System, apparatus and method for conducting on-the-fly decryption of encrypted objects for malware detection

Abstract
A decryption scheme for recover of a decrypted object without a cryptographic key is described. First, logical operation(s) are conducted on data associated with a first data string expected at a first location within an object having the predetermined format and data within the encrypted object at the first location to recover data associated with a portion of a cryptographic key from the encrypted object. Thereafter, logical operation(s) are conducted on that data and a first portion of the encrypted object at a second location to produce a result. Responsive to the result including data associated with the plaintext version of the second data string, logical operation(s) are conducted on a second portion of the encrypted object and the data associated with the plaintext version of the second data string to recover data associated with the cryptographic key. Thereafter, the encrypted object may be decrypted using the cryptographic key.
Description
1. FIELD

Embodiments of the disclosure relate to the field of network security. More specifically, one embodiment of the disclosure relates to a system, apparatus and method for conducting on-the-fly decryption of encrypted objects for malware detection.


2. GENERAL BACKGROUND

Over the last decade, malicious software (malware) has become a pervasive problem for Internet users. In some situations, malware is an exploit, in the form of an executable program for example, which is embedded within downloadable content and designed to adversely influence or attack normal operations of a computer. Examples of different types of exploits may include bots, computer viruses, worms, Trojan horses, spyware, adware, or any other programming that operates within an electronic device (e.g. computer, tablet, smartphone, server, router, wearable technology, or other types of electronics with data processing capability) without permission by the user or an administrator.


For instance, exploits may be present in one or more files infected through any of a variety of attack vectors, where the files are part of network traffic. For instance, as an illustrative example, the file may have a Portable Executable (PE) file format where the exploit is activated upon execution (opening) of the file.


Currently, malware detection systems are deployed to extract content from plaintext files within network traffic and analyze such content for malware. However, given that there has been a significant increase in malware propagation through the use of encrypted files, especially files encrypted through use of an Exclusive OR (XOR) function, additional functionality is needed to conduct real-time malware analysis of these types of encrypted files.


It is noted that the conventional method for analyzing encrypted files for malware involves a computationally intensive, brute-force technique. More specifically, this “brute-force” technique is a rudimentary key detection scheme in which iterative decryption operations are conducted on an encrypted file using different key combinations in the hopes of recovering the plaintext version of the file. For instance, in order to recover plaintext from a file encrypted with a one-byte XOR key, this brute-force technique would undergo up to 256 (28) iterative decryption operations. However, in order to recover the plaintext from a file encrypted with a two-byte XOR key or a three-byte XOR key, this brute-force technique would need to undergo up to 65,536 (216) iterative decryption operations or over 16 million (224) iterative decryption operations, respectively.


Clearly, the current brute-force technique is unsuitable for real-time (on-the-fly) malware analysis.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the invention are illustrated by way of example and not by way of limitation in the figures of the accompanying drawings, in which like references indicate similar elements and in which:



FIG. 1A is a first exemplary block diagram of a communication system deploying a plurality of malware content detection (MCD) systems with framework for on-the-fly (real-time) decryption of encrypted objects for malware detection.



FIG. 1B is a second exemplary block diagram of a communication system deploying a plurality of MCD systems with framework for on-the-fly (real-time) decryption of encrypted objects for malware detection.



FIG. 2 is a detailed exemplary block diagram of logic associated with one of the MCD systems of FIG. 1A or 1B.



FIG. 3 is an illustrative embodiment of a particular object being a file having a Portable Executable (PE) file format.



FIG. 4 is an exemplary flowchart illustrating the first static scanning operations conducted on an encrypted object by logic within a MCD system of FIG. 1A or 1B.



FIGS. 5A-5G are exemplary block diagrams illustrating the first static scanning operations conducted on an encrypted object by logic within a MCD system of FIG. 1A or 1B.



FIG. 6 is an exemplary flowchart illustrating the first static scanning operations conducted on a first object with an embedded encrypted object.





DETAILED DESCRIPTION

Various embodiments of the disclosure relate to an electronic device having network connectivity, such as a malware content detection (MCD) system for example, where the electronic device comprises a static analysis engine that is configured to conduct on-the-fly (real-time) decryption of one or more encrypted objects within network traffic prior to subsequent virtual machine (VM) based analysis of the object for malware. For instance, the objects may be encrypted according to a Vigenére cipher and real-time decryption may be conducted and completed on information currently in transit over a network and prior to receipt of the information by the intended destination. Herein, “network traffic” may be information currently in transit over a network or stored information (e.g. received over the network).


More specifically, according to one embodiment of the disclosure, the static analysis engine within the MCD system may be configured to conduct a first static scanning operation, which involves conducting a first set of operations on an incoming object to (i) determine if the object is encrypted and (ii) verify that the encrypted object has a particular format type. This determination and verification may be accomplished by conducting one or more logical operations on portion(s) of the encrypted object at one or more prescribed address offsets (as stored in memory) and expected (known) data at that prescribed address offset if the object features the particular format.


According to one embodiment of the disclosure, where the object is a file, the particular format type may be a Portable Executable (PE) file format for example. Of course, the invention may be directed to a variety of object or format types, although the operations conducted to decrypt an encrypted file having a PE file format (hereinafter referred to as a “PE file”) are described herein for illustrative purposes. In general, the PE file has a data structure that encapsulates the information necessary for the Windows® operating system (OS) loader to manage the wrapped executable code. Noted file extensions for some types of PE files include the following: (i) .cpl; (ii) .exe; (iii) .dll; (iv) .ocx; (v) .sys; (vi) .scr; (vii) .drv; or (viii) .efi.


Upon verification that the encrypted object has the particular format type, the cryptographic key used for encrypting the encrypted object may be recovered. The cryptographic key may be recovered during the first set of operations as when the key is a single byte in length. Otherwise, the cryptographic key may be recovered and verified through a second set of operations involving further logical operation(s) between different portions of the encrypted object at prescribed address offsets and known (expected) data at such addresses in accordance with an object having the particular format type.


After recovery of the cryptographic key, the encrypted object may be decrypted to recover the object in plaintext. Based on availability of the plaintext object, the static analysis engine conducts a second static scanning operation to analyze whether content associated with the object includes malware. Such analysis is directed to analyzing information within the object itself and/or analyzing the format of the object to identify protocol deviations (e.g. changes to header information, etc.). Stated differently, the second static scanning operation may include heuristic checks.


