET) sensor to detect PCO2 in the gastric wall, which also correlates to the onset of shock. However, this technique is also invasive and involves direct contact with the gut.


Accordingly, a reliable, noninvasive monitor for gut perfusion failure may improve the diagnosis and management of patients with gut ischemia.


SUMMARY

Certain aspects commensurate in scope with the disclosure are set forth below. It should be understood that these aspects are presented merely to provide the reader with a brief summary of certain forms the disclosure might take and that these aspects are not intended to limit the scope of the disclosure. Indeed, the disclosure may encompass a variety of aspects that may not be set forth below.


There is provided a diagnostic physiological monitoring system that includes a first electrode capable of applying a current to an oral or nasal mucosa of a patient; a second electrode capable of detecting the applied current from the mucosa and output a value related to electrical impedance of the mucosa; and a monitor operatively coupled to the first electrode and the second electrode, wherein the monitor is capable of receiving the impedance value and performing an operation on the impedance value to determine a gastrointestinal tissue condition of the patient.


There is also provided a method that includes receiving an impedance measurement from at least two electrodes attached to an oral or nasal mucosa and analyzing the impedance measurement to determine a clinical condition including at least one of gut hypoperfusion, gut ischemia, shock, or organ failure.


There is also provided a method of asserting a shock treatment protocol, including attaching at least two electrodes to an oral or nasal mucosa, wherein the electrodes are configured to transmit an impedance measurement to a monitor that is operatively coupled to the electrodes; observing an alarm on the monitor, wherein the alarm is configured to indicate a shock condition by analyzing the impedance measurement; and proceeding with a shock treatment protocol.


There is also provided a sensor configured to detect gut ischemia that includes a first electrode capable of applying a current to an oral or nasal mucosa, a second electrode capable of detecting the applied current and output a value related to the impedance of the mucosa, a nonconductive sheet adapted to space the first electrodes and the second electrode at a generally fixed distance relative to one another, and a mucoadhesive layer disposed on a mucosal tissue-contacting side of the first electrode and the second electrode.





BRIEF DESCRIPTION OF THE DRAWINGS

Advantages of the disclosure may become apparent upon reading the following detailed description and upon reference to the drawings in which:



FIG. 1 is a side view of an electrical impedance sensor showing a mucoadhesive layer attached to mucosal tissue according to an embodiment;



FIG. 2 illustrates a perspective view of a patient with the sensor placed on buccal tissue for evaluation of tissue impedance according to an embodiment;



FIG. 3 illustrates a perspective view of an electrical impedance sensor with two electrodes placed on a flexible non-conducting sheet according to an embodiment;



FIG. 4 illustrates a perspective view of a monitoring system according to the present disclosure according to an embodiment;



FIG. 5 a schematic view of the system of FIG. 4;



FIG. 6 illustrates a flow chart for monitoring a patient according to an embodiment; and



FIG. 7 illustrates a flow chart for monitoring a patient and administering a shock protocol according to an embodiment.





DETAILED DESCRIPTION

One or more embodiments of the present disclosure will be described below. In an effort to provide a concise description of these embodiments, not all features of an actual implementation are described in the specification. It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous implementation-specific decisions may be made to achieve the developers' specific goals, for example compliance with system-related and business-related constraints, which may vary from one implementation to another. Moreover, it should be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure.


According to various embodiments ensors and monitoring systems are provided herein that may detect gut ischemia by monitoring the electrical impedance of oral and/or nasal mucosal tissue. The electrical impedance of oral or nasal mucosal tissue may serve as an indicator of several gastrointestinal tissue conditions including gut ischemia, gut injury, gut hypoperfusion. Additionally, such sensors may be useful for predicting the onset of shock or organ failure. Generally, monitoring occurs while an electrical impedance sensor is secured to oral or nasal mucosal tissue, for example with a mucoadhesive. A sensor may be attached to any oral or nasal mucosal tissue that may be easily accessible to a healthcare worker, for example, buccal or sublingual tissue.


Generally, it is envisioned that electrical impedance sensors according to various embodiments may be appropriate for use in determining the electric impedance level in mucosal tissues. Electrical resistance of the mucosal tissue reflects the conducting properties of electrolytes and other components within the tissue, and the overall impedance reflects the interaction of these components within a complex tissue structure. As a result, electrical properties in tissue exhibit change as ischemia or perfusion failure occurs in the area. In the case of perfusion failure of internal organs, mucosal tissue in the gut and esophagus exhibit these changes as the condition advances. For example, as ischemic injury progresses, inflammatory mediators affect the membrane permeability of various cells within the gastrointestinal tissue. As a result, the balance of intracellular volume and extracellular volume changes as ischemia develops. The disruption of cell membrane permeability also affects cell transport and cell death. Each of these changes causes a shift in the electrical properties of the cells, and in turn the tissue, that may be assessed by measuring the electrical impedance of the tissue. Because the tissue of the gut is physically linked to the mucosal tissue of the upper gastrointestinal tract, hypoperfusion of the gut results in a corresponding reduction in blood flow to the mucosal tissue of the mouth and nose. Accordingly, impedance analysis of oral or nasal mucosal tissue may be useful in early detection of gut hypoperfusion.


