System, apparatus and method for automatically verifying exploits within suspect objects and highlighting the display information associated with the verified exploits

Information

  • Patent Grant
  • 9306974
  • Patent Number
    9,306,974
  • Date Filed
    Wednesday, February 11, 2015
    9 years ago
  • Date Issued
    Tuesday, April 5, 2016
    8 years ago
  • CPC
  • Field of Search
    • US
    • 723 001000
    • 723 022000
    • 723 023000
    • 723 024000
    • 723 025000
    • 723 026000
    • CPC
    • H04L63/1441
  • International Classifications
    • G08B23/00
    • G06F17/00
    • H04L29/06
    • Disclaimer
      This patent is subject to a terminal disclaimer.
Abstract
A threat detection system is integrated with intrusion protection system (IPS) logic, virtual execution logic and reporting logic is shown. The IPS logic is configured to identify a first plurality of objects as suspicious objects and outputting information associated with the suspicious objects. The virtual execution logic is configured to receive the suspicious objects and verify whether any of the suspicious objects is an exploit. The virtual execution logic includes at least one virtual machine configured to virtually process content within the suspicious objects and monitor for anomalous behaviors during the virtual processing that are indicative of exploits. The reporting logic is configured to issue a report including the information associated with the suspicious objects from the IPS logic and results of the virtual processing of the content within the suspicious objects.
Description
FIELD

Embodiments of the disclosure relate to the field of network security. More specifically, one embodiment of the disclosure relates to a system, apparatus and method for identifying a suspicious object, automatically verifying the suspect object as an exploit through virtual processing.


GENERAL BACKGROUND

Over the last decade, malicious software has become a pervasive problem for Internet users as most networked resources include software vulnerabilities that are subject to attack. For instance, over the past few years, more and more vulnerabilities are being discovered in software that is loaded onto network devices, such as vulnerabilities within operating systems for example. While some vulnerabilities continue to be addressed through software patches, prior to the release of such software patches, network resources continue to be the targeted by exploits.


In general, an exploit is information that attempts to take advantage of a vulnerability in computer software by adversely influencing or attacking normal operations of a targeted computer. As an illustrative example, a Portable Execution Format (PDF) file may be infected with an exploit that is activated upon execution (opening) of the PDF file and takes advantage of a vulnerability associated with Acrobat® Reader version 9.0.


Currently, one type of security application widely used for detecting exploits is an intrusion prevention system (IPS). Typically implemented as part of a firewall, an IPS is designed to identify packets suspected of containing known exploits, attempt to block/halt propagation of such exploits, and log/report information associated with such packets through an alert. However, conventional IPS technology suffers from a number of disadvantages.


One disadvantage with conventional IPS technology in that the IPS does not rely on any mechanism to automatically verify its results. Rather, verification of the results produced from a conventional IPS is handled manually.


Another disadvantage is that, without automated verification, the IPS tends to produce a large number of false positives, namely incorrect alerts that occur when the IPS reports certain benign objects as exploits. These false positives cause a variety of adverse effects. For instance, due to the large number of false positives, one adverse effect is that actual exploits detected within network traffic may go unnoticed by an administrator. Other adverse effects may include (i) needless blocking of incoming network traffic; (ii) unnecessarily reduction of processing resources; (iii) significant drainage of administrative resources to handle incorrectly classified objects; and (iv) development of a culture (or policy) of sporadically checking only some of the suspect objects.


In efforts to mitigate the number of false positives, the IPS may frequently require customized and periodic tuning of its signature database, which is a costly endeavor. Furthermore, simply tuning the IPS to significantly reduce the number of false positives can severely degrade the effectiveness of the IPS and/or severely disrupt network operability.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the invention are illustrated by way of example and not by way of limitation in the figures of the accompanying drawings, in which like references indicate similar elements and in which:



FIG. 1A is a first exemplary block diagram of an operational flow of threat detection and prevention within an electronic device.



FIG. 1B is a second exemplary block diagram of an operational flow of threat detection and prevention within an electronic device.



FIG. 2A is a first exemplary block diagram of a communication system deploying a plurality of threat detection and prevention (TDP) systems with framework for conducting exploit analysis using intrusion protection system (IPS) logic with results verified by virtual execution logic.



FIG. 2B is a second exemplary block diagram of a communication system deploying a plurality of TDP systems with framework for conducting exploit analysis using IPS logic with results verified by virtual execution logic.



FIG. 3 is an exemplary block diagram of logic associated with the TDP system of FIGS. 2A-2B.



FIG. 4 is an exemplary diagram of a flowchart illustrating operations of the threat detection and prevention process.



FIGS. 5A-5B are exemplary embodiments of user interface display screens produced by display logic, where the display screens provides an interactive dashboard.



FIGS. 6A-6B are exemplary block diagrams of operational flows of analyzed objects associated with network traffic in accordance with an alternative embodiment of the TCP system.



FIGS. 7A-7B are exemplary block diagrams of a communication system deploying a plurality of threat detection and prevention (TDP) systems with a framework for conducting exploit analysis using intrusion protection system (IPS) logic and heuristic logic with results verified by the virtual execution logic pursuant to the alternative embodiment.



FIGS. 8A-8B are exemplary diagrams of a flowchart illustrating operations of the threat detection and prevention process according to the framework of FIGS. 7A-7B.





DETAILED DESCRIPTION

Various embodiments of the disclosure relate to an electronic device with network connectivity, such as a threat detection and prevention (TDP) system for example, where the electronic device comprises a static analysis engine, a dynamic analysis engine and reporting logic. According to one embodiment of the disclosure, the static analysis engine comprises intrusion protection system (IPS) logic that conducts at least exploit signature checks and/or vulnerability signature checks on objects under analysis to identify whether characteristics of any of these objects are indicative of an exploit. Those objects with these identified characteristics are label “suspect” or “suspicious” objects. The dynamic analysis engine comprises virtual execution logic to automatically and subsequently analyze, without user assistance, content within suspect objects provided from the IPS logic in order to possibly verify whether any of the suspect objects is an exploit.


Based on analysis results from the IPS logic and the virtual execution logic, reporting logic within the TDP system generates a report (e.g., one or more display screens, printed report, etc.) that highlights information associated with these “verified” exploits, namely suspect objects initially identified by the IPS logic that have been verified by the virtual execution logic to be exploits. Some or all of the information associated with the verified exploits (referred to as “verified exploit information”) may be highlighted to visibly denote the verified exploits from the non-verified exploits, namely suspect objects initially identified by the IPS logic that have not been verified by the virtual execution logic. Examples as to how the verified exploit information is highlighted may include (1) altering location or ordering of at least certain portions of the verified exploit information to prominently display such information within the report; (2) modifying the font (e.g., color, size, type, style, and/or effects) used in conveying some of the verified exploit information; (3) placement of one or more images proximate to a listing of the verified exploit information; or the like.


I. TERMINOLOGY

In the following description, certain terminology is used to describe features of the invention. For example, in certain situations, both terms “logic” and “engine” are representative of hardware, firmware and/or software that is configured to perform one or more functions. As hardware, logic (or engine) may include circuitry having data processing or storage functionality. Examples of such circuitry may include, but is not limited or restricted to a microprocessor, one or more processor cores, a programmable gate array, a microcontroller, an application specific integrated circuit, wireless receiver, transmitter and/or transceiver circuitry, semiconductor memory, or combinatorial logic.


Logic (or engine) may be software in the form of one or more software modules, such as executable code in the form of an executable application, an application programming interface (API), a subroutine, a function, a procedure, an applet, a servlet, a routine, source code, object code, a shared library/dynamic load library, or one or more instructions. These software modules may be stored in any type of a suitable non-transitory storage medium, or transitory storage medium (e.g., electrical, optical, acoustical or other form of propagated signals such as carrier waves, infrared signals, or digital signals). Examples of non-transitory storage medium may include, but are not limited or restricted to a programmable circuit; a semiconductor memory; non-persistent storage such as volatile memory (e.g., any type of random access memory “RAM”); persistent storage such as non-volatile memory (e.g., read-only memory “ROM”, power-backed RAM, flash memory, phase-change memory, etc.), a solid-state drive, hard disk drive, an optical disc drive, or a portable memory device. As firmware, the executable code is stored in persistent storage.


The term “object” generally refers to a collection of data, whether in transit (e.g., over a network) or at rest (e.g., stored), often having a logical structure or organization that enables it to be classified for purposes of analysis. During analysis, for example, the object may exhibit a set of expected characteristics and, during processing, a set of expected behaviors. The object may also exhibit a set of unexpected characteristics and a set of unexpected behaviors that may evidence an exploit and potentially allow the object to be classified as an exploit.


Examples of objects may include one or more flows or a self-contained element within a flow itself. A “flow” generally refers to related packets that are received, transmitted, or exchanged within a communication session. For convenience, a packet is broadly referred to as a series of bits or bytes having a prescribed format, which may include packets, frames, or cells.


As an illustrative example, an object may include a set of flows such as (1) a sequence of transmissions in accordance with a particular communication protocol (e.g., User Datagram Protocol (UDP); Transmission Control Protocol (TCP); or Hypertext Transfer Protocol (HTTP); etc.), or (2) inter-process communications (e.g. Remote Procedure Call “RPC” or analogous processes, etc.). Similar, as another illustrative example, the object may be a self-contained element, where different types of such objects may include an executable file, non-executable file (such as a document or a dynamically link library), a Portable Document Format (PDF) file, a JavaScript file, Zip file, a Flash file, a document (for example, a Microsoft Office® document), an electronic mail (email), downloaded web page, an instant messaging element in accordance with Session Initiation Protocol (SIP) or another messaging protocol, or the like.


An “exploit” may be construed broadly as information (e.g., executable code, data, command(s), etc.) that attempts to take advantage of a software vulnerability. Typically, a “vulnerability” is a coding error or artifact of software (e.g., computer program) that allows an attacker to alter legitimate control flow during processing of the software (computer program) by an electronic device, and thus, causes the electronic device to experience undesirable or unexpected behaviors. The undesired or unexpected behaviors may include a communication-based anomaly or an execution-based anomaly, which, for example, could (1) alter the functionality of an electronic device executing application software in a malicious manner; (2) alter the functionality of the electronic device executing that application software without any malicious intent; and/or (3) provide unwanted functionality which may be generally acceptable in another context. To illustrate, a computer program may be considered as a state machine, where all valid states (and transitions between states) are managed and defined by the program, in which case an exploit may be viewed as seeking to alter one or more of the states (or transitions) from those defined by the program.


Malware may be construed broadly as computer code that executes an exploit to take advantage of a vulnerability, for example, to harm or co-opt operation of an electronic device or misappropriate, modify or delete data. Conventionally, malware is often said to be designed with malicious intent. An object may constitute or contain malware.


The term “transmission medium” is a physical or logical communication path between two or more electronic devices (e.g., any devices with data processing and network connectivity such as, for example, a security appliance, a server, a mainframe, a computer such as a desktop or laptop, netbook, tablet, firewall, smart phone, router, switch, bridge, etc.). For instance, the communication path may include wired and/or wireless segments. Examples of wired and/or wireless segments include electrical wiring, optical fiber, cable, bus trace, or a wireless channel using infrared, radio frequency (RF), or any other wired/wireless signaling mechanism.


In certain instances, the terms “detected” and “verified” are used herein to represent that there is a prescribed level of confidence (or probability) on the presence of an exploit within an object under analysis. For instance, the IPS logic (described below) “detects” a potential exploit by examining characteristics or features of an object under analysis, and, in response, determining whether the object has characteristics indicative of an exploit (a “suspect object”). This determination may be conducted through analysis as to whether there exists at least a first probability of the object under analysis being an exploit. Likewise, the virtual execution logic “verifies” the presence of the exploit by monitoring or observing unexpected or anomalous behaviors or activities, and, in response, determining that suspect object is an exploit. According to one embodiment of the disclosure, the determination by the virtual execution logic may involve an analysis as to whether there exists a second probability of the suspect exploit being an exploit. The second probability may be greater than the first probability and may take into account the first probability.


The term “computerized” generally represents that any corresponding operations are conducted by hardware in combination with software and/or firmware. Also, the terms “compare” or “comparison” generally mean determining if a match (e.g., a certain level of correlation) is achieved between two items where one of the items may include a particular signature pattern.


Lastly, the terms “or” and “and/or” as used herein are to be interpreted as inclusive or meaning any one or any combination. Therefore, “A, B or C” or “A, B and/or C” mean “any of the following: A; B; C; A and B; A and C; B and C; A, B and C.” An exception to this definition will occur only when a combination of elements, functions, steps or acts are in some way inherently mutually exclusive.


The invention may be utilized for detection, verification and/or prioritization of malicious content such as exploits. As this invention is susceptible to embodiments of many different forms, it is intended that the present disclosure is to be considered as an example of the principles of the invention and not intended to limit the invention to the specific embodiments shown and described.


II. FIRST EMBODIMENT
IPS Logic with Virtual Execution Logic Verification
A. Communication Flow

Referring to FIG. 1A, an exemplary block diagram of an operational flow of threat detection and prevention within an electronic device 100 is shown. Herein, some or all of the incoming objects 110 associated with monitored network traffic are received by IPS logic 120, which is part of the static analysis engine of FIGS. 2A-2B for example. The IPS logic 120 is configured as a capture and filter device that receives the incoming objects 110 and filters, using at least exploit signatures and/or vulnerability signatures, which objects are to be provided for more in-depth analysis. The exploit signatures and/or vulnerability signatures may be updated in a periodic or aperiodic manner.


More specifically, a suspected exploit may be detected by conducting exploit signature checks and/or vulnerability signature checks, namely comparing an object under analysis to one or more pre-stored exploit signatures and/or vulnerability signatures to determine if a match is detected. In general, an “exploit signature” includes information directed to a previously detected or known attack pattern while a “vulnerability signature” includes information that characterizes a potential attempt to capitalize on a previously detected or known vulnerability, even when no specific exploit for that vulnerability is known. According to one embodiment of the disclosure, the vulnerability signature may be considered a protocol state machine that maintains state and is normally configured to define parameters for an object being a set of flows that represent an attempt being made to capitalize on a particular software vulnerability that the vulnerability signature is attempting to protect.


Upon conducting at least exploit signature checks and/or vulnerability signature checks on the incoming objects 110 and identifying a first subset of objects 130 having characteristics indicative of an exploit (“suspect objects”), the IPS logic 120 provides the first set of suspect objects 130 to verification logic 150 and provides results 140 of its analysis (referred to herein as “IPS-based results”) to reporting logic 170 for storage and subsequent access.