More specifically, one type of heuristic check includes scanning operations conducted on content within the object to determine whether the presence, absence or modification of information may denote potential malicious activity and the presence of malware. Such scanning comprises rule-based data analysis. For example, where the object is an executable (.exe) file, the file may include a function call (e.g. “Connect( )”) and identify one or more parameters passed to that function such as a particular website (e.g. “www.XYZ.com”). A rule adapted to control network connectivity may identify the “Connect” pattern as a Hypertext Transfer Protocol (HTTP) request and passed parameters. Where the passed parameter is either (i) not a specific or recognized parameter or website or (ii) directed to a known malicious pattern, malicious activity is detected, namely there is a reasonable likelihood that the executable file is infected with malware.


Another type of heuristic check includes scanning operations conducted to determine whether any content within or associated with the recovered plaintext object includes information that is correlated to (or matches) one or more “malware identifiers”, which may include, but are not limited or restricted to exploit patterns, names of vulnerable functions that are known to be susceptible to exploits, and/or malicious patterns (e.g. shell code patterns, Return Oriented Programming “ROP” patterns, etc.).


After scanning operations conducted by the static analysis engine, the object may be provided to the dynamic analysis engine for more in-depth dynamic analysis using one or more virtual machines (VMs) for processing of the object in a more complete run-time environment in which content within the objects is virtually executed and its behavior is monitored for detection of anomalous or unexpected activity indicative of malware.


It is contemplated that embodiments of the invention are described for an object processed in accordance with a Windows®-based OS, such as a PE file for example, but the invention may be practiced for objects associated with any type of OS including, but not limited or restricted to a MAC® OS, Linux®, or any mobile OS (e.g. iOS™, Chrome™ OS, etc.).


I. Terminology

In the following description, certain terminology is used to describe features of the invention. For example, in certain situations, both terms “logic” and “engine” are representative of hardware, firmware and/or software that is configured to perform one or more functions. As hardware, logic (or engine) may include circuitry having data processing or storage functionality. Examples of such circuitry may include, but is not limited or restricted to a microprocessor, one or more processor cores, a programmable gate array, a microcontroller, an application specific integrated circuit, wireless receiver, transmitter and/or transceiver circuitry, semiconductor memory, or combinatorial logic.


Logic (or engine) may be software in the form of one or more software modules, such as executable code in the form of an executable application, an application programming interface (API), a subroutine, a function, a procedure, an applet, a servlet, a routine, source code, object code, a shared library/dynamic load library, or one or more instructions. These software modules may be stored in any type of a suitable non-transitory storage medium, or transitory storage medium (e.g., electrical, optical, acoustical or other form of propagated signals such as carrier waves, infrared signals, or digital signals). Examples of non-transitory storage medium may include, but are not limited or restricted to a programmable circuit; a semiconductor memory; non-persistent storage such as volatile memory (e.g., any type of random access memory “RAM”); persistent storage such as non-volatile memory (e.g., read-only memory “ROM”, power-backed RAM, flash memory, phase-change memory, etc.), a solid-state drive, hard disk drive, an optical disc drive, or a portable memory device. As firmware, the executable code is stored in persistent storage.


The term “object” generally refers to a collection of data associated with network traffic, namely information currently in transit over a network or stored information. One example of an object may include an executable file, non-executable file (e.g. dynamic link library “DLL”), or one or more messages. A “message” may be in the form of a packet, a frame, an Asynchronous Transfer Mode “ATM” cell, a data flow (e.g. a group of related messages), or any other series of bits having a prescribed format. For example, the object may be part of network traffic transmitted using a Hypertext Transfer Protocol (HTTP), Hypertext Markup Language (HTML) protocol, or may be transmitted in a manner suitable for display on a Web browser software application. It is noted that the object may be encrypted in accordance with a particular encryption scheme (e.g. an Exclusive OR “XOR” function).


As another illustrative example, the object may be an electronic mail (email) message transmitted using a particular protocol including, but not limited to an email protocol such as Simple Mail Transfer Protocol (SMTP), Post Office Protocol version 3 (POP3), or Internet Message Access Protocol (IMAP4). Furthermore, the object may be an Instant Message, which may be transmitted using Session Initiation Protocol (SIP) or Extensible Messaging and Presence Protocol (XMPP) for example, or even some form of unstructured data or structured data in a file format.


The term “malware” is directed to software that produces an undesired behavior upon execution, where the behavior is deemed to be “undesired” based on customer-specific rules, manufacturer-based rules, or any other type of rules formulated by public opinion or a particular governmental or commercial entity. This undesired behavior may include a communication-based anomaly or an execution-based anomaly that would (1) alter the functionality of an electronic device executing application software in a malicious manner; (2) alter the functionality of an electronic device executing that application software without any malicious intent; and/or (3) provide an unwanted functionality which may be generally acceptable in another context.


The term “transmission medium” is a communication path between two or more systems (e.g. any electronic devices with data processing functionality such as, for example, a security appliance, server, mainframe, computer, netbook, tablet, smart phone, router, switch, bridge, firewall, or brouter). The communication path may include wired and/or wireless segments. Examples of wired and/or wireless segments include electrical wiring, optical fiber, cable, bus trace, or a wireless channel using infrared, radio frequency (RF), or any other wired/wireless signaling mechanism.


The term “computerized” generally represents that any corresponding operations are conducted by hardware in combination with software and/or firmware. Also, the term “compare” generally means determining if a match or a certain level of correlation is achieved between two items where one of the items may include the content of a files or a particular identifier.


Lastly, the terms “or” and “and/or” as used herein are to be interpreted as inclusive or meaning any one or any combination. Therefore, “A, B or C” or “A, B and/or C” mean “any of the following: A; B; C; A and B; A and C; B and C; A, B and C.” An exception to this definition will occur only when a combination of elements, functions, steps or acts are in some way inherently mutually exclusive.


As this invention is susceptible to embodiments of many different forms, it is intended that the present disclosure is to be considered as an example of the principles of the invention and not intended to limit the invention to the specific embodiments shown and described.