According to various embodiments, sensors for measuring electrical impedance of mucosal tissue of the upper gastrointestinal tract may include one or more electrodes for measuring electrical impedance. For example, one or more electrodes may be secured inside the cheek or under the tongue. Further, the sensors as described herein are appropriate for use adjacent to or proximate to any mucosal surface, i.e. patient surfaces that include a mucous membrane or surfaces that are associated with mucus production. In addition to the oral mucosa, mucosal surfaces may include anal, respiratory (i.e. nasal) or urogenital surfaces. Additionally, oral or nasal mucosal impedance measurements may be part of a larger patient monitoring strategy that includes monitoring of health rate, blood pressure and/or blood oxygen saturation.


Electrical impedance sensors in accordance with the present disclosure may include one electrode for applying an electrical current and one electrode for detecting the voltage drop of the applied current as a result of the impedance of the tissue. In one embodiment, at least one current source electrode sends a small, high frequency sinusoidal current through the tissue. At least one detecting electrode measures the resulting voltage drop and phase lag of the sinusoidal current that has passed through the tissue. The electrodes may be disposable or reusable. In addition, the electrodes may be appropriate for short-term (e.g. minutes) or long-term (e.g. hours, days, or longer) monitoring. The electrodes may also be of various sizes or types depending upon the patient, measurement period, and other specifications. Generally, the impedance sensor includes at least one current sourcing electrode and at least one voltage detecting electrode. It should be noted that, in one embodiment, it may be appropriate to use an array of current source electrodes and detecting electrodes.


Turning now to the drawings, and referring to an embodiment in FIG. 1, sensor 10 is shown that includes current source electrodes 11 and voltage detection electrode 13, with a mucoadhesive layer 12 on the skin contacting surface of the electrode. Not pictured is a monitoring device, which may be connected to sensor 10 by lead 14. In the present embodiment, the mucoadhesive layer 12 affixes the sensor 10 to the oral mucosal tissue 16 of the patient. Components of sensor 10 and lead 14 may be made of any suitable material that may be generally suited to the aqueous environment of the mucous membrane, for example plastic. In other embodiments (not shown), it may be advantageous to package the electrodes in foil or other protective materials in order to protect the mucoadhesive layer 12 prior to use and to prevent drying out or oxidation of the mucoadhesive layer 12.


The electrodes 11 and 13 may be of any suitable type for bioimpedance measurements, such as those offered for sale by Biopac Systems, Inc. (Goleta, Calif.). As should be appreciated, conductive gels (not pictured) may be used to enhance the electrical connection between the mucosal skin and the electrode. In an embodiment, a conductive gel may be used in a central area of the body of the electrode and may be surrounded by a mucoadhesive to ensure that the gel does not leak out from the electrode and to ensure that a conductive path to the electrode may be maintained. An alternative embodiment may include a gel substance that performs as both a mucoadhesive and a conductive gel.


In an embodiment, the sensor 10 may be secured to the oral or nasal mucosal tissue with a mucoadhesive or other suitable mounting device, such as a clip. The mucoadhesive layer may be applied to a flexible fabric or plastic non-conductive sheet which may be the portion of the electrode that may directly contact the mucosal surface. A secure mounting of the sensor to oral or nasal mucosal tissue with mucoadhesives reduces movement of the sensor, which may cause signal artifacts. Use of a mucoadhesive also prevents fluids or other substances from interfering with the sensor measurement while securing the sensor to the mucous tissue. The term mucoadhesive refers to a substance that sticks to or adheres to the mucous membrane by any number of mechanisms, for example, but not limited to the following: hydrogen-bonding, ionic interaction, hydrophobic interaction, van der Waals interaction, or combinations thereof.


In an embodiment, the mucoadhesive layer 12 may include a variety of mucoadhesive compositions to secure electrodes to mucosal tissue according to the present disclosure. As one of ordinary skill in the art may recognize, a mucoadhesive substance may be chosen that allows electrical signals to be conducted and received from the mucosal tissue to the electrodes. Suitable mucoadhesives include, but are not limited to hydroxypropyl cellulose, hydroxypropyl methylcellulose, hydroxyethylcellulose, ethylcellulose, carboxymethylcellulose, dextran, guar gum, polyvinyl pyrrolidone, pectins, starches, gelatin, casein, acrylic acid polymers, polymers of acrylic acid esters, vinyl polymers, vinyl copolymers, polymers of vinyl alcohols, alkoxy polymers, polyethylene oxide polymers, polyethers, and any combination of the above.


In various embodiments, the mucoadhesive may be a biocompatible polymer, for example polyacrylic acid, that may be cross-linked with an acceptable agent to create an insoluble gel. The use of an insoluble gel may be desirable, particularly for long term monitoring, since it remains adhered to the mucosal tissue for relatively long periods of time. Cross-linked polyacrylic acid polymers, for example Noveon and Carbomer, may be appropriate for use for three to five days or longer. Noveon and Carbomer-based polymers are weak acids and contain many negatively-charged carboxyl-groups. The multiple negative charges on these polymers promote hydrogen-bonding between the polymers and the negatively charged mucin, a glycoprotein that mediates attachment of mucus to the epithelial lining. A mucoadhesive polymer may also include acrylic acid polymers (e.g. Carbopol® 940, also known as Carbomer® 940, Carbopol 934P and Carbopol® 980, products of BF Goodrich), methyl vinyl/maleic acid copolymers (e.g. Gantrez® S-97, a product of International Specialty Products), polyvinyl pyrrolidone also known as povidone (e.g. Plasdone® K-90, a product of International Specialty Products). These polymers impart relatively high viscosity at relatively low concentrations. They may be incorporated onto a sensor in amounts ranging from about 0.01% to about 10% by weight relative to the total composition. These viscosity modifying agents further act to improve the film adhesion of the composition to mucous membranes. Carbopol® 980, in one embodiment, may be 2-3% by weight of the total composition.