It is contemplated that the first subset of objects 130 may be lesser in number (and potentially significantly less in number) than the incoming objects 110. For example, while the first subset of objects 130 may be a stream of objects, for ease of discussion in this section, the first subset of objects 130 may refer to at least one incoming object initially suspected of being an exploit (e.g., a suspect object matches a pre-stored exploit signature or a vulnerability signature). Hence, the IPS logic 120 routes the suspect object 130 to verification logic 150 and outputs the IPS-based results 140 associated with suspect object 130 to reporting logic 170.


The IPS-based results 140 may provide details directed to one or more suspected exploits within the suspect object 130. As an example, the details may include (i) an exploit identifier such as a particular name/family of the suspected exploit (if known); (ii) source address (e.g., Uniform Resource Locator “URL”, Internet Protocol “IP” address, etc.) of the electronic device sending the suspect object; (iii) time of analysis; (iv) information associated with anticipated anomalous activities that may be conducted by the suspected exploit; (v) information regarding anticipated communication deviations from the protocol applicable to the network traffic; and/or (vi) recommended remediation techniques for this type of exploit.


As mentioned above, the suspect object 130 is routed to verification logic 150 (e.g., virtual execution logic being part of a dynamic analysis engine 270 as illustrated in FIGS. 2A-2B). The verification logic 150 attempts to verify whether the suspect object 130 is an exploit by virtual processing content within the suspect object 130 and monitoring behaviors during such virtual processing, as described below.


The results 160 of this analysis are output from the verification logic 150 for subsequent use by reporting logic 170 in generating a report 180 that visibly denotes and filters the suspect objects from the first set of objects 130 that have been verified (verified exploits) from those suspect objects from the first set of objects 130 that have not been verified (non-verified exploits). Although not illustrated in FIG. 1A, the VM-based results 160 may include (1) the suspect object; (2) time of analysis; (3) one or more scores that may be used to verify that the suspect object is likely an exploit, and if so: (i) the exploit identifier; (ii) characteristics or anomalous behaviors associated with the verified exploit, which may include video/images of anomalous behaviors; and/or (iii) name and/or version number of software detected to be vulnerable to the verified exploit.


Thereafter, at least portions of the IPS-based results 140 and the VM-based results 160 for the suspect object are combined. More specifically, in the event that the VM-based results 160 indicate that the verification logic 150 failed to verify that the suspect object 130 is an exploit (e.g., a computed score below a prescribed threshold), some or all of the IPS-based results 140 and the VM-based results 160 for that object are combined and added as part of “non-verified exploit information” 190 for storage and use by the reporting logic 170.


However, when the VM-based results 160 indicate that the verification logic 150 has verified that the suspect object 130 is an exploit (e.g., the computed score is equal to or above a prescribed threshold), some or all of the IPS-based results 140 and the VM-based results 160 may be modified to achieve a highlighted display of at least the verified exploits. For example, certain portions of the results 140 and/or 160 may be associated with display commands, which are recognized by a display controller being part of display logic within the reporting logic 170 and causes the display logic to produce an output that may visibly denotes differences between displayed results associated with verified exploits from displayed results associated with the non-verified exploits. This exploit information associated with the verified exploit may be stored as part of the “verified exploit information” 195″.


The display logic 290 also may be configured to recognize that the verified exploit information 195 is to be displayed more prominently than the non-verified exploit information 190. For instance, display logic 290 may be configured to prominently display the verified exploit information within different display screens, within different display windows, within a certain section of a display screen, or positioned at a top of a listing. Additionally or in the alternative, at least a portion of the verified exploit information for each verified exploit may be conveyed using a different font (e.g., color, size, type, style, and/or effects) than the font used for conveying exploit information associated with non-verified exploits. Additionally or in the alternative, one or more images may be placed proximate to exploit information associated with each verified exploit. Illustrative examples of screen displays are shown in FIGS. 5A-5B.


Besides displaying the exploit information, the reporting logic 170 may issue an alert (e.g., by email or text message) to security administrators for example, communicating the urgency in handling one or more verified exploits. The reporting logic 170 may also issue alerts for one or more non-verified exploits by providing alerts in a manner that denotes to users a selected threat level.


As further shown, the IPS logic 120 may be communicatively coupled to a network 105 (e.g., public or private network) to receive incoming objects 110, such as one or more flows for example, destined for a particular client device. The IPS logic 120 is configured to conduct exploit signature checks and/or vulnerability signature checks on the incoming objects 110 to determine whether any of the objects 110 have characteristics indicative of an exploit, and thereafter, provide the suspect object(s) 130 to verification logic 150.


According to one embodiment of the disclosure, the communicative coupling between the IPS logic 120 and the verification logic 150 is provided in a sideband configuration, where the suspect object(s) 130 (or a copy thereof) may be temporarily stored and processed in the verification logic 150 concurrently with analysis of other objects by the IPS logic 120. This allows for the detection of exploits through a longer duration of analysis by the verification logic 150 (e.g., longer processing and monitoring of processing of the suspect object 130 within the virtual execution logic). This also allows detection of exploits with delayed activation, including time-bombs. However, it is contemplated that the IPS logic 120 may be configured in-line with verification logic 150 as shown in FIG. 1B. Herein, the IPS logic 120 may provide both the suspect objects 130 and IPS-based results 140 to the verification logic 150, where the IPS-based results may be subsequently routed to reporting logic 170 from the verification logic 150.


B. General Architecture
First Embodiment

Referring to FIG. 2A, an exemplary block diagram of a communication system 200 deploying a plurality of threat detection and prevention (TDP) systems 2101-210N (N>1, e.g., N=3) communicatively coupled to a management system 220 via a network 225 is shown. In general, management system 220 is adapted to manage TDP systems 2101-2103. For instance, management system 220 is responsible for automatically updating one or more exploit signatures and/or vulnerability signatures used by IPS logic within some or all of TDP systems 2101-210N. Each of these signatures may represent a prior detected exploit or an uncovered software vulnerability. Such sharing may be conducted automatically or manually uploaded by an administrator. Also, such sharing may be conducted freely among the TDP systems 2101-2103 or subject to a subscription basis.


Herein, according to the embodiment illustrated in FIG. 2A, a first TDP system 2101 is an electronic device that is adapted to analyze information associated with network traffic routed over a communication network 230 between at least one server device 232 and at least one client device 234. The communication network 230 may include a public network such as the Internet, in which case an optional firewall 236 (represented by dashed lines) may be interposed prior to accessing client device 234. Alternatively, the communication network 230 may be a private network such as a wireless data telecommunication network, wide area network, a type of local area network (LAN), or a combination of networks.


As shown, the first TDP system 2101 may be communicatively coupled with the communication network 230 via a network interface 238. In general, the network interface 238 operates as a data capturing device (sometimes referred to as a “tap” or “network tap”) that is configured to receive data propagating to/from the client device 234 and provide at least some of this data to the first TDP system 2101. Alternatively, as shown in FIG. 2B, the first TDP system 2101 may be positioned behind the firewall 236 and in-line with client device 234.


According to one embodiment of the disclosure, the network interface 238 is capable of receiving and routing objects associated with network traffic to the first TDP system 2101. The network interface 238 may provide the entire object or certain content within the object, for example, one or more files that are part of a set of flows, packet payloads, or the like. In some embodiments, although not shown, network interface 238 may be contained within the first TDP system 2101.


According to an embodiment of the disclosure, the network interface 238 may be further configured to capture metadata from network traffic intended for client device 234. According to one embodiment, the metadata may be used, at least in part, to determine protocols, application types and other information that may be used by logic within the first TDP system 2101 to determine particular software profile(s). The software profile(s) are used for selecting and/or configuring a run-time environment in one or more virtual machines selected or configured as part of the dynamic analysis engine 270, as described below. However, according to another embodiment, a “matched” vulnerability signature may be used for VM configuration to specify software profile(s) (or corresponding software image(s)) having the specific vulnerability associated with the matched vulnerability signature. These software profile(s) may be directed to different versions of the same software application for fetching corresponding software image(s) from storage device 265.


It is contemplated that, for any embodiments where the first TDP system 2101 is implemented as an dedicated appliance or a dedicated computer system, the network interface 238 may include an assembly integrated into the appliance or computer system that includes a network interface card and related logic (not shown) for connecting to the communication network 230 to non-disruptively “tap” network traffic propagating through firewall 236 and provide either a duplicate copy of at least a portion of the network traffic or at least a portion the network traffic itself to a static analysis engine 250. In other embodiments, the network interface 238 can be integrated into an intermediary device in the communication path (e.g., firewall 236, router, switch or other networked electronic device, which in some embodiments may be equipped with SPAN ports) or can be a standalone component, such as an appropriate commercially available network tap. In virtual environments, a virtual tap (vTAP) can be used to duplicate files from virtual networks.


As further shown in FIG. 2A, the first TDP system 2101 comprises the static analysis engine 250, a database 255, a scheduler 260, a storage device 265, a dynamic analysis engine 270, an optional classification logic 285, and a display logic 290. It is contemplated that the functionality of the classification logic 285 may be integrated into the display logic 290, where the display logic 290 would be configured with the prioritization logic 286 and/or the tag image generation logic 288.


In some embodiments, as shown in FIGS. 2A-2B, static analysis engine 250 may include one or more software modules that, when executed by one or more processors, performs multi-level static scanning on a particular object, namely exploit signature checks and/or vulnerability signature checks by IPS logic 120. Such signature check operations may involve accessing pre-stored signatures from one or more non-transitory storage mediums such as signature database 251. The static analysis engine 250 and the dynamic analysis engine 270 may be one or more software modules executed by the same processor or different processors, where these different processors may be located within the same processor package (e.g., different processor cores) and/or located at remote or even geographically remote locations that are communicatively coupled (e.g. by a dedicated communication link) or a network.


In general, referring to FIG. 2A, the static analysis engine 250 is communicatively coupled to receive one or more objects from network traffic which may be related or unrelated to each other. For instance, one object may be a series of HTTP packets operating as a flow routed over communication network 230. The static analysis engine 250 comprises IPS logic 120, where the IPS logic 120 analyzes each of the objects for known exploits using exploit signatures as well as for the protocol activity using vulnerability signatures. For instance, the exploit matching logic 252 within the IPS logic 120 performs exploit signature checks, which may involve a comparison of one or more pre-stored exploit signatures (pre-configured and predetermined attack patterns against the suspect object) from signature database 251. Similarly, the signature matching logic 253 within the IPS logic 120 performs vulnerability signature checks, which may involve a process of uncovering deviations in messaging practices set forth in applicable communication protocols (e.g., HTTP, TCP, etc.). As an illustrative example, HTTP messages may be analyzed to determine compliance with certain message formats established for the protocol (e.g., out-of-order commands). Furthermore, payload parameters of the HTTP messages may be analyzed to determine further compliance.


Upon detecting a match during the exploit signature check and/or the vulnerability signature check (an object under analysis has characteristics that suggest the object is an exploit), the IPS logic may be adapted to upload the IPS-based results 140 for storage in database 255. These results 140 may include, but are not limited or restricted to (i) an exploit identifier such as a particular name/family of the suspected exploit (if known); (ii) source address (e.g., Uniform Resource Locator “URL”, Internet Protocol “IP” address, etc.) of a source of the suspect object; (iii) time of analysis; (iv) information associated with anticipated anomalous activities that may be conducted by the suspect exploit; (v) information regarding anticipated communication deviations from the protocol applicable to the network traffic; and/or (vi) recommended remediation techniques. The IPS-based results 140 may be accessible by classification logic 285 and/or display logic 290, as described below.


Furthermore, the IPS logic 120 routes suspect object to the virtual execution logic 150 within dynamic analysis engine 270. The dynamic analysis engine 270 is configured to provide more in-depth analysis of suspect object(s) from the IPS logic 120 by analyzing the content of the suspect object(s) in order to verify whether or not the suspect object is an exploit. Additionally, according to one embodiment of the disclosure, a tag value may accompany or be associated with the suspect object for use in subsequently locating the suspect object's corresponding stored IPS-based results 140 after virtual processing within the dynamic analysis engine 270. For instance, the tag value may be an address, an index number, or the like. It is contemplated that tag value may be separate from the suspect object or may be strategically placed within the suspect object itself (e.g., within a header portion, payload, etc.).


More specifically, after static scanning has been completed, the IPS logic 120 provides the suspect object to the dynamic analysis engine 270 for in-depth dynamic analysis using virtual machines (VMs) 2751-275M (M≧1). For instance, the dynamic analysis engine 270 may simulate transmission and/or receipt by a destination device comprising the virtual machine. Of course, if the object is not suspected of being an exploit, the IPS logic 120 may simply store the IPS-based results within database 255 and denote that the object is benign.


According to one embodiment, one or more VMs 2751-275M within the virtual execution environment 272 may be configured based on the results of the exploit signature check and the vulnerability signature check conducted by the IPS logic 120. For instance, for an unknown vulnerability, the VMs 2751-275M may be configured with all of the software profiles corresponding to the software images stored within storage device 265. Alternatively, the VMs 2751-275M may be configured according to a prevalent software configuration, software configuration used by an electronic device within a particular enterprise network (e.g., client device 234), or an environment that is required for the object to be processed, including software such as a web browser application, PDF™ reader application, or the like. However, for a known vulnerability which occurs after a successful match during a vulnerability signature check, the VMs 2751-275M may be more narrowly configured to software profiles associated with vulnerable software.


As a first illustrative example, upon determining that the suspect object matches a particular vulnerability signature, the scheduler 260 may determine (1) what vulnerability signature has been tagged; (2) if the vulnerability is a server side vulnerability or client side vulnerability; and/or (3) which software image(s) are associated with software having the vulnerability associated with the tagged vulnerability signature. Thereafter, the software profile(s) are selected by the scheduler 260 to fetch these software image(s) for configuration of VM 2751. This tailored selection scheme avoids VM configuration for software that does not feature the matched (tagged) software vulnerability.


As a second illustrative example, the scheduler 260 may be adapted to configure the multiple VMs 2751-275M for concurrent virtual execution of a variety of different versions of the software in efforts to verify that the suspect object identified by the signature matching logic 253 is an exploit.


Of course, it is contemplated that the VM configuration described above may be handled by logic other than the scheduler 260. For instance, although not shown, the static analysis engine 250 may include configuration logic that is adapted to determine (1) what vulnerability signature was tagged; (2) if the vulnerability is a server side vulnerability or client side vulnerability; and/or (3) which software image(s) are associated with software having the vulnerability associated with the tagged vulnerability signature. This configuration logic may transmit the VM configuration information to the scheduler 260 and/or dynamic analysis engine 270 to handle VM configuration as described above.


