In certain industries and/or applications, separating one material from a second material is often desired and/or required. For example, the mining industry has applications in which solids may be separated from fluids to extract a desired ore and/or metal during mining processes. Further, on-shore and/or off-shore drilling applications use various methods and/or equipment to separate solids from fluids in drilling processes.
Generally, various types of separators are used to separate liquids and solids in industrial and/or oilfield applications. For example, oilfield drilling operations use separators with screens to remove solids from a slurry. One type of apparatus used to remove solids from drilling mud is commonly referred to in the industry as a “shale shaker.” A shale shaker, also known as a shaker or vibratory separator, is a vibrating sieve-like device upon which returning used oilfield drilling fluid, often called “mud,” is deposited and through which substantially cleaner drilling mud emerges.
Oilfield drilling fluid serves multiple purposes in the industry. Drilling mud acts as a lubricant to cool rotary drill bits and facilitate faster cutting rates. Furthermore, the drilling mud counterbalances pressure encountered in subterranean formations. Because the mud evaluation and/or mixture process may be time consuming and expensive, drillers prefer to reclaim and/or reuse the returned drilling mud. The recirculation of the drilling mud requires the fast and efficient removal of the drilling cuttings and other entrained solids from the drilling mud prior to reuse.
The separating screens are vibrated while the mixture of particles and/or fluids is deposited on an input end of the separator. The vibration improves separation and conveys the remaining particles to a discharge end of the separating screen. Additionally, particles that do not pass through the mesh are collected in a bin and/or a pit. The particles and/or fluid that pass through the mesh are collected in a pan and/or a sump below the separating screen.
A continuing desire exists for separators having increased fluid capacity, increased fluid flow-through rates across the screens, and/or improved fluid removal efficiencies. A further desire exists for separators that control the rate of fluid flow and/or the amount of fluid flowing into the separator.
The foregoing and other features of the present disclosure will become more fully apparent from the following description and appended claims, taken in conjunction with the accompanying drawings. Understanding that these drawings depict several examples in accordance with the disclosure and are, therefore, not to be considered limiting of its scope, the disclosure will be described with additional specificity and detail through use of the accompanying drawings.
Generally, embodiments disclosed herein relate to systems, apparatuses and methods for separating a first material from a second material, for example, for separating solids from fluids. In particular, embodiments disclosed herein relate to apparatuses and methods for adjusting a weir to control the rate and/or speed at which drilling fluid feeds a separator. Multiple separators are typically used in parallel to process fluid returning from the well. A distribution manifold directs fluid to each separator. Further, systems, apparatuses and methods disclosed herein may have the weir positioned within a feeder on an inlet end of the separator and may connect to an attachment plate within the feeder. The distribution manifold or other flow control mechanism may operate in combination with the weir. Moreover, systems, apparatuses and methods disclosed herein may have adjustment apparatuses to control the height of the weir to determine the rate the fluid flows onto the separator. Furthermore, systems, apparatuses and methods disclosed herein may have various profiles of the weir to increase and/or decrease the speed of the fluid as the fluid spills into the separator.
Referring to
The separator system 1 may have a distribution manifold 25 that may be configured to direct and/or control the flow of the slurry through the separator system 1. The distribution manifold 25 may connect to feeders 26 using multiple pipes 27 with corresponding valves, flow controllers, monitors and/or the like to control and/or regulate the flow of the slurry in the separator system 1. The feeder 26 may be a box on top at an inlet end 21 of the separator 24, for example. The feeder 26 is used to process drilling fluid returning from the well along with rock cuttings.
The separator system 1 may be configured to receive and process multiple slurries simultaneously. The separator system 1 may monitor the levels and/or loads of the slurry in the separators to assist in determining the overall efficiency of the separator system 1. Adjustments and/or changes to the separator system 1 may maximize performance of the separator system 1.
The separator system 1 may also be configured to bypass certain separators. Thus, the separator system 1 may provide the flexibility to switch between different configurations for the flow of the slurry. Certain separators of different types may be used or bypassed as desired to attain the separation of fluids and solids desired in various applications.