In an embodiment the mucoadhesive may be formulated as either a liquid or as a gel. If a liquid formulation may be desired, a relatively low concentration (e.g. 0.1-1%) of the mucoadhesive/viscosity modifying agent may be used. If a gel formulation is desired, a higher concentration (e.g. 1.5-4%) of the suitable viscosity modifying/mucoadhesive agent may be incorporated into the polymethacrylate/solvent vehicle for gel formation. The mucoadhesive may further comprise excipients e.g. plasticizers, flavorings, sweeteners and/or colorants. Examples of plasticizers include triethyl citrate, polyethylene glycol and glycerin. Such plasticizers may be present in amounts generally ranging from about 1% to about 10% by weight relative to the total composition. For example, glycerine may be present in the amount of about 1 to about 5% by weight. Polyethylene glycol and triethyl citrate may be used in the amount of about 5% to about 12%, in one embodiment.



FIG. 2 illustrates the sensor 10 including the electrodes 11 and 13, as placed inside the mouth of the patient 18 on the buccal tissue, according to an embodiment. The electrodes 11 and 13 may be suitably sized and shaped such that the patient 18 may easily close his or her mouth around the electrodes with minimal discomfort. The present embodiment shows two electrodes 11 and 13 that are not fixed in distance relative to one another. In this case, analysis of impedance measurements allows a variable distance between the electrodes. Such an embodiment may be appropriate for assessing changes in the electrical of the tissue over time. Once electrodes 11 and 13 are placed in the patient's mouth, impedance changes in the oral mucosa may be monitored. In such an embodiment, the collected impedance measurements may be assessed for changes that fall outside of a statistical deviation, which may signal the onset of hypoperfusion. For example, a running average of the impedance measurements may be calculated. If the running average changes at a rate faster than a predetermined threshold, an alarm may be activated.


An embodiment is shown in FIG. 3 in which electrodes 11 and 13 are capable of being placed at a predetermined, fixed distance apart on the mucosal tissue. The embodiment uses a flexible non-conducting sheet 20 to maintain fixed spacing between the electrodes. The flexible non-conducting sheet may be made of any suitable material, such as plastic, neoprene, or rubber. A mucoadhesive layer (not pictured) may be placed on the tissue contacting surface of the non-conducting sheet to adhere the sensor to the mucosal tissue. In the embodiment, the electrical impedance data may be compared to a threshold or a reference value that has been empirically determined in order to assess if the impedance measurement is within an acceptable predetermined range. The electrodes 11 and 13 may be placed on the oral mucosa at a fixed distance that correlates to the distance at which the reference data was collected. For example, the electrical impedance of the oral mucosal tissue may be assessed prior to surgery to provide a reference value, and then the impedance may be spot-checked during a surgical procedure. In another embodiment the distance between the electrodes may be measured by a monitor. In the embodiment, the impedance value would be scaled, according to the measured distance, to correlate the measured impedance value with the distance at which the reference value was collected.


The diagram of FIG. 4 shows a monitor 22, which may be a component of an exemplary impedance monitoring system 24. The system 24 may also include a sensor 10 with a lead 14. The monitor 22 may be any suitable device for reading, recording, processing, and/or displaying the impedance measurement as well as the state of the gut tissue. A schematic view of the impedance monitoring system 24 is shown in FIG. 5. Sensor 10 may be connected to transmit an impedance measurement to monitor 22. In the present embodiment, the monitor 22 may include an analog-to-digital converter 25 as well as a microprocessor 26, which provides analysis of the measurement data. As will be appreciated by one of ordinary skill in the art, the measurement data may be stored in a memory 28 and may also be displayed on a display 30 as an alarm or by other graphical means. The display 30 may be part of the monitor 22 or it may be separate. Further, the monitor 22 may include a driver (not shown) to drive the current to the current source electrode 11.


The monitor 22 may be capable of receiving signals from the sensor 10 related to the electrical impedance of a patient's mucosal tissue. The signals sent from the sensor 10 may include a code or other identification parameter that may allow the monitor 22 to select an appropriate software instruction for processing the signal. Based on the value of the received signals corresponding to voltage drop across the electrodes 11 and 13, the microprocessor 26 may calculate the electrical impedance using various algorithms. The impedance Z may be calculated as the ratio of voltage (V) to current (I); i.e., Z=V/I. In addition, the memory 28 may contain comparison charts or tables for comparing measured impedance or measured impedance changes with clinically-derived impedance values that may correlate with specific disease states. In one embodiment, the processing algorithm may receive the voltage measurement and calculate a numerical indicator of the electrical impedance for display. In one embodiment, an algorithm may use as input electrical impedance data to output a more qualitative display output that correlates to a patient clinical condition.


In an embodiment, a threshold impedance value, based on reference data, may be established for the impedance measurement. As long as the measured impedance value remains well below the threshold value, the monitor 22 may illuminate a corresponding green light, indicating a “healthy” status. If the measurement value is within a predetermined range, e.g. within 5% of the threshold, then a yellow light may be illuminated, signaling a “warning” status. The “warning” range may correlate to an acceptable standard variance, as determined by statistical analysis of impedance data. Finally, if the measurement exceeds the threshold impedance, a red light may be displayed, indicating a clinical condition of gut hypoperfusion.