According to one embodiment of the disclosure, the dynamic analysis engine 270 is adapted to execute one or more VMs 2751-275M to simulate the receipt and execution of content associated with an object under analysis within a run-time environment as expected by the type of object. For instance, dynamic analysis engine 270 may optionally include a protocol sequence replayer (replay logic) 280 to replay the suspect object and provide replayed data flows to the VM(s) 2751, . . . , and/or 275M or object extractor logic 282 to extract a self-contained object within a data flow for virtual processing by VM(s) 2751, . . . , and/or 275M. One embodiment of the protocol sequence replayer is described in U.S. Pat. No. 8,375,444, the entire contents of which are incorporated by reference herein.


For example, the replay logic 280 may be adapted to provide, and sometimes modify (e.g. modify IP address, etc.) packets associated with the suspect objects and synchronize any return network traffic generated by the virtual execution environment 272 in response to the packets. Hence, the replay logic 280 may suppress (e.g., discard) the return network traffic such that the return network traffic is not transmitted to the communication network 230. According to one embodiment of the disclosure, for a particular suspect object being a flow such as a TCP or UDP sequence, the replay logic 280 may replay the data packets by sending packets to the virtual execution environment 272 via a TCP connection or UDP session. Furthermore, the protocol sequence replay logic 280 synchronizes return network traffic by terminating the TCP connection or UDP session.


As further shown in FIG. 2A, the monitoring logic 276 within the dynamic analysis engine 270 may be configured to monitor behavior of the content being analyzed by one or more VMs 2751, . . . , and/or 275M, for detecting anomalous or unexpected activity indicative of an exploit. If so, the content may be determined as being associated with malicious activity, and thereafter, monitoring logic 276 operating with a score determination logic 278 may route the VM-based results 160 (e.g., computed score, information associated with the detected anomalous behaviors, and other information associated with the detected malicious activity by the suspect object) to classification logic 285 and/or database 255. It is noted that the tag value, if used, may be provided as part of the VM-based results 160.


According to one embodiment of the disclosure, the score determination logic 278 comprises one or more software modules that are used to determine a probability (or level of confidence) that the suspect object is an exploit. Score determination logic 278 is configured to generate a value (referred to as a “score”) that classifies the threat of the possible exploit. Of course, a score may be assigned to the suspect object as a whole by mathematically combining the scores determined by analysis of different content associated with the same suspect object to obtain an overall score for that suspect object. Thereafter, the suspect object and/or score are routed to classification logic 285 for use in prioritization.


In general, the classification logic 285 may be configured to receive the VM-based results 160. According to one embodiment of the disclosure, the score may be used, at least in part, to determine whether the virtual execution logic 150 has verified that the suspect object is an exploit. Where the score represents that the suspect object 130 has not been verified by the virtual execution logic 150 to have the characteristics of an exploit, some or all of the VM-based results 160 may be combined with its corresponding IPS-based results to produce the non-verified exploit information 190, which is stored in database 255.


However, if the score represents that the suspect object 130 has been verified by the virtual execution logic 150 as an exploit, at least some of the combined IPS-based results 140 and/or the VM-based results 160 may be modified by the classification logic 285 and subsequently stored as at least part of the verified exploit information 195. Stated differently, the classification logic 285 operating with the database 255 may be responsible for prioritizing the display of exploit information associated with the verified exploits. This may involve the classification logic 285 modifying order or position for the displayed verified exploit information, or adding information to the verified exploit information that is used by the display logic 290 to modify display order or positioning; modifying the type of font (e.g., color, size, type, style, and/or effects) used for text conveying certain verified exploit information; placing one or more images proximate to verified exploit information for each verified exploit; or the like.


Of course, it is contemplated that other parameters, combined with or separate from the score, may be used or relied upon to determine whether and/or how to highlight display of the exploit information associated with the suspect object.


Thereafter, along with non-verified exploit information 190, the verified exploit information 195 is stored within database 255 and accessible by display logic 290.


More specifically, according to one embodiment of the disclosure, classification logic 285 comprises prioritization logic 286 and tag image generation logic 288. According to one embodiment of the disclosure, the prioritization logic 286 may be adapted to modify (e.g., alter or associate display commands to) exploit information associated with verified exploits based one or more factors, including (i) score associated with the object; (ii) source of the object; (iii) repeated detection of the same exploit in different suspect objects; or the like. This modification may involve modifying font (e.g., color, size, type, style, and/or effects) used to convey the exploit information associated with verified exploits. As another example, this modification may involve classification and storage of the exploit information as verified exploit information 195 which, when accessed by the display logic 290, places the exploit information associated with the verified exploit at a specific location on a display screen or within display image (e.g., within a specific window or display screen listing the verified exploits, at a particular order within the listing of the verified and non-verified exploits, etc.).


Of course, as an alternative, the display logic 290 may be implemented with some or all of the functionality associated with the prioritization logic 286 and/or tag image generation logic 288 in lieu of deployment within the classification logic 285. Hence, responsive to information received from the classification logic, the display logic 290 may be adapted to modify exploit information associated with verified exploits.


The tag image generation logic 288 may be adapted to operate in combination with the prioritization logic 286 to generate a tag image (not shown), which is included as part of the verified exploit information 195 associated with suspect object for display. The tag image is used to provide another visual representation of the presence of a verified exploit, namely a suspected exploit detected by the IPS logic 120 whose presence has been verified by the virtual execution logic 150.


Of course, in lieu of or in addition to static scanning operations being conducted by TDP systems 2101-2103, it is contemplated that cloud computing services 240 may be implemented with IPS logic 120 to perform the exploit and/or vulnerability signature checks and/or with virtual execution logic 150 to conduct virtual execution on content within the object under analysis, as described herein. The display logic 290 may cause the display of the exploit information associated with the verified exploits and/or non-verified exploits graphically or otherwise through a downloaded page or pages from the cloud computing services 240 to a client device or to an application running on a client device that displays the results obtained from the cloud computing services 240. In accordance with this embodiment, TDP system 2101 may be adapted to establish secured communications with cloud computing services 240 for exchanging information.


C. General Architecture
Second Embodiment

Referring now to FIG. 2B, first TDP system 2101 may be coupled with the communication network 230 in line with client device 234. Contrary to the embodiment illustrated in FIG. 2A, first TDP system 2101 comprises an interface unit 295 that directs signaling on communication network 230 to static analysis engine 250 or classification logic 285, given that the dynamic analysis engine 270 is deployed in cloud computing services 240. Hence, objects from network traffic for static analysis are routed to static analysis engine 250 via communication path 296. The suspicious objects may be routed via path 297 to the dynamic analysis engine 270 in cloud computing services 240. Similarly, objects that are not determined to be at least “suspect” may be returned via path 297 for continued routing to client device 234. The results of the dynamic analysis engine 270 (e.g., exploit information) may be routed via path 298 for prioritization and tagging before storage within database 255 for subsequent use by display logic 290.


D. Exemplary Logic Layout of TDP System

Referring now to FIG. 3, an exemplary block diagram of logic associated with TDP system 2101 of FIGS. 2A-2B is shown. TDP system 2101 comprises one or more processors 300 that are coupled to communication interface logic 310 via a first transmission medium 320. Communication interface logic 310 enables communications with other TDP systems 2102-2103 and management system 220 of FIG. 2A-2B. According to one embodiment of the disclosure, communication interface logic 310 may be implemented as a physical interface including one or more ports for wired connectors. Additionally, or in the alternative, communication interface logic 310 may be implemented with one or more radio units for supporting wireless communications with other electronic devices.


Processor(s) 300 is further coupled to persistent storage 330 via transmission medium 325. According to one embodiment of the disclosure, persistent storage 330 may include (i) static analysis engine 250, including first analysis logic (e.g., IPS logic) 250; (ii) the dynamic analysis engine 270, including virtual execution logic 272, monitoring logic 276, score determination logic 278 along with optional replay and object extractor logic 280 and 282; (iii) classification logic 285 including prioritization logic 286 and tag image generation logic 288; and (iv) display logic 290. Of course, when implemented as hardware, one or more of these logic units could be implemented separately from each other.


IPS logic 120 comprises one or more software modules that conduct a first static analysis on each incoming object. As described above, this analysis may involve performing at least exploit signature checks and vulnerability signature checks on each incoming object to determine whether characteristics of any of these objects are indicative of an exploit. If not, the analysis may be discontinued for the object, or the object may be provided for non-real time forensic review. Upon confirming that one or more suspect objects have characteristics of an exploit, the IPS logic 120 provides the suspect object(s) to the virtual execution logic 150. It is contemplated that a tag value, if used, may accompany (or be associated with) the suspect object to identify a stored location of the IPS-based results 140 for the suspect object, as described above. The IPS-based results 140 are uploaded to data store 350, at least partially operating as a database, for subsequent access by classification logic 285.


Virtual execution environment 272 comprises one or more software modules that are used for performing an in-depth, dynamic and real-time analysis of the suspect object using one or more VMs. More specifically, the virtual execution environment 272, protocol sequence replay logic 280 and/or object extractor logic 282 are adapted to run the VM(s), which virtually processes the content associated with the suspect objects by simulating receipt and execution of such content in order to determine the presence of one or more exploits. Furthermore, the monitoring logic 276 monitors in real-time and may also log at least anomalous behaviors by the VM(s) configured with certain software and features that are presumably targeted by the matched exploit or vulnerability. In essence, the monitoring logic 276 identifies the effects that the suspect object would have had on a physical electronic device with the same software/feature configuration. Such effects may include unusual network transmissions, unusual changes in performance, and the like.


Thereafter, according to the observed behavior of the virtually executed content, the monitoring logic 276 may determine that the content is associated with one or more exploits, where the severity of the observed anomalous behavior and/or the likelihood of the anomalous behavior results from an exploit, is evaluated and reflected in a “score” assigned by the score determination logic 278. As a result, these logic units collectively output the VM-based results 160 for use by classification logic 285 to highlight exploit information associated with verified exploits.


The prioritization logic 286 comprises one or more software modules that are used to highlight information associated with verified exploits, namely the verified exploit information 195. For instance, the prioritization logic 286 may assign higher priority to exploit information directed to verified exploits, where the priority may be used by the display logic 290 to determine an order or location for display. Furthermore, the prioritization logic 286 may be adapted to modify the font used in display of the verified exploit information (e.g., color, size, type, style, and/or effects), or control the placement of one or more images provided by the tag image generation logic 288 proximate to its corresponding exploit information.


Continuing the above example, processor(s) 300 may invoke display logic 290, which produces one or more screen displays for conveying a detailed summary of verified and/or non-verified exploits detected by the TDP system 2101. According to one embodiment of the disclosure, the information associated with the verified exploits (verified exploit information 195) may be presented in a first area of a display screen while information associated with the non-verified exploits (non-verified exploit information 190) may be presented in a second area of the display screen. As another example, the verified exploit information 195 may be presented as top entries in a listing of all exploits detected by the IPS logic while the non-verified exploit information 190 is presented subsequently. As another example, some or all of the verified exploit information 195 may be presented in different font (e.g., different type, color, style such as bold or italic, effects such as underlining or shadow, etc.) than font used for conveying the non-verified exploit information 190. As yet another example, a tag image may be positioned next to the verified exploit information 195 unlike non-verified exploit information 190 associated with suspect objects.


E. Display and Prioritization of Detected Exploits

Referring to FIG. 4, an exemplary diagram of a flowchart illustrating a threat detection and prevention process which generates a report that highlights information associated with suspected exploits detected by the IPS logic and verified by the virtual execution environment is shown. Upon receipt of an object, the TDP system conducts a first static analysis operation on the object (block 400). Herein, the first static analysis operation may include exploit signature checks and/or vulnerability signature checks by the IPS logic to determine whether characteristics of an object under analysis are indicative of an exploit. Upon determining that the suspect object may have the characteristics of one or more suspected exploits, the object is tagged for VM-based analysis and information associated with the suspect object and/or potential exploit (IPS-based results) is stored for subsequent access (blocks 405 and 410).


Although not shown, when determining that the suspect object has characteristics of a suspected exploit, the IPS logic may be configured to block the object from proceeding to the targeted client device, although blocking may be delayed until completion of the VM-based analysis to mitigates errors due to false positives. This blocking functionality may be adjusted by the network administrator based on the severity/type of suspected exploit, number of occurrences of this type of exploit within a prescribed time period, or the like. Furthermore, prior to performing further exploit analysis, if used, a tag value may accompany (or being associated with) the suspect object when output from the IPS logic so that the IPS-based results for the suspect object can be related to the subsequent VM-based results for that object.


After IPS-based analysis for the suspect object has concluded, the content of the suspect object may undergo VM-based analysis (blocks 415 and 420). The results of the VM-based analysis (VM-based results) are provided for subsequent review (block 425). According to one embodiment of the disclosure, the classification logic performs such review, although in the alternative, logic within the dynamic analysis engine may conduct this review.


Normally, if the VM-based analysis fails to verify that the suspect object is an exploit, a score may be assigned to denote that no exploit has been detected (block 430). In this case, information produced during the VM analysis of the suspect object along with its corresponding IPS-based results are stored as part of the non-verified exploit information (block 435). However, during virtual execution of the object, if the monitored behavior denotes that the suspect object is an exploit, a score is assigned that represents the likelihood and/or threat level for the “verified” exploit(s).


According to one embodiment of the disclosure, the classification logic may be configured to obtain the IPS-based results associated with the verified exploit, where some or all of the information from the IPS-based results and the VM-based results may be prominently displayed (highlighted) as illustrated in blocks 440 and 445. Such highlighting may include (i) assigning a specific display location for exploit information associated with verified exploits that is different from exploit information associated with non-verified exploits; (ii) modifying the presentation (e.g., font type, color, style, etc.) of exploit information associated with verified exploits where the exploit information associated with the non-verified exploits will have a different presentation; (iii) controlling placement of one or more images proximate to exploit information associated with verified suspect objects only. Other display adjustments may be used, as this highlighting is conducted to visibly differentiate exploit information associated with the verified exploits from exploit information associated with the non-verified exploits.


Thereafter, the (highlighted) verified exploit information is uploaded into the database for storage and now accessible by display logic for rendering (blocks 450 and 455).


F. Display Screens of Detected Malicious Objects

Referring now to FIG. 5A, an exemplary embodiment of a first user interface display screen 500 produced by the display logic of FIGS. 2A-2B that provides an interactive dashboard is shown. Herein, rendered by the display logic, the display screen 500 comprises a plurality of display areas 510 and 530 that illustrate information directed to exploits uncovered over a selected time period by the TDP system. It is noted that multiple highlighting techniques are shown in display screens 500 and 545, although it is contemplated that any one or more highlighting technique may be conducted for a particular display.