In addition to controlling the flow to the separator system 1 as previously described, the feeder 26 on each separator 14, 16, 18, 20, 22, 24 may supply the drilling fluid to the individual separators. For example,
Specifically, the height and/or profile angle of the weir 28 in the feeder 26 may determine how quickly the fluid flows onto the separator. The weir 28 may operate in combination with the distribution manifold 25 as shown in
As shown in the first embodiment in
The weir 28 may cause a change in the momentum of the fluid and thus control the flow of the fluid as the fluid enters the separator. The weir 28 may cause a change in the velocity and/or volume of the fluid that may enter the separator. The weir 28 may cause a directional change in the flow of the fluid. A flow line as generally designated by the curved line F in
The weir 28 may be secured to the attachment plate 29 with bolts 31, for example. However, various attachment mechanisms and/or control mechanisms, such as, automated, remotely controlled, hydraulically actuated, pneumatically actuated and/or the like, may be used to secure and/or adjust the weir 28 within the feeder 26.
The second embodiment of the weir 28 may slow the fluid more than the embodiment of the weir 28 shown in
The flow line as generally designated by the curved line F in
The third embodiment of the weir 28 may slow the fluid to a greater degree than the embodiments shown in
The embodiments shown in
Generally, the height of the weir 28 may be inversely proportional to the flow of fluid through the feeder 26 to the separator. Also, the amount of the profile of the weir 28 may inhibit the flow through the feeder 26.
During operation of the separator, the drilling fluid may be deposited into the feeder 26 to supply the separator. The drilling fluid may have a liquid-solid mixture that forms a “pool” on the separator. As the liquid-solid mixture moves across the separator deck (not shown), fluid may flow through the screens (not shown) so that solid matter may be discarded at a discharge end 23. “Beach” as used herein refers to a region where the pool of the liquid-solid mixture transitions to a region of primarily solid matter that is larger in size than apertures in the screens. Thus, “beach location” is the location at which the pooling of fluid terminates, and the slurry of drilling fluid and solids that are larger in size than apertures in the screens begin to separate. Only such solids convey further from that location toward the discharge end 23 of the separator.
Moreover, the drilling fluid on the separator may cover the screens except for a portion of the screen closest to the discharge end 23 of the separator. This portion of the discharge screen may permit time for the drilling fluid to separate from rock cuttings prior to the rock cuttings being discharged at the discharge end 23 of the separator. The location condition may generally optimize the life of the screens (not shown). For example, the screen may wear faster due to dry cuttings impacting the screen (not shown). Further, the location condition may affect fluid processing capacity.
Adjusting the height of the weir 28 in the feeder 26 may provide an operator with greater control over the drilling fluid as the drilling fluid enters the separator. Adjustment of the weir 28 may control the beach location on the separator screens to provide drier cuttings. To improve and/or to control the operation of the separator, the adjustment of the weir 28 may be related to operational conditions of the separator in the separator system 1.
For example, adjustment of the weir 28 may correspond to the beach location. The beach location may be monitored as disclosed in a commonly owned patent application, U.S. patent application Ser. No. 14/317,903 filed Jun. 27, 2014, entitled “Beach Detection Sensors for Vibratory Separator,” the disclosure of which is incorporated herein in its entirety. The weir 28 may be adjusted to control the beach location for optimal performance of the separator system 1. Further, the weir 28 may be adjusted based upon a location of the beach.
The adjustment of the weir 28 may also be related to a flowrate measurement of the manifold 25 as shown in
Also, the weir 28 may be adjusted based on a measurement related to drilling and/or operation of the separator, such as, for example, the rate of penetration of the drill bit, the drilling fluid pump rate, a measure of acceleration or motion profile of the separator and/or the like. For example, the weir 28 may be adjusted in relation to the drilling fluid pump rate. The weir 28 may be adjusted to reduce the flow to control a situation in which too much weight may impinge upon the separator screens. The excess fluid may negatively impact acceleration of the fluid on the separator.
Further, the weir 28 may be adjusted to different heights. For example, the weir 28 may be adjusted by bolting on different height plates and/or different shape plates to the attachment plate 29.