In an embodiment, the analysis of the impedance measurement data may include a threshold comparison to the raw data. Alternatively, the analysis may include a comparison of the threshold to a running average or mean of the measurement, to ensure that measurement errors do not result in false alarms. The aforementioned analysis may correspond to an embodiment where predetermined reference data may be used to establish a threshold impedance value. In another embodiment, the impedance data may be monitored for changes in value. In the corresponding embodiment, a threshold may be established for an alarm by a change that exceeds a certain percentage difference, as compared to a prior reading. Again, the impedance change data may use raw values, comparing successive readings, or the data may constitute a comparison of the running average to an average of prior data, to avoid false alarms.



FIG. 6 is a flow chart of an embodiment of a perfusion failure monitoring system. In the embodiment, the impedance of the oral mucosal tissue of a patient may be measured (block 32). Next, the measurement data may be analyzed to determine if perfusion failure is present by comparing the data to a threshold, for example (block 34). If perfusion failure is present, then the clinician is notified of the condition (block 36). For example, the clinician may be notified by an audible alarm and/or a flashing red light. If no perfusion failure is detected, then the impedance of the mucosal tissue may continue to be evaluated.


In one embodiment, the disclosed method of monitoring hypoperfusion in the gut may be used during a surgical procedure. In such an embodiment, a plurality of baseline measurements of the mean oral electrical impedance may be recorded, for example over a five or ten minute period prior to the surgery. These baseline measurements may then be used to compute a baseline value of mean oral electrical impedance as well as the standard variance. After the data are collected for determining the baseline value and the variance, the electrical impedance values of the oral mucosal tissue may be periodically measured between the electrode pair over the course of the surgery. The data representing these periodically measured impedance values may be compared against the stored baseline values, as shown in block 34. If the measured electrical impedance varies from the baseline and standard variance, an alarm may be triggered to alert the surgeon to possible hypoperfusion in the gut, as discussed above.



FIG. 7 shows a detailed example of an embodiment of the process that may lead to detection of hypoperfusion and a shock protocol that may be administered in response to the alarm. Initially, an oral mucosa monitoring system may be connected to a subject (block 38). The impedance of the oral mucosal tissue may be then continuously monitored (block 40). The impedance measurement may be analyzed as discussed above to determine the presence of perfusion failure (block 42). If no perfusion failure is detected, then the tissue continues to be monitored. If perfusion failure is detected, then medical staff may be alerted to subsequently administer a shock protocol (block 44). In the present embodiment, the first step of shock protocol may be to provide oxygen via airway management (block 46). Subsequently, efforts are made control and limit the patient's bleeding (block 48). The shock protocol may also include fluid replacement and therapy and/or antibiotic therapy (blocks 50, 52). As will be appreciated by one of ordinary skill in the art, the steps that may be performed during a shock treatment procedure may vary depending upon the stage of the patient's shock and guidelines provided by different healthcare institutions. One embodiment may include administration of Early Goal Directed Therapy (EGDT), such as the protocol described by Rivers et al in “Early goal-directed therapy in the treatment of severe sepsis and septic shock.” N Engl J Med 2001; 345, 1368-1377, the text of which is incorporated by reference herein for all purposes.


While the disclosure may be susceptible to various modifications and alternative forms, embodiments have been shown by way of example in the drawings and have been described in detail herein. However, it should be understood that the embodiments are not intended to be limited to the particular forms disclosed. Indeed, the present disclosure may not only be applied to measurements of electrical impedance, but the disclosure may also be utilized for the measurement and/or analysis of other electrical properties of the tissue. Rather, the disclosure is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the disclosure as defined by the following appended claims. It will be appreciated by those working in the art that sensors fabricated using the present disclosure may be used in a wide variety of contexts.