II. General Architecture
First Embodiment

Referring to FIG. 1A, an exemplary block diagram of a communication system 100 deploying a plurality of malware content detection (MCD) systems 1101-110N (N>1, e.g. N=3) communicatively coupled to a management system 120 via a network 125 is shown. In general, management system 120 is adapted to manage MCD systems 1101-110N. For instance, management system 120 may be adapted to cause one or more malware identifiers, each of which being information representative of prior detected malware, to be shared among some or all of the MCD systems 1101-110N for use in heuristic checks. The malware identifiers may be in plaintext form or may be representative of encrypted data that has been determined to be associated with malware. Such sharing may be conducted automatically or manually uploaded by an administrator. Also, such sharing may be conducted freely among the MCD systems 1101-110N or subject to a subscription basis.


Herein, according to the embodiment illustrated in FIG. 1A, a first MCD system 1101 is an electronic device that is adapted to analyze information associated with network traffic routed over a communication network 130 between at least one server device 132 and at least one client device 134. The communication network 130 may include a public network such as the Internet, in which case an optional firewall 136 (represented by dashed lines) may be interposed prior to accessing client device 134. Alternatively, the communication network 130 may be a private network such as a wireless telecommunication network, wide area network, or local area network, or a combination of networks. While embodiments of the invention are described as being conducted on objects in transit (e.g, received over the communication network 130), other embodiments may include the invention being practiced on stored objects or an object provided as a specimen.


As shown in FIG. 1A, the first MCD system 1101 comprises a static analysis engine 150, a database 175, a scheduler 180, a storage device 185, a dynamic analysis engine 190 and a reporting module 195. In some embodiments, although not shown, a network interface may be contained within the first MCD system 1101. Also, static analysis engine 150, scheduler 180 and/or dynamic analysis engine 190 may be software modules executed by a processor that receives one or more objects and performs a multi-level static scan including encryption analysis on the object, which may involve accessing one or more non-transitory storage mediums operating as database 175, storage device 185 and/or reporting module 195. In some embodiments, the static analysis engine 150 may be one or more software modules at least partially forming a static framework, where such software modules are executed by a processor. The static analysis engine 150 and the dynamic analysis engine 190 may be one or more software modules executed by the same processor or different processors, where these different processors are possibly located at geographically remote locations, located within the same processor package (e.g. different processor cores) and/or communicatively coupled for example via a network.


In general, the static analysis engine 150 may be communicatively coupled to receive one or more objects associated with network traffic routed over communication network 130, such as an object that is part of a series of HTTP packets forming the network traffic for example. The static analysis engine 150 conducts a first static scanning operation on the object. The first static scanning operation comprises a first set of operations and a second set of operations.


The first set of operations is adapted to determine (1) whether the object is encrypted, notably with a Vigenére cipher and (2) whether the object has a particular format type. Based on determinations that the object having the particular format type is encrypted, the second set of operations is conducted to recover the cryptographic key associated with the encrypted object. The cryptographic key is used to recover a plaintext version of the object from the encrypted object.


More specifically, according to one embodiment of the disclosure, the static analysis engine 150 comprises extraction logic 160 that is configured to conduct a first static scanning operation on the object that is part of the network traffic to determine whether the object is encrypted, and if so, whether the encrypted object has a particular format type. In the event that the encrypted object has the particular format type, the extraction logic 160 determines the cryptographic key used for encryption of the object. Thereafter, decryption logic 165 within the static analysis engine 150 is configured to decrypt the encrypted object using the cryptographic key in order to recover the object in a plaintext format.


Thereafter, the heuristic logic 170 within the static analysis engine 150 conducts a second static scanning operation on the plaintext object. The second static operation is designed to potentially classify the object as “malicious,” depending on whether the object is determined to have at least one characteristic associated with malware. This classification scheme features heuristic checks that determine if content associated with the object has a certain level of correlation with one or more malware identifiers. The level of correlation (e.g., exact pattern match to matching a majority of the pattern) may be non-modifiable or may be adjustably set by an administrator. The classification may further feature analysis of the content to determine whether presence, absence or modification of any data denotes the presence of malware.


For instance, the heuristic logic 170 may classify the object according to a first threat level (e.g. “suspicious”—assigned a score less than or equal to a first threshold) when at least one characteristic identified during scanning operations conducted on the object indicates a certain level of probability that the object includes malware. Similarly, the heuristic logic 170 may classify an object with a second level (e.g. “malicious”—assigned a score greater than or equal to a second threshold that is greater than the first threshold) when at least one characteristic observed during scanning operations conducted on the object indicates a high level of probability that the object includes malware.


A. Exemplary First Static Scanning Operation


Exemplary operations of the static analysis engine 150 are described below. After receipt of an object, the extraction logic 160 of the static analysis engine 150 conducts a first static scanning operation on the object in order to determine whether the object is encrypted, and if so, whether the encrypted object has a particular format type. In particular, format detection logic 162 is configured to conduct the first set of operations that initially recover a partial key from the encrypted object. This “partial key” is a portion of the entire cryptographic key, where the partial key may be used to verify that the object has a particular format type. The particular format type may include any format where known data is placed at specific address locations for that object. For instance, as illustrated in FIG. 3 and described below, a PE file has known data (“MZ”, DOS Stub statement, PE offset, etc.) at specific memory address offsets.


As an illustrative example, a first segment of the encrypted object may undergo one or more logical operations with particular data (e.g., data string of alphanumeric characters “MZ” as used in the legacy DOS format) to produce the partial key. The logical operation(s) may correspond to an Exclusive OR (XOR) operation. Thereafter, a second segment of the encrypted object, namely encrypted data starting at a prescribed address, undergoes a logical operation (e.g. an XOR operation) with the partial key to produce a result.


For instance, according to one embodiment of the disclosure, the prescribed address may be a fixed offset (e.g. x004E) from the starting address (e.g. x0000) for the object. Where the object is in a Portable Executable (PE) file format, the second segment stored at the prescribed address is associated with a DOS Stub, namely a piece of legacy code still within Microsoft®-based files. If run on a Disk Operating System (DOS), the DOS Stub would display a statement being a data string such as “This program cannot be run in DOS.” It is noted that the fixed offset (x004E) may slightly vary based on compiler type and there are a few data (character) strings for different DOS Stub statements, all of which are known. Therefore, if the result does not match anticipated data (character) string for one type the DOS Stub statement, comparisons may be conducted for different known data (character) strings to confirm that the object is a file associated with a PE format.