More specifically, according to one embodiment of the disclosure, a first area 510 displays a plurality of entries 5201-520R (R≧1, R=6 for this embodiment) that provide information directed verified exploits and/or non-verified exploits. As shown, each row of entries (e.g., 5201) rendered by the display logic comprises a plurality of fields, including one or more of the following: (1) a name 521 of the exploit associated with a suspect object; (2) a signature pattern 522 applicable to the object under analysis; (3) addressing information 523 (e.g., Internet Protocol “IP” address, Media Access Control “MAC” address, etc.) for a source device providing the verified or non-verified exploit; (4) a level of severity 524 (e.g., high, medium, low) of the detected exploit, where the severity level corresponds, at least in part, to the threat score; (5) a time 525 during which the exploit analysis process was conducted; and/or (6) name and/or version number 526 of software detected to be vulnerable to the detected exploit.


A second area 530 may be configured with one or more images corresponding to each entry for a verified exploit, namely an object initially identified by the IPS logic as having characteristics indicative of an exploit and verified of being an exploit by the virtual execution logic. For instance, as illustrated in FIG. 5A, image 535 is displayed proximate to information associated with a corresponding verified exploit named “HTTP Exploit_ID1.” Similar images are illustrated for verified exploit information associated with verified exploits named “HTTP Exploit_ID2,” “Java Exploit_ID1,” and “HTML Exploit_ID1.”


It is noted that the mere existence of a verified exploit may warrant heightened severity level, but does not require heightened severity levels as illustrated by the fact that certain non-verified exploits may be assigned higher severity levels than some verified exploits. Rather, exploit information associated with the verified exploits is highlighted, namely this exploit information is displayed more prominently than exploit information associated with non-verified exploits for example. This allows a network administrator to more quickly and easily determine verified exploits and thereby substantially mitigate administrative and operational disadvantages from false-positives.


As an example, as a highlighting technique, the font associated with the exploit names (HTTP Exploit_ID1; HTTP Exploit_ID2; Java Exploit_ID1; and HTML Exploit_ID1) may be displayed differently than the font associated with the exploit names for non-verified exploits (e.g., Java Exploit_ID2). Alternatively, the verified exploit information associated with the verified exploits may be ordered at the top of the listing (see FIG. 5B). Also, a single display screen may produce two areas, where a first area includes exploit information associated with verified exploits while a second area includes exploit information associated with non-verified exploits (see FIG. 5B).


Furthermore, although not shown, it is contemplated that selection of a portion of the entry (e.g., entries within fields 521/522/523/524/526 (as represented by an underlined portion) and/or a separate “Details” field 540) may enable the network administrator to obtain more detailed information of the exploit and/or analysis associated with that exploit.


For instance, by selecting the particular listed exploit 521, the administrator may be able to uncover family and other information related to the exploit (e.g., documented attacks, recommended remediation techniques, targeted client device(s), etc.). Also, by selecting the signature 522, the administrator may have access to additional information concerning what signature (exploit, vulnerability, etc.) was determined by the IPS to match the suspect object. Additional information (e.g., information on signature updates, detection history of this signature with other objects, etc.) may be provided as well.


Similarly, by selecting the corresponding host address 523 or the severity level 524, the administrator may be provided with additional information directed to geographic location of the source of the suspect object corresponding to that exploit, addressing information directed to intermediary devices that received the suspect object, the particular network operations targeted by the exploit, or the like. Also, by selecting the software type 526, a listing of all software types detected to be vulnerable to the verified exploit (along with video/images of monitored anomalous behaviors denoting the presence of such exploit) may be accessed.


Referring now to FIG. 5B, an exemplary embodiment of a second user interface display screen 545 produced by the display logic of FIGS. 2A-2B that provides an interactive dashboard is shown. Herein, the display screen 545 comprises a plurality of areas 550, 570 and 580 that display results of IPS detection analysis over a selected time period.


As shown, similar to the first user interface display screen 500, first area 550 of the second user interface display screen 545 displays a plurality of entries 5601-560S (S≧1, S=4 for this embodiment) that provides information directed to verified exploits. Each of the entries (e.g., 5601) rendered by the display logic comprises: (1) a name 561 of the verified exploit (suspect object verified to be an exploit); (2) a signature 562 that initially identified the suspect object as having characteristics indicative of an exploit; (3) addressing information 563 (e.g., Internet Protocol “IP” address, Media Access Control “MAC” address, etc.) for a source device providing the detected exploit; (4) a level of severity 564 (e.g., high, medium, low) of the detected exploit that corresponds, at least in part, to the threat score; (5) a time 565 during which the exploit analysis process was conducted; and/or (6) name and/or version number 566 of software detected to be vulnerable to the detected exploit.


As shown, a second area 570 may be provided, which comprises an image corresponding to each entry that is associated with the verified exploits, as described above. As illustrated in FIG. 5B, image 535 is displayed with information associated with a corresponding verified exploit named “HTTP Exploit_ID1.” Similar images are illustrated as highlighted verified exploit information for verified exploits named “HTTP Exploit_ID2,” “Java Exploit_ID1,” and “HTML Exploit_ID1.”


A third area 580 illustrates exploit information associated with non-verified exploits named “Java Exploit_ID2”, “RPC Exploit_ID1” for example.


II. ALTERNATIVE EMBODIMENT
IPS Logic & Secondary Analysis Logic with Virtual Execution Logic Verification

According to an alternative embodiment of the disclosure, the static analysis engine may be configured with a first static analysis logic (e.g., IPS logic) and a second static analysis logic (e.g., heuristic logic), which is configured to operate independently from the IPS logic and identifies whether characteristics of any of the incoming objects are indicative of an exploit. As described below, the first static analysis logic and the second static analysis logic may operate in parallel or in tandem.


In particular, as described above, the first static analysis logic (IPS logic) conducts at least exploit signature checks and/or vulnerability signature checks on the incoming objects to identify a first subset of objects having characteristics indicative of an exploit. The second static analysis logic (heuristic logic) may be configured to analyze the same or different objects, where such analysis may be in accordance with at least a set of rules and/or signatures different than those utilized by the first static analysis logic (IPS logic).


More specifically, according to this embodiment of the invention, upon identifying the suspect objects (first subset of objects), the first static analysis logic (IPS logic) provides suspect objects, perhaps each accompanied by or associated with a tag identifier (hereinafter referred to as “tag_ID1”), to the verification logic 150 of FIGS. 6A-6B. Tag_ID1 may be used to indicate to other logic that the suspect object originated from the first static analysis logic (IPS logic).


The second static analysis logic (heuristic logic) is configured to analyze the incoming objects to determine whether the presence, absence or modification of information within an object may denote potential malicious activity indicating that object may be an exploit. Such determination may involve the second static analysis logic (heuristic logic) conducting operations to determine whether certain portions of the object corresponds to one or more “malicious identifiers,” which may include, but are not limited or restricted to a particular source or destination address (e.g., URLs, IP addresses, MAC addresses, etc.) that is associated with known exploits; exploit patterns; or shell code patterns.


Additionally, with each suspect object, the heuristic logic may provide a tag identifier (tag_ID2) for use in locating corresponding heuristic-based results 640 associated with each suspect object 630. Hence, tag_ID2 may be further used to identify to other logic that this suspect object originated from the heuristic logic 620.


After either the first static analysis logic (IPS logic) or the second static analysis logic determine which of the incoming objects have characteristics indicative of an exploit, the suspect objects are provided to the virtual execution logic for more in-depth dynamic analysis using one or more virtual machines (VMs). Such dynamic analysis may include virtual execution of the content of the suspect objects with one or more configured VMs, as described above. The behaviors of the VM(s) are monitored for detection of anomalous or unexpected activity.


It is contemplated that the first static analysis logic (IPS logic) and the second static analysis logic (heuristic logic) may operate in parallel in which both of these logic units conduct the preliminary exploit detection analysis on the same suspect objects. More specifically, the second static analysis logic (heuristic logic) may conduct its analysis on an object extracted from the network traffic concurrently (i.e. at least partially overlapping in time) with the analysis of the same object by the IPS logic. This provides the TDP system with an ability to account for false negatives that signify a lack of detection of an exploit by the IPS logic. Also, such parallel analysis may be conducted in order to increase scrutiny of network traffic for objects originating from a certain geographic location prone to exploits, from a certain IP addresses that have been identified as a malicious source, or the like.


Of course, it is contemplated that the first static analysis logic (IPS logic) and second static analysis logic (heuristic logic) may operate in tandem in which an incoming object is capable of being processed by either the IPS logic or the heuristic logic within the embodiment. Control of the selection as to whether the static analysis is performed by the first static analysis logic (IPS logic) or the second static analysis logic (heuristic logic) may be assigned to additional control logic within the static analysis engine. Such control may be based on the type of object under analysis, source, traffic conditions, or the like.


A. General Communication Flow

Referring to FIG. 6A, an exemplary block diagram of an operational flow of threat detection and prevention within an electronic device 600 is shown. Herein, some or all of the incoming objects 110 associated with the monitored network traffic may be received by a first static analysis logic (e.g., IPS logic 120 of FIG. 1A), as described above. The IPS logic 120 is configured to perform at least exploit signature checks and/or vulnerability signature checks on some or all of the incoming objects 110.


Upon identifying that a first subset 610 of the incoming objects 110 are “suspicious” (e.g., one or more objects 110 match an exploit signature and/or vulnerability signature), the IPS logic 120 subsequently routes the first subset of suspect objects 610 to the verification logic 150 (e.g., virtual execution logic). Each of these objects may be accompanied by a tag identifier (tag_ID1) and provided to the verification logic 150.


Besides being used for subsequently locating the IPS-based results 140 associated with the suspect object (provided from the IPS logic 120 to the reporting logic 170), tag_ID1 may be used to additionally to identify to the verification logic 150 and/or reporting logic 170 that these suspect objects 610 are provided from the IPS logic 120. Such information may be useful for identifying exploit information associated with verified exploits originating from the IPS logic, where this exploit information may be highlighted even differently than exploit information associated with verified exploits originating from a second static analysis logic 620.


Operating in tandem or in parallel with IPS logic 120, the second static analysis logic 620 (e.g., heuristic logic) conducts another type of static analysis on some or all of the objects 110 to produce a subset of objects 630 having characteristics indicative of an exploit. Hence, when operating in parallel, heuristic logic 620 may receive the incoming objects 110, which are also being received and analyzed by IPS logic 120. When operating in tandem with the IPS logic 120, the heuristic logic 620 may receive some or all of the incoming objects 110, where the switching between receipt of specific incoming objects by either the IPS logic 120 or the heuristic logic 620 may be conducted by switching logic 645 via control signals 647 from scheduler 260 or some other logic within TDP system 2101, as shown in FIG. 6B.


The suspect objects 610 and/or 630 (collectively referred to as “suspect objects 635”), detected by the IPS logic 120 and/or heuristic logic 620, are routed to the verification logic 150. The verification logic 150 is adapted to verify whether any of the suspect objects is an exploit through virtual processing of the content within these objects 635. The VM-based results 650 of this analysis are output from the verification logic 150 for subsequent use by reporting logic 170 for display purposes, as described above.


More specifically, the first static analysis logic (e.g., IPS logic 120) conducts at least exploit signature checks and/or vulnerability signature checks to identify whether characteristics of any of the analyzed objects 110 are indicative of an exploit. If so, the IPS logic 120 forwards these suspect object(s) 610 to the verification logic 150.


Additionally, one or more heuristic checks may be conducted on some or all of objects 110, including various scanning operations conducted on portions of the objects to determine correspondence with one or more malicious identifiers, as described above. While the IPS logic 120 is adapted to identify objects in accordance with at least exploit signature checks and/or vulnerability signature checks, the heuristic checks are directed to a more expansive static analysis of some or all of objects 110, including the use of different types of signatures or other static analysis schemes.


After performing the heuristic check(s) by the heuristic logic 620, a second set of suspect objects 630 is provided to the verification logic 150. Again, the second set of objects 630 may be lesser (and potentially significantly less) in number than the incoming objects 110.


After virtual processing of content within each of the suspect objects 610 and/or 630, and thereafter verifying that particular objects are exploits (verified exploits), the verification logic 150 provides VM-based results 650 that may be modified, along with its corresponding IPS-based results 140, to generate a report 660 (e.g., one or more display screens, printed report, etc.). The report 660 is configured to visibly highlight exploit information associated with verified exploits. As an alternative, the report 660 may also be configured to visibly highlight exploit information associated with verified exploits from exploit information associated with non-verified exploits (suspect objects having characteristics of exploits that were not verified by the VMs).


B. General Architecture

Referring to FIG. 7A, an exemplary block diagram of a communication system 700 deploying a plurality of threat detection and prevention (TDP) systems 7101-710N (N>1, e.g., N=3) is shown. TDP system 7101 is identical to TDP system 2101 of FIG. 2A, except that static analysis engine 750 includes two different static analysis logic units. More specifically, as shown in FIGS. 7A and 7B, static analysis engine 750 may include one or more software modules that, when executed by one or more processors, performs multi-level static scanning on a particular object, namely both exploit and vulnerability signature checks by IPS logic 120 and heuristic checks by heuristic logic 620.


Operating in parallel or tandem with IPS logic 120, the heuristic logic 620 is configured to conduct one or more heuristic checks on objects under analysis. These heuristic checks may be considered more expansive in analysis than the exploit and/or vulnerability checks conducted by the IPS logic 120 as mentioned above.


Herein, based on the results of the heuristic checks conducted by heuristic logic 620, score determination logic 720 determines the probability (or level of confidence) that the characteristics of the analyzed object are indicative of an exploit. In other words, score determination logic 720 is configured to generate a value that classifies the threat level of the possible exploit characterized by each of the analyzed objects. For instance, if the heuristic checks detect one type of characteristic that suggests the object under analysis is an exploit, the object may be classified with a first threat level. The first threat level may be represented by a score (value) corresponding to the likelihood of the object being an exploit (e.g., score of 3 out of 10). However, if the heuristic checks detect multiple characteristics or another type of characteristic that more strongly suggests the object under analysis is an exploit, a higher score (e.g., score of 8 out of 10) may be assigned by score determination logic 720 to denote a higher probability of the detected presence of an exploit.