Claims
  • 1. A system, comprising: a first electrode configured to apply a current to an oral or nasal mucosa of a patient;a second electrode configured to detect the applied current from the mucosa and output an impedance measurement related to an electrical impedance of the oral or nasal mucosa; anda monitor operatively coupled to the first electrode and the second electrode and configured to: receive a first impedance measurement prior to a surgical procedure and perform an operation on the first impedance measurement to determine a baseline impedance value;receive a second impedance measurement after or during the surgical procedure and perform the operation on the second impedance measurement to determine an impedance value;compare the impedance value to the baseline impedance value to determine when the impedance value varies from the baseline impedance value; anddetermine that a patient has a clinical condition comprising gut hypoperfusion, gut ischemia, shock, and/or organ failure when the impedance value varies from the baseline impedance value.
  • 2. The system of claim 1, wherein the monitor is configured to determine a rate of change of the impedance value over a time period, wherein the rate of change is utilized to determine the clinical condition when the rate of change exceeds a rate of change of the baseline impedance value.
  • 3. The system of claim 1, wherein the monitor is configured to trigger an alarm when the clinical condition is determined.
  • 4. The system of claim 1, wherein the monitor is configured to receive a plurality of first impedance measurements during a time period prior to the surgical procedure, and wherein the plurality of first impedance measurements are used to determine a plurality of baseline impedance values.
  • 5. The system of claim 4, wherein the plurality of baseline impedance values are used to compute a mean baseline impedance value.
  • 6. The system of claim 5, wherein the monitor is configured to trigger an alarm when the impedance value varies from mean baseline impedance value.
  • 7. A monitor, comprising: a processor configured to execute instructions stored on a computer readable memory;wherein the processor is configured to:determine a baseline impedance value from a first impedance measurement from an oral or nasal mucosa of a patient, wherein the first impedance value is acquired before a surgical procedure;determine an impedance value from a second impedance measurement from the oral or nasal mucosa of the patient, wherein the second impedance measurement is acquired after or during the surgical procedure;compare the impedance value to the baseline impedance value to determine when the impedance value varies from baseline impedance value; anddetermine that the patient has a clinical condition comprising gut hypoperfusion, gut ischemia, shock, and/or organ failure when the impedance value varies from the baseline impedance value.
  • 8. The monitor of claim 7, wherein the processor is configured to determine a rate of change of the impedance value over a time period, wherein the rate of change is utilized to determine the clinical condition when the rate of change exceeds a rate of change of the baseline impedance value.
  • 9. The monitor of claim 7, wherein the processor is configured to trigger an alarm when the impedance value varies from the baseline impedance value by more than a predetermined percentage change.
  • 10. The monitor of claim 7, wherein the processor is configured to receive a plurality of first impedance measurements during a time period prior to the surgical procedure, and wherein the plurality of first impedance measurements are used to determine a plurality of baseline impedance values.
  • 11. The monitor of claim 10, wherein the plurality of baseline impedance values are used to compute a mean baseline impedance value.
  • 12. The monitor of claim 7, comprising a display configured to provide an indication of the clinical condition.
RELATED APPLICATION

This application claims priority from U.S. Patent Application No. 61/009,736 which was filed Dec. 31, 2007 and is incorporated herein by reference in its entirety.