Likewise, if a match is not detected, slight adjustments to the prescribed address may be conducted in order to confirm that the object was not compiled by a compiler using a different DOS Stub address. Moreover, these adjustments from the fixed offset (e.g. x004E) may be conducted so that analysis of encrypted data addressed for the DOS Stub statement starts at the beginning of an encryption cycle (e.g. remainder=(predefined offset % key length)=0, where “%” is a modular operator returning a remainder). For instance, for a four-byte key, the prescribed address may begin at x0050 (e.g., remainder=(prescribed address offset % key length); encryption cycle begins at prescribed address offset along with key length—remainder).


Based upon detection that the encrypted object is associated with the particular format type, such as the PE file format for example, key detection logic 164 conducts operations on portions of the encrypted object to recover and verify recovery of the key. According to one embodiment of the disclosure, the key detection logic 164 may conduct a first operation to recover the PE Header Offset, where the first operation may comprise an Exclusive OR (XOR) operation between the recovered key and a third segment of the encrypted object starting at a known address offset for the PE header offset. The recovered key simply may be part of the partial key, where the key is a single-byte key. Otherwise, the key includes the partial key and may be obtained through a key window, namely the result produced by conducting an XOR operation of the encrypted data starting at the prescribed address along with the anticipated DOS Stub statement. The key is determined as a repetitive string of alphanumeric characters within the result.


Thereafter, using the received PE Header Offset, a second operation is conducted to verify that the key is the decryption key for the object. The second operation may involve an XOR operation of (1) a few bytes of encrypted data associated with the PE header at the PE Header Offset address and (2) the key. If the result produces a specific character pattern (e.g. “PE00”), which identifies the start of the PE header, the key is verified. Thereafter, the key has been recovered and may be used by decryption logic 165 to decrypt the encrypted object to recover a plaintext version of the object.


B. Exemplary Second Static Scanning Operation


As described above, the heuristic logic 170 conducts a second static scanning operation to statically scan the content of the object for malware identifiers. In other words, the static analysis engine 150 performs a first static scan by comparing the contents of each object with malware and/or correlation between identifiers to determine an existence of malware which can be, but is not limited to exploit patterns, names of vulnerable functions, shell code patterns, heap spray patterns, etc.


If the comparison reveals a correlation between the contents of the object and one or more malware identifiers (hereinafter referred to as a “match”), which denotes a malicious event, the heuristic logic 170 may assign a score (e.g., an indicator of the likelihood of the analyzed file including malware) to the analyzed object. The heuristic checks applied by the heuristic logic 170 may be based on data and/or rules stored in the database 175. Also, the heuristic logic 170 may examine portions of an image of the object without executing or opening any content associated with the object.


As previously described, there are different degrees of maliciousness. Where there is a first level of likelihood of an object being infected with malware, the object may be classified with a lower “malicious” grade (sometimes referred to as “suspicious”), which may be represented by a score corresponding to the likelihood of malware being present in the object (e.g., score of 3 out of 10). Where there is a second level of likelihood of an object being infected with malware, the object may be classified with a higher “malicious” grade, normally represented by a higher score (e.g., score of 8 out of 10).


The assigning of a score may be performed, in some embodiments, by assigning a score to content under analysis that is associated with the object, and then mathematically combining the scores for different content to obtain an overall score for the object. Thereafter, the object and score may be routed from the static analysis engine 150 to the dynamic analysis engine 190 for use in further analysis to establish (where previously deemed as suspicious) or confirms (where previously deemed to be malicious) the presence of malware within the object.


If no malicious event is initially detected, the heuristic logic 170 may halt further analysis of the object, or based on the encrypted format of the object, forward the object to the dynamic analysis engine 190.


C. Exemplary Dynamic Scanning Operations


After static scanning, the object may be presented to the dynamic analysis engine 190 for more in-depth dynamic analysis using virtual machines (VMs) 1921-192M (M≧1) for processing of the file in a more complete run-time environment in which content within the objects is virtually executed.


The scheduler 180 may retrieve and configure the VMs 1921-192M to mimic the pertinent performance characteristics of the client device 134. In one example, the scheduler 180 may be adapted to configure the characteristics of a particular VM 1921 within virtual execution logic 191 to mimic only those features of the client device 134 that are affected by the data traffic provided by the network interface 138. The scheduler 180 may determine the features of the client device 134 that are affected by the content by receiving and analyzing the network traffic from the network interface 138. Such features of the client device 134 may include any hardware and/or software functionality that can be virtualized within the virtual execution logic 191 such as the following: (i) virtual ports that are configured to receive the content or may be used by applications running in a virtual environment to process the content for outbound communications, (ii) certain virtual device drivers that are to respond to the content or to applications that process the content, (iii) software applications on client device 132 or software that the object would need to process the content, and/or (iv) any other devices coupled to or software contained within the client device 134 that can respond to the content.


In another embodiment of the disclosure, the static analysis engine 150 may determine the features of the client device 134 that are affected by the network traffic by receiving and analyzing the content from the network interface 138. The static analysis engine 150 may then transmit the features of the client device to the scheduler 180 and/or dynamic analysis engine 190.


The dynamic analysis engine 190 is adapted to execute one or more VMs to simulate the receipt and/or execution of different potentially “malicious” content within an object under analysis (analyzed object) within a run-time environment as expected by the type of object, as noted above. The run-time environment may be one selected to mimic one that is prevalently provided by client devices, or, in alternative embodiments, one that can be provided by the client device 134 in particular, or an environment that is required for the object to be processed including software such as a web browser application or Microsoft® Word for objects constituting documents. Furthermore, the dynamic analysis engine 190 analyzes the effects of such content upon the run-time environment, such as the client device 134. Such effects may include unusual network transmissions, unusual changes in performance, and the like. This detection process is referred to as a dynamic malicious content detection.


The dynamic analysis engine 190 may flag the malicious content as malware according to the observed behavior of content and software executed within the VM. The reporting module 195 may issue alerts indicating the presence of malware, and using pointers and other reference information to identify what message(s) (e.g. packet(s)) may contain malware. Additionally, the server device 132 may be added to a list of malicious network content providers, and future network transmissions originating from the server device 132 may be blocked from reaching their intended destinations, e.g., by firewall 136.