In other embodiments shown in
For example, in the embodiment shown in
Further, the slide gate 35 may have handles 37 with which the operator may move the slide gate 35 within the channeled uprights 47. The slide gate 35 may lock in different positions. For example, notches 39 may be formed at regular intervals in the handles 37. The notches 39 may engage with the lid 46 to hold the slide gate 35 at a certain height within the feeder 26. The notches 39 may be aligned at the same heights in the handles 37 to maintain the slide gate 35 in a level position at a selected height.
Further,
Embodiments disclosed herein relate to a system, apparatus and method for adjusting the weir 28 to control the rate and/or speed at which drilling fluid feeds a separator. Multiple separators are typically used in parallel to process fluid returning from the well. A distribution manifold 25 may direct fluid to each separator. The weir 28 may be positioned within the feeder 26 on the inlet end 21 of the separator. The weir 28 may connect to an attachment plate 29 within the feeder 26. The weir 28 may operate in combination with the distribution manifold 25 or other flow control mechanism. Various profiles of the weir 28 and adjustments of the height of the weir 28 within the feeder 26 may increase and/or decrease the speed of the fluid as the fluid spills into the separator.
Adjustment apparatuses 33 may control the height of the weir 28 to determine the rate the fluid flows onto the separator. The adjustment apparatuses 33 may be manual and/or automated to control the weir 28.
The height and/or the angle of the weir 28 may be adjusted based on a location of the beach, properties of the drilling fluid, such as, for example, the size of the solids, the type of drilling fluid, the composition of the solids and/or the like.
While the present disclosure has been described with respect to a limited number of embodiments, those skilled in the art, having benefit of this disclosure, will appreciate that other embodiments may be devised which do not depart from the scope of the disclosure as described herein. Accordingly, the scope of the present disclosure should be limited only by the attached claims.
This application claims priority to and the benefit of a U.S. Provisional Application having Ser. No. 62/239,768, filed 9 Oct. 2015, which is incorporated by reference herein.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2016/056206 | 10/10/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/062928 | 4/13/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1978356 | Wilkins | Oct 1934 | A |
2857055 | Glasgow | Oct 1958 | A |
3515836 | Kallas | Jun 1970 | A |
3988243 | Huff | Oct 1976 | A |
5415776 | Homan | May 1995 | A |
6244362 | Williams | Jun 2001 | B1 |
6530482 | Wiseman | Mar 2003 | B1 |
7571817 | Scott et al. | Aug 2009 | B2 |
20020079251 | Schulte et al. | Jun 2002 | A1 |
20040129612 | Decenso | Jul 2004 | A1 |
20050242002 | Stone et al. | Nov 2005 | A1 |
20050242009 | Padalino et al. | Nov 2005 | A1 |
20060243643 | Scott et al. | Nov 2006 | A1 |
20100270216 | Burnett et al. | Oct 2010 | A1 |
20120118798 | Scott et al. | May 2012 | A1 |
20120267287 | Bailey | Oct 2012 | A1 |
20130139914 | Dahl | Jun 2013 | A1 |
20140166592 | Holton | Jun 2014 | A1 |
20150128832 | Taylor | May 2015 | A1 |
20150377020 | Kronenberger et al. | Dec 2015 | A1 |
Number | Date | Country |
---|---|---|
2017337721 | Feb 2011 | CN |
825895 | Dec 1998 | EP |
200181014 | Nov 2001 | WO |
Entry |
---|
International Preliminary Report on Patentability for the equivalent International patent application PCT/US2016/056206 dated Apr. 19, 2018. |
International Search Report and Written Opinion for the cross referenced International patent application PCT/US2015/038170 dated Sep. 18, 2015. |
International Preliminary Report on Patentability for the cross referenced International patent application PCT/U2015/038170 dated Jan. 5, 2017. |
International Search Report and Written Opinion for the equivalent International patent application PCT/US2016/056206 dated Jan. 25, 2017. |
Office Action for the equivalent Canadian patent application 3001060 dated Dec. 28, 2018. |
Office Action for the equivalent Canadian patent application 3001060 dated Nov. 4, 2019. |
Number | Date | Country | |
---|---|---|---|
20180266199 A1 | Sep 2018 | US |
Number | Date | Country | |
---|---|---|---|
62239768 | Oct 2015 | US |