Thereafter, the objects and their corresponding scores may be routed from the static analysis engine 750 to the dynamic analysis engine 270 for use in further analysis to verify which of the suspect objects, if any, are exploits. Additionally or in the alternative, it is contemplated that the score may be provided to classification logic 785 for use in prioritization.


More specifically, after static scanning has completed, the object may be provided to the dynamic analysis engine 270 for in-depth dynamic analysis using virtual machines (VMs) 2751-275M (M≧1). Of course, if the characteristics of the object are not indicative of an exploit, the heuristic logic 620 may halt further analysis of content with the object.


In general, besides receiving VM-based results 160 from dynamic analysis engine 270, the classification logic 785 may be configured to receive assigned scores from static analysis engine 750. Classification logic 785 may be configured to mathematically combine the scores assigned to content associated with the suspect object (based on findings from static analysis engine 750 and dynamic analysis 270) to obtain an overall score that is assigned with the verified or non-verified exploit.


According to one embodiment of the disclosure, the overall score may be used, at least in part, to identify verified exploits from non-verified exploits. Also, the score may be used, at least in part, for highlighting operations such as assigning a display priority that may influence the display ordering as described above. However, it is contemplated that other parameters, combined with or separate from the score assigned to the exploit, may be used to classify exploits or influence display priority. For instance, the overall score along with other parameters, such as the presence of the tag_ID1 or tag_ID2 as part of exploit information included in the VM-based results, may influence the display ordering of that exploit.


Referring now to FIG. 7B, first TDP system 7101 may be coupled with the communication network 230 in line with client device 234. As similarly illustrated in FIG. 2B, first TDP system 7101 comprises an interface unit 295 that directs signaling on communication network 230 to static analysis engine 750 or classification logic 785, given that the dynamic analysis engine 270 is deployed in cloud computing services 240.


C. Display and Prioritization of Detected Exploits

Referring to FIGS. 8A-8B, an exemplary diagram of a flowchart illustrating a threat detection and prevention process, utilizing IPS logic and/or heuristic logic for static analysis, is shown, where the process generates a report that highlights information associated with suspected exploits detected by the IPS or heuristic logic and verified by the virtual execution environment. Herein, the IPS logic and the heuristic logic may operate in parallel or in tandem.


The IPS logic and heuristic logic may be configured to operate in parallel (or in tandem) based on factors that may warrant increased scrutiny in efforts to detect exploits. For instance, there is an increased amount of objects originating from a certain geographic location prone to exploits or from a certain IP address that has been identified as a malicious source. For parallel processing, operations associated with blocks 805-825 and 830-855 of FIG. 8A are conducted in parallel. For this discussion, however, the IPS logic and heuristic logic are operating in tandem. Also, for certain governmental agencies, its sensitivity to exploits and/or its history in experiencing exploits may warrant additional analysis.


Upon receipt of an object under analysis, as set forth in block 800, the TDP system conducts a determination as to whether the static analysis should be conducted by the first static analysis logic (IPS logic) and/or the second static analysis logic (heuristic logic). According to one embodiment, as a default, the IPS logic is selected.


When selected, the IPS logic conducts exploit signature checks and/or vulnerability signature checks to determine whether characteristics of the object under analysis are indicative of an exploit (block 805). Upon determining that the characteristics of the object under analysis are indicative of an exploit, information associated with the suspect object and/or exploit (IPS-based results) is stored for subsequent access (blocks 810 and 815).


Although not shown, when determining that the suspect object has characteristics of a suspected exploit, the IPS logic may be configured to block the object from proceeding to the targeted client device, although blocking may be delayed until completion of the VM-based analysis. This blocking functionality may be adjusted by the network administrator based on the severity/type of suspected exploit, number of occurrences of this type of exploit within a prescribed time period, or the like. Furthermore, prior to performing further exploit analysis, as an optional feature identified by dashed lines in FIG. 8A, tag_ID1 may accompany the suspect object when output from the IPS logic so that (1) the IPS-based results for the suspect object can be related to the subsequent VM-based results for that object and (2) the virtual execution logic and/or classification logic can identify that the suspect object originated from the IPS logic (block 820). Thereafter, the suspect object and/or tag_ID1 is provided to the dynamic analysis engine for subsequent analysis (block 825).


Additionally or in the alternative, a second static analysis may be performed to determine whether characteristics of the object under analysis are indicative of an exploit (block 830). This determination may involve one or more heuristic checks being conducted in efforts to determine if the (i) the object has a certain level of correlation with one or more malicious identifiers or (ii) presence, absence or modification of any content associated with the object identifies a potential exploit. During such analysis, a score may be assigned to identify the likelihood of this object being an exploit (block 835).


In the event that the suspect object is tagged for VM-based analysis, which may be determined if the assigned score is greater than or equal to a prescribed threshold score, information associated with the suspect object and/or the potential exploit including the score (hereinafter referred to as “heuristic-based results”) may be stored for subsequent access by classification logic (blocks 840 and 845). Thereafter, the suspect object, optionally with tag_ID2, is provided to the dynamic analysis engine for subsequent analysis (blocks 850 and 855).


Regardless whether the static analysis is conducted by the IPS logic or the heuristic logic, the suspect object may be further analyzed by conducting VM-based analysis on the content associated with the suspect object, where behaviors of the virtual processing of the content by one or more VMs produces VM-based results (blocks 860 and 865). If the VM-based analysis fails to detect any exploit within content of the suspect object, a score may be assigned to denote that no exploit is detected and the VM-based results may be stored (blocks 870 and 875).


However, when the dynamic analysis engine verifies (during virtual processing of the content within the suspect object) that the suspect object constitutes an exploit, this “verified” exploit is assigned a score representative of the likelihood and/or threat level for the detected exploit(s). More specifically, during subsequent analysis of the content within the suspect object by the virtual execution logic, upon determining that the suspect object is an exploit (e.g., a certain probability that content within the suspect object constitutes an exploit is determined), a score representative of the likelihood and/or threat level for the detected exploit is assigned.


Thereafter, according to one embodiment of the disclosure, the IPS-based results along with the VM-based results are obtained and some or all of the information from the IPS-based results and the VM-based results may be prominently displayed (highlighted) as illustrated in blocks 880 and 885 and further described above.


Thereafter, the (highlighted) verified exploit information is uploaded into the database for storage and now accessible by display logic for rendering (blocks 890 and 895).


In the foregoing description, the invention is described with reference to specific exemplary embodiments thereof. It will, however, be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the invention as set forth in the appended claims.

Claims
  • 1. A non-transitory computer readable storage medium having stored thereon instructions, the instructions being executable by one or more processors to perform operations including threat detection system, comprising: an intrusion protection system (IPS) logic identifying, with an intrusion protection system (IPS), a first plurality of objects as suspicious objects and outputting information associated with the suspicious objects;a virtual execution logic configured to receive the suspicious objects, with a virtual execution logic, and verify, with the virtual execution logic, whether any of the suspicious objects is an exploit, the virtual execution logic including at least one virtual machine configured to virtually process content within the suspicious objects and monitor for anomalous behaviors during the virtual processing that are indicative of exploits; andreporting logic to issue a report including the information associated with the suspicious objects from the IPS logic and results of the virtual processing of the content within the suspicious objects,wherein the reporting logic further comprises display generation logic to receive information associated with exploits detected from virtual processing of a first subset of suspicious objects and generate a display highlighting the information associated with the exploits detected from the first subset of suspicious objects by modifying the information associated with the exploits detected from the first subset of suspicious objects to appear differently than information associated with non-verified exploits associated with a second subset of suspicious objects different than the first subset of suspicious objects.
  • 2. The non-transitory computer readable storage medium of claim 1, wherein each of the first plurality of objects is a flow comprising a plurality of related packets that are either received, transmitted, or exchanged during a communication session.
  • 3. The non-transitory computer readable storage medium of claim 1, wherein the information associated with the suspicious objects comprises an identifier of an exploit associated with a first suspicious object of the suspicious objects.
  • 4. The non-transitory computer readable storage medium of claim 3, wherein the information associated with the suspicious objects comprises a recommended remediation technique for the exploit associated with the first suspicious object of the suspicious objects.
  • 5. The non-transitory computer readable storage medium of claim 1, wherein the information associated with the suspicious objects comprises a source address of an electronic device transmitting the network traffic.
  • 6. The non-transitory computer readable storage medium claim 1, wherein operations conducted by the virtual execution logic on at least one of the suspicious objects are conducted concurrently with operations conducted by the IPS logic on a second plurality of objects different than the first plurality of objects.
  • 7. The non-transitory computer readable storage medium of claim 1, wherein the display generation logic receives the information associated with exploits detected from virtual processing of the suspicious objects and generates the display highlighting the information associated with the exploits detected from virtual processing of the suspicious objects.
  • 8. The non-transitory computer readable storage medium of claim 1, wherein the virtual execution logic verifies the first subset of the suspicious objects as being exploits when the anomalous behaviors monitored during virtual processing of the suspicious objects are indicative of exploits while a remaining subset of the suspicious objects are not verified as being exploits.
  • 9. The non-transitory computer readable storage medium of claim 1, wherein the display generation logic receives information associated with exploits detected from virtual processing of the first subset of suspicious objects and generates the display highlighting the information associated with the exploits detected from the first subset of suspicious objects by displaying the information associated with the exploits detected from the first subset of suspicious objects at a particular location on a screen display different from a location for information associated with non-verified exploits associated with a second subset of suspicious objects different than the first subset of suspicious objects.
  • 10. The non-transitory computer readable storage medium of claim 1, wherein the modifying of the information associated with the exploits detected from the first subset of suspicious objects to appear differently from information associated with non-verified exploits associated with the second subset of suspicious objects comprises modifying at least one of a color, size or type of a font used to convey the information associated with the exploits detected from the first subset of suspicious objects to be different than a font used to convey information associated with non-verified exploits associated with the second subset of suspicious objects.
  • 11. The non-transitory computer readable storage medium of claim 1, wherein the IPS logic is communicatively coupled to and integrated within a digital device including the virtual execution logic.
  • 12. The non-transitory computer readable storage medium of claim 1, wherein the virtual execution logic further comprises a protocol sequence replayer for simulating transmission of the object to a destination electronic device.
  • 13. The non-transitory computer readable storage medium of claim 1, wherein the reporting logic to issue an alert to one or more security administrators to communicate urgency in handling one or more exploits detected by the IPS logic and verified by the virtual execution logic.
  • 14. An electronic device comprising: a processor; anda memory coupled to the processor, the memory including (1) an intrusion protection system (IPS) logic to detect characteristics of a plurality of objects being indicative of an exploit, the plurality of objects include at least a first object and a second object, (2) one or more virtual machines configured to (i) virtually process content within the first object, (ii) monitor for anomalous behaviors during the virtual processing that are indicative of exploits, and (iii) verify whether the first object is an exploit, and (3) reporting logic to issue a report that differentiates between information associated with a potential exploit that is detected by the IPS logic and verified through virtual processing by the one or more virtual machines and information associated with a potential exploit that is detected by the IPS logic without verification by the one or more virtual machines,wherein the reporting logic includes display generation logic that, when executed by the processor and upon receipt of information associated with exploits detected, generates a display highlighting the information associated with the potential exploit verified through virtual processing by the one or more virtual machines to appear differently than information associated with non-verified exploits associated with a second subset of suspicious objects different than the first subset of suspicious objects.
  • 15. The electronic device of claim 14, wherein first object is a flow comprising a plurality of related packets that are either received, or transmitted, or exchanged during a communication session.
  • 16. The electronic device of claim 14, wherein the IPS logic, when executed by the processor, performs an exploit signature check, the exploit signature check compares the first object to one or more exploit signatures, wherein the first object is determined to include characteristics indicative of an exploit upon matching an exploit signature of the one or more exploit signatures.
  • 17. The electronic device of claim 14, wherein the display generation logic, when executed by the processor and upon receipt of information associated with exploits detected from virtual processing content within the first object, generates the display highlighting the information associated with the potential exploit verified through virtual processing by the one or more virtual machines by displaying the information at a particular location on a screen display different from a location for information associated with the potential exploit that is detected by the IPS logic without verification by the one or more virtual machines.
  • 18. A computerized method comprising: receiving a first plurality of objects by intrusion protection system (IPS) logic;filtering the first plurality of objects by the IPS logic to identify a second plurality of objects as suspicious objects, the second plurality of objects being a subset of the first plurality of objects and being lesser or equal in number to the first plurality of objects;verifying, by a virtual execution logic, that a portion of the second plurality of objects are exploits, the virtual execution logic including at least one virtual machine configured to process content within the second plurality of objects and monitor for anomalous behaviors during the processing that are indicative of exploits; andgenerating a display that prioritizes information associated with the verified portion of the second plurality of objects over information associated with one or more remaining objects of the second plurality of objects that correspond to a non-verified portion of the second plurality of objects by highlighting the information associated with the verified portion of the second plurality of objects to appear differently than information associated with the non-verified portions of the second plurality of objects.
  • 19. The non-transitory computer readable storage medium of claim 1, wherein the highlighting includes altering an order of a listing of the suspicious objects.
  • 20. The non-transitory computer readable storage medium of claim 1, wherein the highlighting includes displaying the information associated with the exploits detected from the first subset of suspicious objects at a top of a listing of the suspicious objects.
  • 21. The non-transitory computer readable storage medium claim 1, wherein the highlighting includes modifying a font of a conveyance of the exploits detected from the first subset of suspicious objects.
  • 22. The non-transitory computer readable storage medium of claim 1, wherein the display is an interactive dashboard.
  • 23. The non-transitory computer readable storage medium of claim 1, wherein the generated display is displayed within a plurality of display windows.
  • 24. The non-transitory computer readable storage medium of claim 1, wherein the generated display is displayed on a plurality of screens.
  • 25. The electronic device of claim 14, wherein the highlighting includes altering an order of a listing of the suspicious objects.
  • 26. The electronic device of claim 14, wherein the highlighting includes displaying the information associated with the potential exploit verified through virtual processing at a top of a listing of the suspicious objects.
  • 27. The electronic device claim 14, wherein the highlighting includes modifying a font of a conveyance of the potential exploit verified through virtual processing.
  • 28. The electronic device of claim 14, wherein the display is an interactive dashboard.
  • 29. The electronic device of claim 14, wherein the generated display is displayed within a plurality of display windows.
  • 30. The electronic device of claim 14, wherein the generated display is displayed on a plurality of screens.
  • 31. The computerized method of claim 18, wherein the highlighting of the information associated with the verified portion of the second plurality of objects includes altering an order of a listing of the second plurality of objects.
  • 32. The computerized method of claim 18, wherein the highlighting of the information associated with the verified portion of the second plurality of objects includes displaying the information associated with the verified portion of the second plurality of objects at a top of a listing of the second plurality of objects.
  • 33. The computerized method of claim 18, wherein the highlighting of the information associated with the verified portion of the second plurality of objects includes modifying a font of a conveyance of the information associated with the verified portion of the second plurality of objects at a top of a listing of the second plurality of objects.
  • 34. The computerized method of claim 18, wherein the display is an interactive dashboard.
  • 35. The computerized method of claim 18, wherein the generated display is displayed within a plurality of display windows.
  • 36. The computerized method of claim 18, wherein the generated display is displayed on a plurality of screens.
  • 37. The non-transitory computer readable storage medium of claim 1, wherein the highlighting includes placing one or more images proximate to information associated with an exploit of the exploits detected from the first subset of suspicious objects.
  • 38. The non-transitory computer readable storage medium of claim 23, wherein the information associated with the exploits detected from the first subset of suspicious objects is displayed on a first display window of the plurality of display windows and the information associated with the non-verified exploits associated with the second subset of suspicious objects is displayed on a second display window of the plurality of display windows.
  • 39. The non-transitory computer readable storage medium of claim 24, wherein the information associated with the exploits detected from the first subset of suspicious objects is displayed on a first display screen of the plurality of display screens and the information associated with the non-verified exploits associated with the second subset of suspicious objects is displayed on a second display screen of the plurality of display screens.
  • 40. The electronic device of claim 14, wherein highlighting includes placing one or more images proximate to the information associated with the potential exploit.
  • 41. The electronic device of claim 31, wherein the information associated with the potential exploit is displayed on a first display window of the plurality of display windows and the information associated with the non-verified exploits is displayed on a second display window of the plurality of display windows.
  • 42. The electronic device of claim 30, wherein the information associated with the potential exploit is displayed on a first display screen of the plurality of display screens and the information associated with the non-verified exploits is displayed on a second display screen of the plurality of display screens.
  • 43. The computerized method of claim 18, wherein the highlighting of the information associated with the verified portion of the second plurality of objects includes placing one or more images proximate to the information associated with each object that is part of the verified portion of the second plurality of objects.
  • 44. The computerized method of claim 35, wherein the information associated with the verified portion of the second plurality of objects is displayed on a first display window of the plurality of display windows and the information associated with the non-verified portions of the second plurality of objects is displayed on a second display window of the plurality of display windows.
  • 45. The computerized method of claim 36, wherein the information associated with the verified portion of the second plurality of objects is displayed on a first display screen of the plurality of display screens and the information associated with the non-verified portions of the second plurality of screens is displayed on a second display screen of the plurality of display screens.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a divisional of U.S. patent application Ser. No. 14/228,073 filed Mar. 27, 2014, which claims the benefit of priority on U.S. Provisional Application No. 61/921,033, filed Dec. 26, 2013, the entire contents of both of which are incorporated by reference herein.