Of course, in lieu of or in addition to static scanning operations being conducted by MCD systems 1101-110N, it is contemplated that cloud computing services 140 may be implemented to perform the first static scanning operation directed to identifying and decrypting encrypted objects, as described herein. In accordance with this embodiment, MCD system 1101 may be adapted to establish secured communications with cloud computing services 140 for exchanging information.


III. General Architecture
Second Embodiment

Referring now to FIG. 1B, first MCD system 1101 may be coupled with the communication network 130 via a network interface 138. The network interface 138 operates as a data capturing device (referred to as a “tap” or “network tap”) that is configured to receive data traffic propagating to/from the client device 134 and provide content from the data traffic to the first MCD system 1101. Alternatively, as shown in FIG. 1A, the first MCD system 1101 is shown as being coupled with the communication network 130 (behind the firewall 136) and in line with client device 134.


In general, the network interface 138 of FIG. 1B receives and duplicates objects associated with network traffic that are received from and provided to client device 134 normally without an appreciable decline in performance by the server device 140, the client device 134, or the communication network 130. The network interface 138 may duplicate any portion of the content, for example, one or more files that are part of a data flow or part of the payload contained within certain data packets, or the like.


In some embodiments, the network interface 138 may capture metadata from network traffic intended for client device 134. This metadata may be used, at least in part, to determine prescribed addressing offsets used for decryption operations. For instance, the metadata may include information to identify a selected compiler for the object.


It is contemplated that, for any embodiments where the first MCD system 1101 is implemented as a dedicated appliance or a dedicated computer system, the network interface 138 may include an assembly integrated into the appliance or computer system that includes network ports, network interface card and related logic (not shown) for connecting to the communication network 130 to non-disruptively “tap” data traffic propagating through firewall 136 and provide a copy of the data traffic to the static analysis engine 150. In other embodiments, the network interface 138 can be integrated into an intermediary device in the communication path (e.g., firewall 136, router, switch or other network device) or can be a standalone component, such as an appropriate commercially available network tap. In virtual environments, a virtual tap (vTAP) can be used to duplicate files from virtual networks.


IV. Exemplary Logic Layout of MCD System

Referring now to FIG. 2, an exemplary block diagram of logic associated with MCD system 1101 of FIGS. 1A-1B is shown. MCD system 1101 comprises one or more processors 200 that are coupled to communication interface logic 210 via a first transmission medium 220. Communication interface logic 210 enables communications with other MCD systems 1102-110N and management system 120 of FIG. 1. According to one embodiment of the disclosure, communication interface logic 210 may be implemented as a physical interface including one or more ports for wired connectors. Additionally, or in the alternative, communication interface logic 210 may be implemented with one or more radio units for supporting wireless communications with other electronic devices.


Processor(s) 200 is further coupled to persistent storage 230 via transmission medium 225. According to one embodiment of the disclosure, persistent storage 230 may include the static analysis engine 150, which comprises (i) extraction logic 160 that includes format detection logic 162 and key detection logic 164; (ii) decryption logic 165, and (iii) heuristic logic 170. Of course, when implemented as hardware, logic 160 (162, 164), 165, and/or 170 could be implemented separately from persistent memory 230.


Format detection logic 162 comprises one or more software modules that conduct a first static analysis operation on an incoming object. This operation includes an analysis of different segments of an incoming object to determine if the object is encrypted and whether the object has a particular format type. If not, the real-time analysis of the object may be terminated, or other analysis (including non-real time forensic review) may be invoked. Upon confirming that the object is encrypted according to the particular format type, the key detection logic 164 performs a second static analysis operation.


The key detection logic 164 comprises one or more software modules that conduct operations using one or more segments of the encrypted content and known content at certain address locations within the encrypted content based on its particular format. These operations are used to recover a cryptographic key used to encrypt the incoming object.


The decryption logic 165 comprises one or more software modules that conduct decryption operations on the encrypted object using the recovered cryptographic key. One type of decryption operation includes an XOR function, which does not require a library and is easy to instrument.


Heuristic logic 170 comprises one or more software modules to conduct static scanning of content within the plaintext version of the object to determine whether content within the object includes malware identifiers, such as information associated with known malware exploits. The heuristic logic 170 may conduct, in some embodiments, a malware signature matching operation. As an example, heuristic logic 170 may be initially invoked to conduct static scanning of content in the file, which includes conducting pattern comparison operations (e.g. bitwise comparison, byte-wise comparison, etc.) between accessible file content and malware identifiers associated with known exploit patterns, vulnerable functions and malicious patterns obtained from data store 290.


Subsequently, after failing to detect any malicious events, the heuristic logic 170 may provide the object to the dynamic analysis engine 190, given the presumption that an encrypted object, such as an encrypted executable file, denotes a suspicious event.


Continuing the above example, in order to convey findings, processor(s) 200 may invoke GUI logic 280, which provides one or more screen displays for conveying a more detailed summary of malicious files being detected by MCD system 1101. In some embodiments, the MCD system 1101 may also contain remediation logic (not shown) to initiate remediation of identified malware and recovery from the identified exploit.


V. On-the-Fly Decryption of Encrypted Objects

Referring to FIG. 3, an exemplary diagram of on-the-fly decryption of a particular object, such as a file with a PE format, is shown. Herein, the PE format 300 comprises a MS-DOS header 310, a DOS Stub 320, a PE offset 330 and a PE header 340. Herein, the MS-DOS header 310 is part of the original DOS executable file format that is present in files with PE formats for backward compatibility. The main reason for keeping the same structure intact at the beginning of the PE file format is so that, upon attempting to load a file created with an early Windows® or MS-DOS version, the operating system can read the file and understand that it is not compatible by generating a predetermined message. The first field 315 of the MS-DOS header, referred to as the “magic number,” is used to identify the file as an MS-DOS-compatible file type. All MS-DOS-compatible executable files set this value to 0x54AD, which represents the alphanumeric characters “MZ”.


The DOS stub 320 is an actual program run by MS-DOS when the executable is loaded. For an actual MS-DOS executable image file, the application begins executing at the DOS Stub 320. For successive operating systems, including Windows® for example, an MS-DOS stub program is part of the PE format to, when executed by version of an operating system, display as output a prescribed line of text—the DOS Stub statement 325.


The PE offset 330 is an offset into the file where the PE file header 340 is located. It is necessary to use this offset to locate the PE header in the file. For certain PE files, the PE file header occurs soon after the MS-DOS header 310 with the DOS stub program 320 between them.