US Referenced Citations (253)
Number Name Date Kind
2927584 Wallace Mar 1960 A
3769983 Merav Nov 1973 A
3810474 Cross May 1974 A
3822238 Blair et al. Jul 1974 A
3913565 Kawahara Oct 1975 A
3971385 Corbett Jul 1976 A
3975350 Hudgin et al. Aug 1976 A
3995643 Merav Dec 1976 A
4022217 Rowean May 1977 A
4130617 Wallace Dec 1978 A
4230108 Young Oct 1980 A
4231365 Scarberry Nov 1980 A
4235239 Elam Nov 1980 A
4340046 Cox Jul 1982 A
4569344 Palmer Feb 1986 A
4638539 Palmer Jan 1987 A
4649913 Watson Mar 1987 A
4696296 Palmer Sep 1987 A
4700700 Eliachar Oct 1987 A
4791920 Fauza Dec 1988 A
4825859 Lambert May 1989 A
4825861 Koss May 1989 A
4834726 Lambert May 1989 A
4836199 Palmer Jun 1989 A
4838255 Lambert Jun 1989 A
4850348 Pell et al. Jul 1989 A
4867153 Lorenzen et al. Sep 1989 A
4872579 Palmer Oct 1989 A
4886059 Weber Dec 1989 A
4927412 Menasche May 1990 A
4938741 Lambert Jul 1990 A
4963313 Noddin et al. Oct 1990 A
4967743 Lambert Nov 1990 A
4979505 Cox Dec 1990 A
5020534 Pell et al. Jun 1991 A
5021045 Buckberg et al. Jun 1991 A
5025806 Palmer et al. Jun 1991 A
5029580 Radford et al. Jul 1991 A
5033466 Weymuller, Jr. Jul 1991 A
5060646 Page Oct 1991 A
5065754 Jensen Nov 1991 A
5074840 Yoon Dec 1991 A
5076268 Weber Dec 1991 A
5098379 Conway et al. Mar 1992 A
5103816 Kirschbaum et al. Apr 1992 A
5107829 Lambert Apr 1992 A
5120322 Davis et al. Jun 1992 A
5122122 Allgood Jun 1992 A
5133345 Lambert Jul 1992 A
5135516 Sahatjian et al. Aug 1992 A
5137671 Conway et al. Aug 1992 A
5158569 Strickland et al. Oct 1992 A
5165420 Strickland Nov 1992 A
5176638 Don Michael Jan 1993 A
5190053 Meer Mar 1993 A
5190810 Kirschbaum et al. Mar 1993 A
5199427 Strickland Apr 1993 A
5201310 Turnbull et al. Apr 1993 A
5207643 Davis May 1993 A
5215522 Page et al. Jun 1993 A
5218957 Strickland Jun 1993 A
5230332 Strickland Jul 1993 A
5233979 Strickland Aug 1993 A
5246012 Strickland Sep 1993 A
5250070 Parodi Oct 1993 A
5251619 Lee Oct 1993 A
5261896 Conway et al. Nov 1993 A
5263478 Davis Nov 1993 A
5269770 Conway et al. Dec 1993 A
5277177 Page et al. Jan 1994 A
5290585 Elton Mar 1994 A
5291887 Stanley et al. Mar 1994 A
5304121 Sahatjian Apr 1994 A
5331027 Whitbourne Jul 1994 A
5360402 Conway et al. Nov 1994 A
5370656 Shevel Dec 1994 A
5370899 Conway et al. Dec 1994 A
5374261 Yoon Dec 1994 A
5392787 Yoon Feb 1995 A
5397302 Weaver et al. Mar 1995 A
5407423 Yoon Apr 1995 A
5417671 Jackson May 1995 A
5423745 Todd et al. Jun 1995 A
5439457 Yoon Aug 1995 A
5443063 Greenberg Aug 1995 A
5447505 Valentine et al. Sep 1995 A
5451204 Yoon Sep 1995 A
5466231 Cercone et al. Nov 1995 A
5469864 Rosenblatt Nov 1995 A
5482740 Conway et al. Jan 1996 A
5484426 Yoon Jan 1996 A
5487730 Maracadis et al. Jan 1996 A
5494029 Lane et al. Feb 1996 A
5501669 Conway et al. Mar 1996 A
5507284 Daneshvar Apr 1996 A
5509899 Fan et al. Apr 1996 A
5524642 Rosenblatt Jun 1996 A
5545132 Fagan et al. Aug 1996 A
5556391 Cercone et al. Sep 1996 A
5593718 Conway et al. Jan 1997 A
5599292 Yoon Feb 1997 A
5599299 Weaver et al. Feb 1997 A
5599321 Conway et al. Feb 1997 A
5611336 Page et al. Mar 1997 A
5613950 Yoon Mar 1997 A
5649902 Yoon Jul 1997 A
5653229 Greenberg Aug 1997 A
5665477 Meathrel et al. Sep 1997 A
5670111 Conway et al. Sep 1997 A
5674192 Sahatjian et al. Oct 1997 A
5693014 Abele et al. Dec 1997 A
5694922 Palmer Dec 1997 A
5697365 Pell Dec 1997 A
5700239 Yoon Dec 1997 A
5715815 Lorenzen et al. Feb 1998 A
5720726 Marcadis et al. Feb 1998 A
5722931 Heaven Mar 1998 A
5730123 Lorenzen Mar 1998 A
5733252 Yoon Mar 1998 A
5735271 Lorenzen et al. Apr 1998 A
5765559 Kim Jun 1998 A
5769882 Fogarty et al. Jun 1998 A
5810786 Jackson et al. Sep 1998 A
5819733 Bertram Oct 1998 A
5827215 Yoon Oct 1998 A
5843017 Yoon Dec 1998 A
5843028 Weaver et al. Dec 1998 A
5843060 Cercone Dec 1998 A
5843089 Sahatjian et al. Dec 1998 A
5868719 Tsukernik Feb 1999 A
5908406 Ostapchenko Jun 1999 A
5951597 Westlund et al. Sep 1999 A
5954706 Sahatjian Sep 1999 A
5954740 Ravenscroft et al. Sep 1999 A
5971954 Conway et al. Oct 1999 A
5976072 Greenberg Nov 1999 A
5997503 Willis et al. Dec 1999 A
5997546 Foster et al. Dec 1999 A
6010480 Abele et al. Jan 2000 A
6012451 Palmer Jan 2000 A
6048332 Duffy et al. Apr 2000 A
6110192 Ravenscroft et al. Aug 2000 A
6129547 Cise Oct 2000 A
6152136 Pagan Nov 2000 A
6169123 Cercone Jan 2001 B1
6210364 Anderson et al. Apr 2001 B1
6214895 Cercone Apr 2001 B1
6227200 Crump et al. May 2001 B1
6240321 Janke et al. May 2001 B1
6248088 Yoon Jun 2001 B1
6264631 Willis et al. Jul 2001 B1
6264633 Knorig Jul 2001 B1
6277089 Yoon Aug 2001 B1
6285897 Kilcoyne et al. Sep 2001 B1
6312421 Boock Nov 2001 B1
6322586 Monroe et al. Nov 2001 B1
6364856 Ding et al. Apr 2002 B1
6378521 Van Den Berg Apr 2002 B1