US Referenced Citations (515)
Number Name Date Kind
4292580 Ott et al. Sep 1981 A
5175732 Hendel et al. Dec 1992 A
5440723 Arnold et al. Aug 1995 A
5490249 Miller Feb 1996 A
5657473 Killean et al. Aug 1997 A
5842002 Schnurer et al. Nov 1998 A
5978917 Chi Nov 1999 A
6088803 Tso et al. Jul 2000 A
6094677 Capek et al. Jul 2000 A
6108799 Boulay et al. Aug 2000 A
6118382 Hibbs et al. Sep 2000 A
6269330 Cidon et al. Jul 2001 B1
6272641 Ji Aug 2001 B1
6279113 Vaidya Aug 2001 B1
6298445 Shostack et al. Oct 2001 B1
6357008 Nachenberg Mar 2002 B1
6417774 Hibbs et al. Jul 2002 B1
6424627 Sørhaug et al. Jul 2002 B1
6442696 Wray et al. Aug 2002 B1
6484315 Ziese Nov 2002 B1
6487666 Shanklin et al. Nov 2002 B1
6493756 O'Brien et al. Dec 2002 B1
6550012 Villa et al. Apr 2003 B1
6700497 Hibbs et al. Mar 2004 B2
6775657 Baker Aug 2004 B1
6831893 Ben Nun et al. Dec 2004 B1
6832367 Choi et al. Dec 2004 B1
6895550 Kanchirayappa et al. May 2005 B2
6898632 Gordy et al. May 2005 B2
6907396 Muttik et al. Jun 2005 B1
6941348 Petry et al. Sep 2005 B2
6971097 Wallman Nov 2005 B1
6981279 Arnold et al. Dec 2005 B1
6995665 Appelt et al. Feb 2006 B2
7007107 Ivchenko et al. Feb 2006 B1
7028179 Anderson et al. Apr 2006 B2
7043757 Hoefelmeyer et al. May 2006 B2
7069316 Gryaznov Jun 2006 B1
7080407 Zhao et al. Jul 2006 B1
7080408 Pak et al. Jul 2006 B1
7093002 Wolff et al. Aug 2006 B2
7093239 van der Made Aug 2006 B1
7096498 Judge Aug 2006 B2
7100201 Izatt Aug 2006 B2
7107617 Hursey et al. Sep 2006 B2
7159149 Spiegel et al. Jan 2007 B2
7191335 Maillard Mar 2007 B1
7213260 Judge May 2007 B2
7231667 Jordan Jun 2007 B2
7240364 Branscomb et al. Jul 2007 B1
7240368 Roesch et al. Jul 2007 B1
7243371 Kasper et al. Jul 2007 B1
7249175 Donaldson Jul 2007 B1
7287278 Liang Oct 2007 B2
7308716 Danford et al. Dec 2007 B2
7328453 Merkle, Jr. et al. Feb 2008 B2
7346486 Ivancic et al. Mar 2008 B2
7356736 Natvig Apr 2008 B2
7386888 Liang et al. Jun 2008 B2
7392542 Bucher Jun 2008 B2
7418729 Szor Aug 2008 B2
7428300 Drew et al. Sep 2008 B1
7437764 Sobel et al. Oct 2008 B1
7441272 Durham et al. Oct 2008 B2
7448084 Apap et al. Nov 2008 B1
7458098 Judge et al. Nov 2008 B2
7464404 Carpenter et al. Dec 2008 B2
7464407 Nakae et al. Dec 2008 B2
7467408 O'Toole, Jr. Dec 2008 B1
7478428 Thomlinson Jan 2009 B1
7480773 Reed Jan 2009 B1
7487543 Arnold et al. Feb 2009 B2
7496960 Chen et al. Feb 2009 B1
7496961 Zimmer et al. Feb 2009 B2
7519990 Xie Apr 2009 B1
7523493 Liang et al. Apr 2009 B2
7530104 Thrower et al. May 2009 B1
7540025 Tzadikario May 2009 B2
7565550 Liang et al. Jul 2009 B2
7568233 Szor et al. Jul 2009 B1
7584455 Ball Sep 2009 B2
7603715 Costa et al. Oct 2009 B2
7607171 Marsden et al. Oct 2009 B1
7639714 Stolfo et al. Dec 2009 B2
7644441 Schmid et al. Jan 2010 B2
7657419 van der Made Feb 2010 B2
7676841 Sobchuk et al. Mar 2010 B2
7698548 Shelest et al. Apr 2010 B2
7707633 Danford et al. Apr 2010 B2
7712136 Sprosts et al. May 2010 B2
7730011 Deninger et al. Jun 2010 B1
7739740 Nachenberg et al. Jun 2010 B1
7779463 Stolfo et al. Aug 2010 B2
7784097 Stolfo et al. Aug 2010 B1
7832008 Kraemer Nov 2010 B1
7836502 Zhao et al. Nov 2010 B1
7849506 Dansey et al. Dec 2010 B1
7854007 Sprosts et al. Dec 2010 B2
7869073 Oshima Jan 2011 B2
7877803 Enstone et al. Jan 2011 B2
7904959 Sidiroglou et al. Mar 2011 B2
7908660 Bahl Mar 2011 B2
7930738 Petersen Apr 2011 B1
7937761 Bennett May 2011 B1
7949849 Lowe et al. May 2011 B2
7996556 Raghavan et al. Aug 2011 B2
7996836 McCorkendale et al. Aug 2011 B1
7996904 Chiueh et al. Aug 2011 B1
7996905 Arnold et al. Aug 2011 B2
8006305 Aziz Aug 2011 B2
8010667 Zhang et al. Aug 2011 B2
8020206 Hubbard et al. Sep 2011 B2
8028338 Schneider et al. Sep 2011 B1
8042184 Batenin Oct 2011 B1
8045094 Teragawa Oct 2011 B2
8045458 Alperovitch et al. Oct 2011 B2
8069484 McMillan et al. Nov 2011 B2
8087086 Lai et al. Dec 2011 B1
8171553 Aziz et al. May 2012 B2
8176049 Deninger et al. May 2012 B2
8176480 Spertus May 2012 B1
8201246 Wu et al. Jun 2012 B1
8204984 Aziz et al. Jun 2012 B1
8214905 Doukhvalov et al. Jul 2012 B1
8220055 Kennedy Jul 2012 B1
8225288 Miller et al. Jul 2012 B2
8225373 Kraemer Jul 2012 B2
8233882 Rogel Jul 2012 B2
8234640 Fitzgerald et al. Jul 2012 B1
8234709 Viljoen et al. Jul 2012 B2
8239944 Nachenberg et al. Aug 2012 B1
8260914 Ranjan Sep 2012 B1
8266091 Gubin et al. Sep 2012 B1
8286251 Eker et al. Oct 2012 B2
8291499 Aziz et al. Oct 2012 B2
8307435 Mann et al. Nov 2012 B1
8307443 Wang et al. Nov 2012 B2
8312545 Tuvell et al. Nov 2012 B2
8321936 Green et al. Nov 2012 B1
8321941 Tuvell et al. Nov 2012 B2
8332571 Edwards, Sr. Dec 2012 B1
8365286 Poston Jan 2013 B2
8365297 Parshin et al. Jan 2013 B1
8370938 Daswani et al. Feb 2013 B1
8370939 Zaitsev et al. Feb 2013 B2
8375444 Aziz et al. Feb 2013 B2
8381299 Stolfo et al. Feb 2013 B2
8402529 Green et al. Mar 2013 B1
8464340 Ahn et al. Jun 2013 B2
8479174 Chiriac Jul 2013 B2
8479276 Vaystikh et al. Jul 2013 B1
8479291 Bodke Jul 2013 B1
8510827 Leake et al. Aug 2013 B1
8510828 Guo et al. Aug 2013 B1
8510842 Amit et al. Aug 2013 B2
8516478 Edwards et al. Aug 2013 B1
8516590 Ranadive et al. Aug 2013 B1
8516593 Aziz Aug 2013 B2
8522348 Chen et al. Aug 2013 B2
8528086 Aziz Sep 2013 B1
8533824 Hutton et al. Sep 2013 B2
8539582 Aziz et al. Sep 2013 B1
8549638 Aziz Oct 2013 B2
8555391 Demir et al. Oct 2013 B1
8561177 Aziz et al. Oct 2013 B1
8566946 Aziz et al. Oct 2013 B1
8584094 Dadhia et al. Nov 2013 B2
8584234 Sobel et al. Nov 2013 B1
8584239 Aziz et al. Nov 2013 B2
8595834 Xie et al. Nov 2013 B2
8627476 Satish et al. Jan 2014 B1
8635696 Aziz Jan 2014 B1
8682054 Xue et al. Mar 2014 B2
8682812 Ranjan Mar 2014 B1
8689333 Aziz Apr 2014 B2
8695096 Zhang Apr 2014 B1
8713631 Pavlyushchik Apr 2014 B1
8713681 Silberman et al. Apr 2014 B2
8726392 McCorkendale et al. May 2014 B1
8739280 Chess et al. May 2014 B2
8776229 Aziz Jul 2014 B1
8782792 Bodke Jul 2014 B1
8789172 Stolfo et al. Jul 2014 B2
8789178 Kejriwal et al. Jul 2014 B2
8793787 Ismael et al. Jul 2014 B2
8805947 Kuzkin et al. Aug 2014 B1
8806647 Daswani et al. Aug 2014 B1
8832829 Manni et al. Sep 2014 B2
8850570 Ramzan Sep 2014 B1
8850571 Staniford et al. Sep 2014 B2
8881234 Narasimhan et al. Nov 2014 B2
8881282 Aziz et al. Nov 2014 B1
8898788 Aziz et al. Nov 2014 B1
8935779 Manni et al. Jan 2015 B2
8984638 Aziz et al. Mar 2015 B1
8990939 Staniford et al. Mar 2015 B2
8990944 Singh et al. Mar 2015 B1
8997219 Staniford et al. Mar 2015 B2
9009822 Ismael et al. Apr 2015 B1
9009823 Ismael et al. Apr 2015 B1
9027135 Aziz May 2015 B1
9071638 Aziz et al. Jun 2015 B1
9104867 Thioux et al. Aug 2015 B1
9106694 Aziz et al. Aug 2015 B2
9118715 Staniford et al. Aug 2015 B2
20010005889 Albrecht Jun 2001 A1
20010047326 Broadbent et al. Nov 2001 A1
20020018903 Kokubo et al. Feb 2002 A1
20020038430 Edwards et al. Mar 2002 A1
20020091819 Melchione et al. Jul 2002 A1
20020095607 Lin-Hendel Jul 2002 A1
20020116627 Tarbotton et al. Aug 2002 A1
20020144156 Copeland Oct 2002 A1
20020162015 Tang Oct 2002 A1
20020166063 Lachman et al. Nov 2002 A1
20020169952 DiSanto et al. Nov 2002 A1
20020184528 Shevenell et al. Dec 2002 A1
20020188887 Largman et al. Dec 2002 A1
20020194490 Halperin et al. Dec 2002 A1
20030074578 Ford et al. Apr 2003 A1
20030084318 Schertz May 2003 A1
20030101381 Mateev et al. May 2003 A1
20030115483 Liang Jun 2003 A1
20030188190 Aaron et al. Oct 2003 A1
20030191957 Hypponen et al. Oct 2003 A1
20030200460 Morota et al. Oct 2003 A1
20030210789 Farnham Nov 2003 A1
20030212902 van der Made Nov 2003 A1
20030229801 Kouznetsov et al. Dec 2003 A1
20030237000 Denton et al. Dec 2003 A1
20040003323 Bennett et al. Jan 2004 A1
20040015712 Szor Jan 2004 A1
20040019832 Arnold et al. Jan 2004 A1
20040047356 Bauer Mar 2004 A1
20040083408 Spiegel et al. Apr 2004 A1
20040088581 Brawn et al. May 2004 A1
20040093513 Cantrell et al. May 2004 A1
20040111531 Staniford et al. Jun 2004 A1
20040117478 Triulzi et al. Jun 2004 A1
20040117624 Brandt et al. Jun 2004 A1
20040128355 Chao et al. Jul 2004 A1
20040165588 Pandya Aug 2004 A1
20040236963 Danford et al. Nov 2004 A1
20040243349 Greifeneder et al. Dec 2004 A1
20040249911 Alkhatib et al. Dec 2004 A1
20040255161 Cavanaugh Dec 2004 A1
20040268147 Wiederin et al. Dec 2004 A1
20050005159 Oliphant Jan 2005 A1
20050021740 Bar et al. Jan 2005 A1
20050033960 Vialen et al. Feb 2005 A1
20050033989 Poletto et al. Feb 2005 A1
20050050148 Mohammadioun et al. Mar 2005 A1
20050086523 Zimmer et al. Apr 2005 A1
20050091513 Mitomo et al. Apr 2005 A1
20050091533 Omote et al. Apr 2005 A1
20050091652 Ross et al. Apr 2005 A1
20050108562 Khazan et al. May 2005 A1
20050114663 Cornell et al. May 2005 A1
20050125195 Brendel Jun 2005 A1
20050149726 Joshi et al. Jul 2005 A1
20050157662 Bingham et al. Jul 2005 A1
20050183143 Anderholm et al. Aug 2005 A1
20050201297 Peikari Sep 2005 A1
20050210533 Copeland et al. Sep 2005 A1
20050238005 Chen et al. Oct 2005 A1
20050240781 Gassoway Oct 2005 A1
20050262562 Gassoway Nov 2005 A1
20050265331 Stolfo Dec 2005 A1
20050273856 Huddleston Dec 2005 A1
20050283839 Cowburn Dec 2005 A1
20060010324 Appenzeller Jan 2006 A1
20060010495 Cohen et al. Jan 2006 A1
20060015416 Hoffman et al. Jan 2006 A1
20060015715 Anderson Jan 2006 A1
20060015747 Van de Ven Jan 2006 A1
20060021029 Brickell et al. Jan 2006 A1
20060021054 Costa et al. Jan 2006 A1
20060031476 Mathes et al. Feb 2006 A1
20060047665 Neil Mar 2006 A1
20060056632 Kudelski Mar 2006 A1
20060070130 Costea et al. Mar 2006 A1
20060075496 Carpenter et al. Apr 2006 A1
20060095968 Portolani et al. May 2006 A1
20060101516 Sudaharan et al. May 2006 A1
20060101517 Banzhof et al. May 2006 A1
20060117385 Mester et al. Jun 2006 A1
20060123477 Raghavan et al. Jun 2006 A1
20060143709 Brooks et al. Jun 2006 A1
20060150249 Gassen et al. Jul 2006 A1
20060161983 Cothrell et al. Jul 2006 A1
20060161987 Levy-Yurista Jul 2006 A1
20060161989 Reshef et al. Jul 2006 A1
20060164199 Gilde et al. Jul 2006 A1
20060173992 Weber et al. Aug 2006 A1
20060179147 Tran et al. Aug 2006 A1
20060184632 Marino et al. Aug 2006 A1
20060191010 Benjamin Aug 2006 A1
20060221956 Narayan et al. Oct 2006 A1