The PE file header 340 includes a field that instructs the electronic device how much memory needs to be set aside for mapping the executable into memory.


Referring to FIG. 4, an exemplary flowchart illustrating first static scanning operation of an encrypted object, such as an encrypted PE file for example, is shown. Once the PE file is received, one or more logical operations are conducted on both a first segment of the encrypted object (PE file) and selected data (e.g. a predetermined series of data such as an alphanumeric character string “MZ”) to produce the partial key (block 400). The logical operation(s) are functionally equivalent to an Exclusive OR (XOR) operation. Thereafter, one or more logical operations (e.g. an XOR operation) are conducted on the partial key and a second segment of the encrypted object, namely encrypted data starting at a prescribed address, to produce a result (block 410). As previously described, according to one embodiment of the disclosure, the prescribed address may be a fixed offset that stores the DOS Stub statement, which includes a series of alphanumeric characters.


Thereafter, the result is compared to a portion of one or more DOS Stub statements maintained within the database 175 of FIGS. 1A-1B (block 420). Upon detecting a successful match, in order to recover the key associated with the encrypted object, one or more logical operations (e.g. an XOR operation) are conducted on the encrypted DOS Stub statement and a particular plaintext version of the anticipated DOS Stub statement maintained in the database 175 (block 430). The key may be determined by analyzing the result of the XOR operation for a repeating data pattern, where the repeating data pattern constitutes the key.


Thereafter, one or more logical operations (e.g. an XOR operation) are conducted on a third segment of the encrypted object at a second prescribed address and the key in order to produce a result (block 440). According to this embodiment of the disclosure, this result constitutes the PE Header Offset address that is used to locate the PE Header associated with the PE file. Next, one or more logical operations (e.g. an XOR operation) are conducted on encrypted data at the PE Header Offset address to determine if the resultant data matches a predetermined data string (e.g. a particular series of alphanumeric characters) as set forth in blocks 450 and 460. If so, the key is verified and the decryption logic utilizes the key to decrypt the encrypted object to recover a plaintext version of the object for subsequent malware analysis as described above (block 470).


Referring to FIGS. 5A-5G, exemplary block diagram illustrating the first static scanning operation of an encrypted object, such as an encrypted file having a PE format (hereinafter a “PE file”) is shown. Once the PE file is received, the format detection logic 162 of FIGS. 1A-1B initially conducts an XOR operation 500 on a first segment of the encrypted PE file 505 (e.g. starting 2-bytes of the PE file) and a character string “MZ” 510 to produce a partial key 515. Thereafter, as shown in FIG. 5B, the format detection logic 162 conducts an XOR operation 520 on the partial key 515 and a second segment of the encrypted object 525 starting at a prescribed address (e.g. “i” bytes of encrypted data associated with the displayable statement of the DOS Stub, i≧4), to produce a result 530. The prescribed address may vary slightly, depending on the analyzed key length and uncovered address for the DOS Stub.


As an illustrative example, for a 4-byte key being used to encrypt the entire PE file, the starting character “T” of the DOS Stub statement “This Program . . . ” at address x004E may be encrypted with the 3rd byte of the key. The 4th byte of the key will be applied to “h”. So the next cycle will start at “i” (e.g. Start_address offset+2 namely x004E+x0002). Hence, the second segment 525 may be “is” (address x0050) so as to be aligned with the encryption cycle.


Thereafter, as shown in FIG. 5C, the result 530 is compared to a corresponding portion 535 of one or more DOS Stub statements maintained within the database 175. The corresponding portion 535 may be based on a starting point of the DOS Stub statement or a few characters from the starting point depending on a beginning of the first full encryption cycle occurring for the DOS Stub, as described above.


Upon detecting a successful match, the key detection logic conducts an XOR operation 540 on encrypted data 545 corresponding to placement of the DOS Stub statement and the anticipated DOS Stub statement 550 that includes the corresponding portion 535 the DOS Stub statement. The result 560 of the XOR operation 540 is used to recover a key 555 associated with the encrypted object. The key 555 may be determined by analyzing the result 560 of the XOR operation 540 for a repeating data pattern, which would constitute the key 555.


Thereafter, the key detection logic performs an XOR operation 565 on a third segment 570 of the encrypted object (e.g. 2-bytes) at a second prescribed address and the key 555 in order to produce a result 575. This result 575 constitutes the PE Header Offset address that it used to locate the PE Header of the encrypted PE file. Next, the key detection logic performs an XOR operation 580 on both the encrypted data (e.g. 4-bytes) 585 at the PE Header Offset address and the key 555 to determine if the resultant data is a prescribed data string 587, which is the series of alphanumeric characters that normally start the PE header (e.g. “PE00”). If so, the key 555 is verified so that the decryption logic utilizes the key 555 to decrypt the encrypted PE file 595, in accordance with XOR function 590, to recover a plaintext version 597 of the PE file. This plaintext file 597 is subsequent used in the malware analysis as described above.


In general, one inventive aspect is directed to a multi-level static analysis that comprises decryption of an encrypted object under analysis and/or static scanning operations of the plaintext (non-encrypted) object, where static scanning results are provided to the dynamic analysis engine 190 for subsequent VM-based analysis. The static scanning operations are configured to improve accuracy and efficiency in malware analysis. As alternative embodiments, it is contemplated that any or all of the above-described static scanning operations may be conducted concurrently.


VI. On-the-Fly Decryption of Embedded Encrypted Objects

Referring now to FIG. 6, an exemplary flowchart illustrating the first static scanning operation conducted on a first object that is embedded with an encrypted, second object, such as an encrypted PE file for example, is shown. Herein, a determination is made whether a second object is embedded with the first object (block 600). If so, the embedded second object is extracted from the first object and one or more logical operations are conducted on both (i) a first (encrypted) segment of the embedded second object (PE file) starting at a prescribed address and (ii) predetermined data to produce the partial key (blocks 610 and 620). The prescribed address can be equated to a starting address for the first object along with a first address offset to the starting address of the second object. The predetermined data may be a series of alphanumeric character (e.g. “MZ”). The logical operation(s) are functionally equivalent to an XOR operation.


Thereafter, the logical operation(s) (e.g. XOR operation) is conducted on the partial key and a second segment of the encrypted object, namely encrypted data starting at a second address offset from the prescribed address associated with the embedded second object, to produce a result (block 630).