6394093 Lethi May 2002 B1
6395012 Yoon et al. May 2002 B1
6398266 Crump Jun 2002 B1
6409716 Sahatjian et al. Jun 2002 B1
6470200 Walker et al. Oct 2002 B2
6481436 Neame Nov 2002 B1
6494203 Palmer Dec 2002 B1
6503231 Prausnitz et al. Jan 2003 B1
6524274 Rosenthal et al. Feb 2003 B1
6526977 Göbel Mar 2003 B1
6543451 Crump et al. Apr 2003 B1
6551272 Gobel Apr 2003 B2
6572813 Zhang et al. Jun 2003 B1
6576712 Feldstein et al. Jun 2003 B2
6584970 Crump et al. Jul 2003 B1
6588425 Rouns et al. Jul 2003 B2
6588427 Carlsen et al. Jul 2003 B1
6602218 Yoon Aug 2003 B2
6602219 Madsen et al. Aug 2003 B2
6609520 Carlsen et al. Aug 2003 B1
6612304 Cise et al. Sep 2003 B1
6612305 Fauza Sep 2003 B2
6613025 Palasis Sep 2003 B1
6615835 Cise et al. Sep 2003 B1
6620128 Simhambhatla Sep 2003 B1
6623450 Dutta Sep 2003 B1
6629530 Cise Oct 2003 B2
6632091 Cise et al. Oct 2003 B1
6651664 Lomholt Nov 2003 B1
6688306 Cise et al. Feb 2004 B1
6698424 Madsen et al. Mar 2004 B2
6705320 Anderson Mar 2004 B1
6722368 Shaikh Apr 2004 B1
6726696 Houser et al. Apr 2004 B1
6745773 Gobel Jun 2004 B1
6767340 Willis et al. Jul 2004 B2
6769430 Carlsen et al. Aug 2004 B1
6770066 Weaver et al. Aug 2004 B1
6786876 Cox Sep 2004 B2
6790221 Monroe et al. Sep 2004 B2
6796309 Nash et al. Sep 2004 B2
6802317 Göbel Oct 2004 B2
6805125 Crump et al. Oct 2004 B1
6808521 McMichael Oct 2004 B1
6814730 Li Nov 2004 B2
6890339 Sahatjian et al. May 2005 B2
6908449 Willis et al. Jun 2005 B2
6916307 Willis et al. Jul 2005 B2
6923786 Rouns et al. Aug 2005 B2
6997909 Goldberg Feb 2006 B2
7040321 Gobel May 2006 B2
7040322 Fortuna May 2006 B2
7066905 Squire et al. Jun 2006 B2
7147252 Teuscher et al. Dec 2006 B2
7258120 Carlsen et al. Aug 2007 B2
7618376 Kimball Nov 2009 B2
20020032407 Willis et al. Mar 2002 A1
20020082552 Ding et al. Jun 2002 A1
20020195110 Watton Dec 2002 A1
20030116162 Madsen et al. Jun 2003 A1
20030225369 McMichael et al. Dec 2003 A1
20030225392 McMichael et al. Dec 2003 A1
20030225393 McMichael et al. Dec 2003 A1
20040079376 Melker Apr 2004 A1
20040106899 McMichael et al. Jun 2004 A1
20040106900 Triebes et al. Jun 2004 A1
20040106901 Letson et al. Jun 2004 A1
20040116819 Alt Jun 2004 A1
20040116898 Hawk Jun 2004 A1
20040154623 Schaeffer et al. Aug 2004 A1
20040193100 Van Hooser et al. Sep 2004 A1
20040193101 Van Hooser et al. Sep 2004 A1
20040215142 Matheis et al. Oct 2004 A1
20040221853 Miller Nov 2004 A1
20040255951 Grey Dec 2004 A1
20050004560 Cox Jan 2005 A1
20050033267 Decaria Feb 2005 A1
20050033268 Decaria Feb 2005 A1
20050033269 Decaria Feb 2005 A1
20050038381 McMichael Feb 2005 A1
20050054939 Ben-Ari et al. Mar 2005 A1
20050065468 Goebel Mar 2005 A1
20050124932 Foster et al. Jun 2005 A1
20050124935 McMichael Jun 2005 A1
20050137619 Schewe et al. Jun 2005 A1
20050166924 Thomas et al. Aug 2005 A1
20050215918 Frantz et al. Sep 2005 A1
20070078318 Kling et al. Apr 2007 A1
20070295336 Nelson Dec 2007 A1
20070295337 Nelson Dec 2007 A1
20070296125 Colburn et al. Dec 2007 A1
20080000482 Maguire et al. Jan 2008 A1
20080039700 Drinan et al. Feb 2008 A1
20080305149 Hirt et al. Dec 2008 A1
20090232872 Davidson et al. Sep 2009 A1
Foreign Referenced Citations (4)
Number Date Country
WO 9505416 Feb 1995 WO
WO 9815223 Apr 1998 WO
WO 9916346 Apr 1999 WO
WO 2006094513 Sep 2006 WO
Non-Patent Literature Citations (37)
Entry
Ollmar et al, Diagnostic Potential of Electrical Bio-Impedance for Skin and Oral Mucosa, 2nd International Conference on Biomagnetism, Feb. 1998, pp. 73-74.
Gonzalez et al, Classification of Impedance Spectra for Monitoring Ischemic Injury in the Gastric Mucosa in a Septic Shock Model in Pigs, Proceedings of the 25th Annual International Conference of the IEEE EMBS, Sep. 17-21, 2003, pp. 2269-2272.
Weisner et al, CT of Acute Bowel Ischemia, Radiology 2003, 226:635-650.
Nakagawa et al, Sublingual Capnometry for Diagnosis and Quantitation of Circulatory Shock, Am J Respir Crit Care Med, 1998; 157:1838-1843.
Tecogel brochure page, Noveon Thermedics Polymer Products, Oct. 2003.
Aye Gönen Karakeç{dot over (i)}l{dot over (i)}et al.; “Comparison of Bacterial and Tissue Cell Initial Adhesion on Hydrophilic/Hydrophobic Biomaterials,” J Biomater. Sci. Polymer Edn, vol. 13, No. 2, pp. 185-196 (2002).
Shintani; “Modification of Medical Device Surface to Attain Anti-Infection,” National Institute of Health Sciences; Trends Biomater. Artif. Organs, vol. 18(1), pp. 1-8 (2004).
College of Pharmacy, Oregon State University and 3M Drug Delivery Systems; 3M Study Provides First Direct Comparison of Oral Controlled Release, Transdermal and Transmucosal Drug Delivery in Humans; article; pp. 10-12.
Pharmaceutical Polymers; Bulletin 16; entitled “Biodhesion” ; 18 pages.