20060236393 Kramer et al. Oct 2006 A1
20060242709 Seinfeld et al. Oct 2006 A1
20060248519 Jaeger et al. Nov 2006 A1
20060248582 Panjwani et al. Nov 2006 A1
20060251104 Koga Nov 2006 A1
20060288417 Bookbinder et al. Dec 2006 A1
20070006288 Mayfield et al. Jan 2007 A1
20070006313 Porras et al. Jan 2007 A1
20070011174 Takaragi et al. Jan 2007 A1
20070016951 Piccard et al. Jan 2007 A1
20070033645 Jones Feb 2007 A1
20070038943 FitzGerald et al. Feb 2007 A1
20070064689 Shin et al. Mar 2007 A1
20070074169 Chess et al. Mar 2007 A1
20070094730 Bhikkaji et al. Apr 2007 A1
20070101435 Konanka et al. May 2007 A1
20070128855 Cho et al. Jun 2007 A1
20070142030 Sinha et al. Jun 2007 A1
20070143827 Nicodemus et al. Jun 2007 A1
20070156895 Vuong Jul 2007 A1
20070157180 Tillmann et al. Jul 2007 A1
20070157306 Elrod et al. Jul 2007 A1
20070168988 Eisner et al. Jul 2007 A1
20070171824 Ruello et al. Jul 2007 A1
20070174915 Gribble et al. Jul 2007 A1
20070192500 Lum Aug 2007 A1
20070192858 Lum Aug 2007 A1
20070198275 Malden et al. Aug 2007 A1
20070208822 Wang et al. Sep 2007 A1
20070220607 Sprosts et al. Sep 2007 A1
20070240218 Tuvell et al. Oct 2007 A1
20070240219 Tuvell et al. Oct 2007 A1
20070240220 Tuvell et al. Oct 2007 A1
20070240222 Tuvell et al. Oct 2007 A1
20070250930 Aziz et al. Oct 2007 A1
20070256132 Oliphant Nov 2007 A2
20070271446 Nakamura Nov 2007 A1
20080005782 Aziz Jan 2008 A1
20080028436 Hannel Jan 2008 A1
20080028463 Dagon et al. Jan 2008 A1
20080032556 Schreier Feb 2008 A1
20080040710 Chiriac Feb 2008 A1
20080046781 Childs et al. Feb 2008 A1
20080066179 Liu Mar 2008 A1
20080072326 Danford et al. Mar 2008 A1
20080077793 Tan et al. Mar 2008 A1
20080080518 Hoeflin et al. Apr 2008 A1
20080086720 Lekel Apr 2008 A1
20080098476 Syversen Apr 2008 A1
20080120722 Sima et al. May 2008 A1
20080134178 Fitzgerald et al. Jun 2008 A1
20080134334 Kim et al. Jun 2008 A1
20080141376 Clausen et al. Jun 2008 A1
20080184373 Traut et al. Jul 2008 A1
20080189787 Arnold et al. Aug 2008 A1
20080201778 Guo et al. Aug 2008 A1
20080209557 Herley et al. Aug 2008 A1
20080215742 Goldszmidt et al. Sep 2008 A1
20080222729 Chen et al. Sep 2008 A1
20080263665 Ma et al. Oct 2008 A1
20080295172 Bohacek Nov 2008 A1
20080301810 Lehane et al. Dec 2008 A1
20080307524 Singh et al. Dec 2008 A1
20080313738 Enderby Dec 2008 A1
20080320594 Jiang Dec 2008 A1
20090003317 Kasralikar et al. Jan 2009 A1
20090007100 Field et al. Jan 2009 A1
20090013408 Schipka Jan 2009 A1
20090031423 Liu et al. Jan 2009 A1
20090036111 Danford et al. Feb 2009 A1
20090037835 Goldman Feb 2009 A1
20090044024 Oberheide et al. Feb 2009 A1
20090044274 Budko et al. Feb 2009 A1
20090064332 Porras et al. Mar 2009 A1
20090077666 Chen et al. Mar 2009 A1
20090083369 Marmor Mar 2009 A1
20090083855 Apap et al. Mar 2009 A1
20090089879 Wang et al. Apr 2009 A1
20090094697 Provos et al. Apr 2009 A1
20090113425 Ports et al. Apr 2009 A1
20090125976 Wassermann et al. May 2009 A1
20090126015 Monastyrsky et al. May 2009 A1
20090126016 Sobko et al. May 2009 A1
20090133125 Choi et al. May 2009 A1
20090144823 Lamastra et al. Jun 2009 A1
20090158430 Borders Jun 2009 A1
20090172815 Gu et al. Jul 2009 A1
20090187992 Poston Jul 2009 A1
20090193293 Stolfo et al. Jul 2009 A1
20090199296 Xie et al. Aug 2009 A1
20090228233 Anderson et al. Sep 2009 A1
20090241187 Troyansky Sep 2009 A1
20090241190 Todd et al. Sep 2009 A1
20090265692 Godefroid et al. Oct 2009 A1
20090271867 Zhang Oct 2009 A1
20090300415 Zhang et al. Dec 2009 A1
20090300761 Park et al. Dec 2009 A1
20090328185 Berg et al. Dec 2009 A1
20090328221 Blumfield et al. Dec 2009 A1
20100005146 Drako et al. Jan 2010 A1
20100011205 McKenna Jan 2010 A1
20100017546 Poo et al. Jan 2010 A1
20100031353 Thomas et al. Feb 2010 A1
20100037314 Perdisci et al. Feb 2010 A1
20100043073 Kuwamura Feb 2010 A1
20100054278 Stolfo et al. Mar 2010 A1
20100058474 Hicks Mar 2010 A1
20100064044 Nonoyama Mar 2010 A1
20100077481 Polyakov et al. Mar 2010 A1
20100083376 Pereira et al. Apr 2010 A1
20100115621 Staniford et al. May 2010 A1
20100132038 Zaitsev May 2010 A1
20100154056 Smith et al. Jun 2010 A1
20100180344 Malyshev et al. Jul 2010 A1
20100192223 Ismael et al. Jul 2010 A1
20100220863 Dupaquis et al. Sep 2010 A1
20100235831 Dittmer Sep 2010 A1
20100251104 Massand Sep 2010 A1
20100281102 Chinta et al. Nov 2010 A1
20100281541 Stolfo et al. Nov 2010 A1
20100281542 Stolfo et al. Nov 2010 A1
20100287260 Peterson et al. Nov 2010 A1
20100287613 Singh et al. Nov 2010 A1
20100299754 Amit et al. Nov 2010 A1
20100306173 Frank Dec 2010 A1
20110004737 Greenebaum Jan 2011 A1
20110025504 Lyon et al. Feb 2011 A1
20110041179 St hlberg Feb 2011 A1
20110047594 Mahaffey et al. Feb 2011 A1
20110047620 Mahaffey et al. Feb 2011 A1
20110055907 Narasimhan et al. Mar 2011 A1
20110078794 Manni et al. Mar 2011 A1
20110093951 Aziz Apr 2011 A1
20110099620 Stavrou et al. Apr 2011 A1
20110099633 Aziz Apr 2011 A1
20110113231 Kaminsky May 2011 A1
20110145918 Jung et al. Jun 2011 A1
20110145920 Mahaffey et al. Jun 2011 A1
20110145934 Abramovici et al. Jun 2011 A1
20110167493 Song et al. Jul 2011 A1
20110167494 Bowen et al. Jul 2011 A1
20110173460 Ito et al. Jul 2011 A1
20110219449 St. Neitzel et al. Sep 2011 A1
20110219450 McDougal et al. Sep 2011 A1
20110225624 Sawhney et al. Sep 2011 A1
20110225655 Niemela et al. Sep 2011 A1
20110247072 Staniford et al. Oct 2011 A1
20110265182 Peinado et al. Oct 2011 A1
20110289582 Kejriwal et al. Nov 2011 A1
20110302587 Nishikawa et al. Dec 2011 A1
20110307954 Melnik et al. Dec 2011 A1
20110307955 Kaplan et al. Dec 2011 A1
20110307956 Yermakov et al. Dec 2011 A1
20110314546 Aziz et al. Dec 2011 A1
20110321166 Capalik et al. Dec 2011 A1
20120023593 Puder et al. Jan 2012 A1
20120054869 Yen et al. Mar 2012 A1
20120066698 Yanoo Mar 2012 A1
20120079596 Thomas et al. Mar 2012 A1
20120084859 Radinsky et al. Apr 2012 A1
20120110667 Zubrilin et al. May 2012 A1
20120117652 Manni et al. May 2012 A1
20120121154 Xue et al. May 2012 A1
20120124426 Maybee et al. May 2012 A1
20120174186 Aziz et al. Jul 2012 A1
20120174196 Bhogavilli et al. Jul 2012 A1
20120174218 McCoy et al. Jul 2012 A1
20120198279 Schroeder Aug 2012 A1
20120210423 Friedrichs et al. Aug 2012 A1
20120222121 Staniford et al. Aug 2012 A1
20120255015 Sahita et al. Oct 2012 A1
20120255017 Sallam Oct 2012 A1
20120260342 Dube et al. Oct 2012 A1
20120266244 Green et al. Oct 2012 A1
20120278886 Luna Nov 2012 A1
20120278889 El-Moussa Nov 2012 A1
20120297489 Dequevy Nov 2012 A1
20120330801 McDougal et al. Dec 2012 A1
20130014259 Gribble et al. Jan 2013 A1
20130036472 Aziz Feb 2013 A1
20130047257 Aziz Feb 2013 A1
20130074185 McDougal et al. Mar 2013 A1
20130086684 Mohler Apr 2013 A1
20130097699 Balupari et al. Apr 2013 A1
20130097706 Titonis et al. Apr 2013 A1
20130111587 Goel et al. May 2013 A1
20130117852 Stute May 2013 A1
20130117855 Kim et al. May 2013 A1
20130139264 Brinkley et al. May 2013 A1
20130160125 Likhachev et al. Jun 2013 A1
20130160127 Jeong et al. Jun 2013 A1
20130160130 Mendelev et al. Jun 2013 A1
20130160131 Madou et al. Jun 2013 A1
20130167236 Sick Jun 2013 A1
20130174214 Duncan Jul 2013 A1
20130185789 Hagiwara et al. Jul 2013 A1
20130185795 Winn et al. Jul 2013 A1
20130185798 Saunders et al. Jul 2013 A1
20130191915 Antonakakis et al. Jul 2013 A1
20130196649 Paddon et al. Aug 2013 A1
20130227691 Aziz et al. Aug 2013 A1
20130246370 Bartram et al. Sep 2013 A1
20130263260 Mahaffey et al. Oct 2013 A1
20130291109 Staniford et al. Oct 2013 A1
20130298243 Kumar et al. Nov 2013 A1
20140053260 Gupta et al. Feb 2014 A1
20140053261 Gupta et al. Feb 2014 A1
20140068775 Ward et al. Mar 2014 A1
20140130158 Wang et al. May 2014 A1
20140137180 Lukacs et al. May 2014 A1
20140169762 Ryu Jun 2014 A1
20140173739 Ahuja et al. Jun 2014 A1
20140179360 Jackson et al. Jun 2014 A1
20140328204 Klotsche et al. Nov 2014 A1
20140337836 Ismael Nov 2014 A1
20140351935 Shao et al. Nov 2014 A1
20150096025 Ismael Apr 2015 A1
Foreign Referenced Citations (13)
Number Date Country
2106085 Sep 2009 EP
2439806 Jan 2008 GB
2490431 Oct 2012 GB
02006928 Jan 2002 WO
0206928 Jan 2002 WO
0223805 Mar 2002 WO
2007117636 Oct 2007 WO
2008041950 Apr 2008 WO
2011084431 Jul 2011 WO
2011112348 Sep 2011 WO
2012075336 Jun 2012 WO
2012145066 Oct 2012 WO
20131067505 May 2013 WO
Non-Patent Literature Citations (78)
Entry
Marchette, David J., “Computer Intrusion Detection and Network Monitoring: A Statistical Viewpoint”, (“Marchette”), (2001).
Margolis, P.E. , “Random House Webster's ‘Computer & Internet Dictionary 3rd Edition’”, ISBN 0375703519, (Dec. 1998).
Moore, D. , et al., “Internet Quarantine: Requirements for Containing Self-Propagating Code”, INFOCOM, vol. 3, (Mar. 30-Apr. 3, 2003), pp. 1901-1910.
Morales, Jose A., et al., ““Analyzing and exploiting network behaviors of malware.””, Security and Privacy in Communication Networks. Springer Berlin Heidelberg, 2010. 20-34.
Mori, Detecting Unknown Computer Viruses, 2004, Springer-Verlag Berlin Heidelberg.
Natvig, Kurt , “SANDBOXII: Internet”, Virus Bulletin Conference, (“Natvig”), (Sep. 2002).
NetBIOS Working Group. Protocol Standard for a NetBIOS Service on a TCP/UDP transport: Concepts and Methods. STD 19, RFC 1001, Mar. 1987.
Newsome, J. , et al., “Dynamic Taint Analysis for Automatic Detection, Analysis, and Signature Generation of Exploits on Commodity Software”, In Proceedings of the 12th Annual Network and Distributed System Security, Symposium (NDSS '05), (Feb. 2005).
Newsome, J. , et al., “Polygraph: Automatically Generating Signatures for Polymorphic Worms”, In Proceedings of the IEEE Symposium on Security and Privacy, (May 2005).
Nojiri, D. , et al., “Cooperation Response Strategies for Large Scale Attack Mitigation”, DARPA Information Survivability Conference and Exposition, vol. 1, (Apr. 22-24, 2003), pp. 293-302.
Oberheide et al., CloudAV.sub.—N-Version Antivirus in the Network Cloud, 17th USENIX Security Symposium USENIX Security '08 Jul. 28-Aug. 1, 2008 San Jose, CA.
PCT/US2014/072292 filed Dec. 23, 2014 International Search Report and Written Opinion dated Feb. 23, 2015.