Next, the result is compared to a portion of one or more DOS Stub statements maintained within the database 175 of FIGS. 1A-1B (block 640). Upon detecting a successful match, in order to recover the key associated with the encrypted second object, one or more logical operations (e.g. an XOR operation) are conducted on the encrypted DOS Stub statement and a particular plaintext version of the anticipated DOS Stub statement maintained in the database 175 (block 650). The key may be determined by analyzing the result of the XOR operation for a repeating data pattern, where the repeating data pattern constitutes the key.


Next, logical operation(s) (e.g. an XOR operation) is conducted on the key and a third segment of the encrypted object at a third address offset from the prescribed address designating the start of the embedded second object (block 660). This operation produces a result, which constitutes the PE Header Offset address that it used to locate the PE Header associated with the PE file. The PE Header Offset is the address offset from the prescribed address, namely the starting address of the embedded second object, to the PE header.


Next, one or more logical operations (e.g. an XOR operation) are conducted on encrypted data at the PE Header Offset address to determine if the resultant data matches expected data (e.g. a particular series of alphanumeric characters such as “PE00”) as set forth in blocks 670 and 680. If so, the key is verified and the decryption logic utilizes the key to decrypt the encrypted embedded second object to recover a plaintext version of the embedded second object for subsequent malware analysis (block 690).


In the foregoing description, the invention is described with reference to specific exemplary embodiments thereof. It will, however, be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the invention as set forth in the appended claims.