Michael J Rathbone et al.; entitled “Modified-Release Drug Delivery Technology”; web page http://www.chipsbooks.com/modrug.htm; printed Sep. 28, 2004; 3 pages.
Article entitled “STRIANT (testosterone buccal system) mucoadhesive”; web page http://www.columbialabs.com/Striant/Striant—Full—Prescribing—info.htm; printed Oct. 6, 2004; 5 pages.
Ingenta: article summary entitled Mucoadhesive and Penetration Enhancement Properties of Three Grades of Hyaluronic Acid Using Porcine Buccal and Vaginal Tissue, Caco-2 Cell Lines, a Rat Jejunum; Journal of Pharmacy and Pharmacology; Sep. 1, 2004; vol. 56, No. 9, 1083-1090(8); from webpage http://www.ingenta.com/isis/searching/Expand/ingenta?pub=infobike;//rpsgb/jpp/2004/000 . . . on Oct. 6, 2004; 1 page.
Web article; entitled Opportunities, Mucoadhesive Erodible Disc (OraDisc); Pharmalicensing.com; http://pharmalicensing.com/licensing/displicopp/2316 printed on Sep. 28, 2004; 2 pages.
Nicholas A. Peppas; article entitled Nanoscale Technology of Mucoadhesive Interactions; Advanced Drug Delivery Reviews 56 (2004) 1675-1687; 13 pages.
Sartomer Application Bulletin; “Functional Acrylic Monomers as Modifiers for PVC Plastisol Formulations,”; pp. 1-6.
Lev Bromberg; article entitled Biadhesive properties and rheology of polyether-modified poly(acrylic acid) hydrogels; Elsevier; international journal of pharmaceutics; 16 pages.
Sanju Dhawan; article entitled: “Evaluation of Mucoadhesive Properties of Chitosan Microspheres Prepared by Different Methods”; web page http://www.aapspharmscitch.org/view.asp?art=pt050467&pdf=yes; 13 pages.
Juan Manuel Llabot; article entitled: “Double-Layered Mucoadhesive Tablets Containing Nystatin”; Submitted: Mar. 11, 2002; AAPS PharmSciTech 2002; 3 (3) article 22 (http://www.aapspharmsci.org) 6 pages.
Edith Mathiowitz et al.; article entitled “Bioadhesive Drug Delivery Systems: Fundamentals, Novel Approaches and Development”; website http://www.chipsbooks.com/bioadhes.htm; printed out on Sep. 28, 2004; 3 pages.
Sanju Dhawan; article entitled Evaluation of Mucoadhesive Properties of Chitosan Microspheres Prepared by Different Methods; Submitted: May 17, 2004; AAPS PharmSciTech 2004; 5 (4) Article 57 (http://www.aapspharmscitech.org). 7 pages.
Article entitled “A comparison of TMD Matrix and Reservoir Configurations”; 1 page.
Webpage article entitled “Columbia Laboratories, Inc.”; http://www.columbialabs.com/AboutUs.htm; 1 page.
Website article entitled “Our Bioadhesive Gel”; http:www.prochieve8.com/bioadhesive/default.aspx; 2 pages.
Website article entitled “Technology Portfolio”; http://www.accesspharma.com/products/index.html; 10 pages.
Website article entitled STRIANT (Testosterone Buccal System) Mucoadhesive CIII; http;//www.columbialabs.com/Striant/Striant—Fact—Sheet.html; 3 pages.
Drug insert pamplet for STRIANT (testosterone buccal system) 2 pages.
Doglio GR et al., “Gastric Mucosal pH as a Prognostic index of mortality in critically ill patients”. Crit Care Med 19: 1037-1040, 1991.
Fiddian-Green RG, et al., “Back-diffusion of CO2 and its influence on the intramural pH in gastric mucosa”. J Surg Res 33: 39-48, 1982.
Weil MH, et al.; “Sublingual capnometry: a new noninvasive measurement for diagnosis and quantitation of severity of circulatory shock”. Crit Care Med 27: 1225-1229, 1999.
Peppas, Nikolaos A. et al., “Hydrogels as mucoadhesive and bioadhesive materials: a review,” Biomaterials, 1996, pp. 1553-1561, vol. 17, No. 16.
Klainer, Albert S., M.D. et al., “Surface Alterations Due to Endotracheal Intubation,” The American Journal of Medicine, May 1975, pp. 674-683, vol. 58.
MacCabee, Mendy S., M.D. et al., “Paranasal Sinus Mucosal Regeneration: The Effect of Topical Retinoic Acid,” American Journal of Rhinology, 2003, pp. 133-137, vol. 17.
Shoemaker, W.C. et al.; “Noninvasive Hemodynamic Monitoring of Critical Patients in the Emergency Department”; http://www.ncbi.nlm.nih.gov/entrez/query.
Gonzalez, Cesar A., et al.; “Impedance Spectroscopy for Monitoring Ischemic Injury in the Intestinal Mucosa”; 2003 IOP Publishing Ltd., pp. 277-289, (2003).
Tamura, T. et al.; “Modelling of the Dielectric Properties of Normal and Irradiated Skin”; 1994 IOP Publishing Ltd., pp. 927-936.
Sato, Yoji et al.; “Esophageal PCO2 as a Monitor of Perfusion Failure During Hemorrhagic Shock”; 1997 of the American Physiological Society, pp. 558-562.
Gonzalez-Correa, C.A. et al.; “Electrical Bioimpedance Readings Increase with Higher Pressure Applied to the Measuring Probe”; 2005 IOP Publishing Ltd., pp. S39-S47.
Related Publications (1)
Number Date Country
20090171237 A1 Jul 2009 US
Provisional Applications (1)
Number Date Country
61009736 Dec 2007 US