Reiner Sailer, Enriquillo Valdez, Trent Jaeger, Roonald Perez, Leendert van Doom, John Linwood Griffin, Stefan Berger., sHype: Secure Hypervisor Appraoch to Trusted Virtualized Systems (Feb. 2, 2005) (“Sailer”).
Silicon Defense, “Worm Containment in the Internal Network”, (Mar. 2003), pp. 1-25.
Singh, S. , et al., “Automated Worm Fingerprinting”, Proceedings of the ACM/USENIX Symposium on Operating System Design and Implementation, San Francisco, California, (Dec. 2004).
Spitzner, Lance , “Honeypots: Tracking Hackers”, (“Spizner”), (Sep. 17, 2002).
The Sniffers's Guide to Raw Traffic available at: yuba.stanford.edu/.about.casado/pcap/section1.html, (Jan. 6, 2014).
Thomas H. Ptacek, and Timothy N. Newsham , “Insertion, Evasion, and Denial of Service: Eluding Network Intrusion Detection”, Secure Networks, (“Ptacek”), (Jan. 1998).
U.S. Pat. No. 8,171,553 filed Apr. 20, 2006, Inter Parties Review Decision dated Jul. 10, 2015.
U.S. Pat. No. 8,291,499 filed Mar. 16, 2012, Inter Parties Review Decision dated Jul. 10, 2015.
Venezia, Paul , “NetDetector Captures Intrusions”, InfoWorld Issue 27, (“Venezia”), (Jul. 14, 2003).
Wahid et al., Characterising the Evolution in Scanning Activity of Suspicious Hosts, Oct. 2009, Third International Conference on Network and System Security, pp. 344-350.
Whyte, et al., “DNS-Based Detection of Scanning Works in an Enterprise Network”, Proceedings of the 12th Annual Network and Distributed System Security Symposium, (Feb. 2005), 15 pages.
Williamson, Matthew M., “Throttling Viruses: Restricting Propagation to Defeat Malicious Mobile Code”, ACSAC Conference, Las Vegas, NV, USA, (Dec. 2002), pp. 1-9.
Yuhei Kawakoya et al: “Memory behavior-based automatic malware unpacking in stealth debugging environment”, Malicious and Unwanted Software (Malware), 2010 5th International Conference on, IEEE, Piscataway, NJ, USA, Oct. 19, 2010, pp. 39-46, XP031833827, ISBN:978-1-4244-8-9353-1.
Zhang et al., The Effects of Threading, Infection Time, and Multiple-Attacker Collaboration on Malware Propagation, Sep. 2009, IEEE 28th International Symposium on Reliable Distributed Systems, pp. 73-82.
“Network Security: NetDetector—Network Intrusion Forensic System (NIFS) Whitepaper”, (“NetDetector Whitepaper”), (2003).
“Packet”, Microsoft Computer Dictionary, Microsoft Press, (Mar. 2002), 1 page.
“When Virtual is Better Than Real”, IEEEXplore Digital Library, available at, http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumbe- r=990073, (Dec. 7, 2013).
Abdullah, et al., Visualizing Network Data for Intrusion Detection, 2005 IEEE Workshop on Information Assurance and Security, pp. 100-108.
Adetoye, Adedayo , et al., “Network Intrusion Detection & Response System”, (“Adetoye”), (Sep. 2003).
Adobe Systems Incorporated, “PDF 32000-1:2008, Document management—Portable document format—Part1:PDF 1.7”, First Edition, Jul. 1, 2008, 756 pages.
AltaVista Advanced Search Results. “attack vector identifier”. Http://www.altavista.com/web/results?Itag=ody&pg=aq&aqmode=aqa=Event+Orch- estrator . . . , (Accessed on Sep. 15, 2009).
AltaVista Advanced Search Results. “Event Orchestrator”. Http://www.altavista.com/web/results?Itag=ody&pg=aq&aqmode=aqa=Event+Orch- esrator . . . , (Accessed on Sep. 3, 2009).
Apostolopoulos, George; hassapis, Constantinos; “V-eM: A cluster of Virtual Machines for Robust, Detailed, and High-Performance Network Emulation”, 14th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems, Sep. 11-14, 2006, pp. 117-126.
Aura, Tuomas, “Scanning electronic documents for personally identifiable information”, Proceedings of the 5th ACM workshop on Privacy in electronic society. ACM, 2006.
Baecher, “The Nepenthes Platform: An Efficient Approach to collect Malware”, Springer-verlag Berlin Heidelberg, (2006), pp. 165-184.
Baldi, Mario; Risso, Fulvio; “A Framework for Rapid Development and Portable Execution of Packet-Handling Applications”, 5th IEEE International Symposium Processing and Information Technology, Dec. 21, 2005, pp. 233-238.
Bayer, et al., “Dynamic Analysis of Malicious Code”, J Comput Virol, Springer-Verlag, France., (2006), pp. 67-77.
Boubalos, Chris , “extracting syslog data out of raw pcap dumps, seclists.org, Honeypots mailing list archives”, available at http://seclists.org/honeypots/2003/q2/319 (“Boubalos”), (Jun. 5, 2003).
Chaudet, C. , et al., “Optimal Positioning of Active and Passive Monitoring Devices”, International Conference on Emerging Networking Experiments and Technologies, Proceedings of the 2005 ACM Conference on Emerging Network Experiment and Technology, CoNEXT '05, Toulousse, France, (Oct. 2005), pp. 71-82.
Cisco “Intrusion Prevention for the Cisco ASA 5500-x Series” Data Sheet (2012).
Cisco, Configuring the Catalyst Switched Port Analyzer (SPAN) (“Cisco”), (1992-2003).
Clark, John, Sylvian Leblanc,and Scott Knight. “Risks associated with usb hardware trojan devices used by insiders.” Systems Conference (SysCon), 2011 IEEE International. IEEE, 2011.
Cohen, M.I. , “PyFlag—An advanced network forensic framework”, Digital investigation 5, Elsevier, (2008), pp. S112-S120.
Costa, M. , et al., “Vigilante: End-to-End Containment of Internet Worms”, SOSP '05, Association for Computing Machinery, Inc., Brighton U.K., (Oct. 23-26, 2005).
Crandall, J.R. , et al., “Minos:Control Data Attack Prevention Orthogonal to Memory Model”, 37th International Symposium on Microarchitecture, Portland, Oregon, (Dec. 2004).
Deutsch, P. , “Zlib compressed data format specification version 3.3” RFC 1950, (1996).
Distler, “Malware Analysis: An Introduction”, SANS Institute InfoSec Reading Room, SANS Institute, (2007).
Dunlap, George W. , et al., “ReVirt: Enabling Intrusion Analysis through Virtual-Machine Logging and Replay”, Proceeding of the 5th Symposium on Operating Systems Design and Implementation, USENIX Association, (“Dunlap”), (Dec. 9, 2002).
Excerpt regarding First Printing Date for Merike Kaeo, Designing Network Security (“Kaeo”), (2005).
Filiol, Eric , et al., “Combinatorial Optimisation of Worm Propagation on an Unknown Network”, International Journal of Computer Science 2.2 (2007).
FireEye Malware Analysis & Exchange Network, Malware Protection System, FireEye Inc., 2010.
FireEye Malware Analysis, Modern Malware Forensics, FireEye Inc., 2010.
FireEye v.6.0 Security Target, pp. 1-35, Version 1.1, FireEye Inc., May 2011.
Gibler, Clint, et al. AndroidLeaks: automatically detecting potential privacy leaks in android applications on a large scale. Springer Berlin Heidelberg, 2012.
Goel, et al., Reconstructing System State for Intrusion Analysis, Apr. 2008 SIGOPS Operating Systems Review, vol. 42 Issue 3, pp. 21-28.
Gregg Keizer: “Microsoft's HoneyMonkeys Show Patching Windows Works”, Aug. 8, 2005, XP055143386, Retrieved from the Internet: URL:https://web.archive.org/web/20121022220617/http://www.informationweek- .com/microsofts-honeymonkeys-show-patching-wi/167600716 [retrieved on Sep. 29, 2014].
Heng Yin et al, Panorama: Capturing System-Wide Information Flow for Malware Detection and Analysis, Research Showcase @ CMU, Carnegie Mellon University, 2007.
Hjelmvik, Erik , “Passive Network Security Analysis with NetworkMiner”, (IN)Secure, Issue 18, (Oct. 2008), pp. 1-100.
Idika et al., A-Survey-of-Malware-Detection-Techniques, Feb. 2, 2007, Department of Computer Science, Purdue University.
IEEE Xplore Digital Library Sear Results for “detection of unknown computer worms”. Http//ieeexplore.ieee.org/searchresult.jsp?SortField=Score&SortOrder=desc- &ResultC . . . , (Accessed on Aug. 28, 2009).
Isohara, Takamasa, Keisuke Takemori, and Ayumu Kubota. “Kernel-based behavior analysis for android malware detection.” Computational intelligence and Security (CIS), 2011 Seventh International Conference on. IEEE, 2011.
Kaeo, Merike , “Designing Network Security”, (“Kaeo”), (Nov. 2003).
Kevin A Roundy et al: “Hybrid Analysis and Control of Malware”, Sep. 15, 2010, Recent Advances in Intrusion Detection, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 317-338, XP019150454 ISBN:978-3-642-15511-6.
Kim, H. , et al., “Autograph: Toward Automated, Distributed Worm Signature Detection”, Proceedings of the 13th Usenix Security Symposium (Security 2004), San Diego, (Aug. 2004), pp. 271-286.
Krasnyansky, Max , et al., Universal TUN/TAP driver, available at https://www.kernel.org/doc/Documentation/networking/tuntap.txt (2002) (“Krasnyansky”).
Kreibich, C. , et al., “Honeycomb-Creating Intrusion Detection Signatures Using Honeypots”, 2nd Workshop on Hot Topics in Networks (HotNets-11), Boston, USA, (2003).
Kristoff, J. , “Botnets, Detection and Mitigation: DNS-Based Techniques”, NU Security Day, (2005), 23 pages.
Leading Colleges Select FireEye to Stop Malware-Related Data Breaches, FireEye Inc., 2009.
Li et al., A VMM-Based System Call Interposition Framework for Program Monitoring, Dec. 2010, IEEE 16th International Conference on Parallel and Distributed Systems, pp. 706-711.
Liljenstam, Michael , et al., “Simulating Realistic Network Traffic for Worm Warning System Design and Testing”, Institute for Security Technology studies, Dartmouth College (“Liljenstam”), (Oct. 27, 2003).
Lindorfer, Martina, Clemens Kolbitsch, and Paolo Milani Comparetti. “Detecting environment-sensitive malware.” Recent Advances in Intrusion Detection. Springer Berlin Heidelberg, 2011.
Lok Kwong et al: “DroidScope: Seamlessly Reconstructing the OS and Dalvik Semantic Views for Dynamic Android Malware Analysis”, Aug. 10, 2012, XP055158513, Retrieved from the Internet: URL:https://www.usenix.org/system/files/conference/usenixsecurity12/sec12- -final107.pdf [retrieved on Dec. 15, 2014].
PCT/US2015/037245 filed Jun. 23, 2015 International Search Report and Written Opinion dated Sep. 17, 2015.
U.S. Appl. No. 14/228,073, filed Mar. 27, 2015 Non-Final Office Action dated Jun. 15, 2015.
U.S. Appl. No. 14/313,934, filed Jun. 24, 2014 Non-Final Office Action dated Sep. 30, 2015.
U.S. Appl. No. 14/228,073, filed Mar. 27, 2014 Final Office Action dated Nov. 13, 2015.
Provisional Applications (1)
Number Date Country
61921033 Dec 2013 US
Divisions (1)
Number Date Country
Parent 14228073 Mar 2014 US
Child 14620055 US