Claims
  • 1. A computerized method for decrypting an encrypted object having a predetermined format that is received by an electronic device, the method comprising: performing, by a processor, one or more logical operations at least on (i) data associated with a first data string expected at a first location within the encrypted object having the predetermined format and (ii) data within the encrypted object at the first location to recover data associated with a portion of a cryptographic key from the encrypted object;conducting, by the processor, one or more logical operations at least on (i) the data associated with the portion of the cryptographic key and (ii) a first portion of the encrypted object at a second location within the encrypted object to produce a result, wherein the second location being different than the first location and the result includes a portion of data associated with a plaintext version of a second data string that is expected at the second location;responsive to the result including data associated with the plaintext version of the second data string, conducting one or more logical operations by the processor at least on (i) a second portion of the encrypted object and (ii) the data associated with the plaintext version of the second data string expected at the second location to recover data associated with the cryptographic key, wherein the recovered data associated with the cryptographic key includes the data associated with the portion of the cryptographic key; anddecrypting, by the processor, the encrypted object using the cryptographic key to produce a decrypted object.
  • 2. The computerized method of claim 1, wherein the recovered data associated with the cryptographic key is the cryptographic key and the data associated with the portion of the cryptographic key is a portion of the cryptographic key.
  • 3. The computerized method of claim 1 further comprising: performing a static scanning operation associated with the decrypted object to determine whether the decrypted object is suspected of including malware; andclassifying the decrypted object to identify a suspected presence of malware when the static scanning operation determines that the decrypted object includes malware.
  • 4. The computerized method of claim 1, wherein the conducting of the one or more logical operations on the data associated with the first data string and the data within the encrypted object at the first location comprises conducting a first Exclusive OR (XOR) operation on a first plurality of alphanumeric characters and a portion of the encrypted object at a first prescribed address.
  • 5. The computerized method of claim 4, wherein the one or more logical operations conducted on the second portion of the encrypted object and the data associated with the plaintext version of the second data string further comprises a second Exclusive OR (XOR) operation on the second portion of the encrypted object and the data associated with the plaintext version of the second data string, the data associated with the plaintext version of the second data string includes a second plurality of alphanumeric characters greater in number than the first plurality of alphanumeric characters of the first data string.
  • 6. The computerized method of claim 1, wherein the conducting of the one or more logical operations on the second portion of the encrypted object and the data associated with the plaintext version of the second data string expected at the second location comprises conducting an Exclusive OR (XOR) operation on the second portion of the encrypted object that corresponds to a plurality of alphanumeric characters and the data associated with the plaintext version of the second data string corresponds to an anticipated plaintext version of the plurality of alphanumeric characters.
  • 7. The computerized method of claim 1, wherein the data associated with the first data string comprises a first plurality of alphanumeric characters, the result comprises a second plurality of alphanumeric characters greater in number than the first plurality of alphanumeric characters, and the data associated with the second data string comprises a third plurality of alphanumeric characters greater in number than the second plurality of characters.
  • 8. The computerized method of claim 7, wherein each of the logical operations operates as an Exclusive OR (XOR) operation.
  • 9. The computerized method of claim 1, wherein prior to decrypting the encrypted object using the cryptographic key, the method further comprises validating the cryptographic key.
  • 10. The computerized method of claim 9, wherein the validating of the cryptographic key comprises conducting one or more logical operations on both a third portion of the encrypted object and the cryptographic key to recover a value associated with an address offset;conducting one or more logical operations on the third portion of the encrypted object at the address offset and the cryptographic key to recover a data string; andcomparing the data string to a prescribed data string expected at the address offset.
  • 11. The computerized method of claim 1 further comprising analyzing the decrypted object by one or more virtual machines and monitoring for anomalous or unexpected activity indicative of the presence of malware.
  • 12. The computerized method of claim 1, wherein the receiving of the encrypted object comprises (i) determining that the encrypted object is embedded with a second object and (ii) extracting the encrypted object from the second object.
  • 13. A non-transitory computer readable medium that includes software that, when executed by a processor, decrypts an encrypted object having a predetermined format, comprising: performing one or more logical operations at least on data associated with a first data string expected at a first location within an object having the predetermined format and data within the encrypted object at the first location to recover data associated with a portion of a cryptographic key from the encrypted object;conducting one or more logical operations at least on the data associated with the cryptographic key and a first portion of the encrypted object at a second location within the encrypted object to produce a result, wherein the second location being different than the first location and the result includes a portion of data associated with a plaintext version of a second data string that is expected at the second location;responsive to the result including data associated with the plaintext version of the second data string, conducting one or more logical operations at least on a second portion of the encrypted object and the data associated with the plaintext version of the second data string expected at the second location to recover data associated with the cryptographic key, wherein the recovered data associated with the cryptographic key includes the data associated with the portion of the cryptographic key; anddecrypting the encrypted object using the cryptographic key to produce a decrypted object.
  • 14. The non-transitory computer readable medium of claim 13, wherein the software, when executed by the processor, further perform operations comprising: performing a static scanning operation associated with the decrypted object, where results of the static scanning operation are used to classify the decrypted object to identify a suspected presence of malware; andissuing one or more alerts to identify a presence of malware within the encrypted object.
  • 15. The non-transitory computer readable medium of claim 13, wherein the one or more logical operations conducted on the data associated with the first data string and the data within the encrypted object at the first location comprises a first Exclusive OR (XOR) operation conducted on a first plurality of alphanumeric characters and a portion of the encrypted object at a first prescribed address.
  • 16. The non-transitory computer readable medium of claim 15, wherein the one or more logical operations conducted on the second portion of the encrypted object and the data associated with the plaintext version of the second data string further comprises a second Exclusive OR (XOR) operation on the second portion of the encrypted object and the data associated with the plaintext version of the second data string, the data associated with the plaintext version of the second data string includes a second plurality of alphanumeric characters greater in number than the first plurality of alphanumeric characters of the first data string.
  • 17. The non-transitory computer readable medium of claim 13, wherein the data associated with the first data string comprises a first plurality of alphanumeric characters, the result comprises a second plurality of alphanumeric characters greater in number than the first plurality of characters, and the data associated with the second data string comprises a third plurality of alphanumeric characters greater in number than the second plurality of alphanumeric characters.
  • 18. The non-transitory computer readable medium of claim 17, each of the logical operations operates as one or more Exclusive OR (XOR) operations.
  • 19. The non-transitory computer readable medium of claim 18, wherein prior to decrypting the encrypted object using the cryptographic key, the software, when executed by the processor, further validating the cryptographic key.
  • 20. The non-transitory computer readable medium of claim 19, wherein the validating of the cryptographic key comprises conducting one or more logical operations on both a third portion of the encrypted object and the cryptographic key to recover a value associated with an address offset;conducting one or more logical operations on the third portion of the encrypted object at the address offset and the cryptographic key to recover a data string; andcomparing the data string to a prescribed data string expected at the address location.
  • 21. The non-transitory computer readable medium of claim 13, wherein the software, when executed by the processor, further performs the operations comprising analyzing the decrypted object by virtual execution of the decrypted object by one or more virtual machines and monitoring for anomalous or unexpected activity indicative of the presence of malware.
  • 22. An electronic device, comprising: one or more hardware processors; anda memory communicatively coupled to the one or more hardware processors, the memory including one or more software modules that, upon execution by the one or more hardware processors, conducts a first scanning operation on an encrypted object to recover a decrypted object, wherein the first scanning operation comprisesperforming one or more logical operations at least on data associated with a first data string expected at a first location within an object having the predetermined format and data within the encrypted object at the first location to recover data associated with a portion of a cryptographic key from the encrypted object,conducting one or more logical operations at least on the data associated with the cryptographic key and a first portion of the encrypted object at a second location within the encrypted object to produce a result, wherein the second location being different than the first location and the result includes a portion of data associated with a plaintext version of a second data string that is expected at the second location,responsive to the result including data associated with the plaintext version of the second data string, conducting one or more logical operations at least on a second portion of the encrypted object and the data associated with the plaintext version of the second data string expected at the second location to recover data associated with the cryptographic key, wherein the recovered data associated with the cryptographic key includes the data associated with the portion of the cryptographic key, anddecrypting the encrypted object using the cryptographic key to produce the decrypted object.
  • 23. The electronic device of claim 22, wherein the one or more hardware processors, upon execution of the one or more software modules, further comprises: performing a second scanning operation associated with the decrypted object to determine whether the decrypted object is suspected of including malware; andclassifying the decrypted object to identify a suspected presence of malware based on results of the second scanning operation.
  • 24. The electronic device of claim 22, wherein the one or more hardware processors, upon execution of the one or more software modules, conducting the one or more logical operations on the data associated with and part of the first data string and the data within the encrypted object at the first location that comprises a first Exclusive OR (XOR) operation on a first plurality of alphanumeric characters and a portion of the encrypted object at a first prescribed address.
  • 25. The electronic device of claim 24, wherein the one or more hardware processors, upon execution of the one or more software modules, conducting the one or more logical operations on the second portion of the encrypted object and the data associated with the plaintext version of the second data string that comprises a second Exclusive OR (XOR) operation on the second portion of the encrypted object and the data associated with the plaintext version of the second data string, the data associated with the plaintext version of the second data string includes a second plurality of alphanumeric characters greater in number than the first plurality of alphanumeric characters of the first data string.
  • 26. The electronic device of claim 22, wherein the one or more hardware processors, upon execution of the one or more software modules, conduct the one or more logical operations on the second portion of the encrypted object and the data associated with the plaintext version of the second data string expected at the second location that comprise conducting an Exclusive OR (XOR) operation on the second portion of the encrypted object that corresponds to a first plurality of alphanumeric characters and the data associated with the plaintext version of the second data string corresponds to an anticipated plaintext version of the first plurality of alphanumeric characters.
  • 27. The electronic device of claim 22, wherein the data associated with the first data string comprises a first plurality of alphanumeric characters, the result comprises a second plurality of alphanumeric characters greater in number than the first plurality of alphanumeric characters, and the data associated with the second data string comprises a third plurality of alphanumeric characters greater in number than the second plurality of characters.
  • 28. The electronic device of claim 27, wherein the one or more hardware processors, upon execution of the one or more software modules, conduct the one or more logical operations that operate as one or more Exclusive OR (XOR) operations.
  • 29. The electronic device of claim 22, wherein the one or more hardware processors, upon execution of the one or more software modules and prior to decrypting the encrypted object using the cryptographic key, further validates the cryptographic key.
  • 30. The electronic device of claim 29, wherein the one or more hardware processors, upon execution of the one or more software modules, validates the cryptographic key by conducting one or more logical operations on both a third portion of the encrypted object and the cryptographic key to recover a value associated with an address offset;conducting one or more logical operations on the third portion of the encrypted object at the address offset and the cryptographic key to recover a data string; andcomparing the data string to a prescribed data string expected at the address offset.
  • 31. The electronic device of claim 22, wherein the one or more hardware processors, upon execution of the one or more software modules, further performing a second scanning operation associated with the decrypted object to determine whether the decrypted object is suspected of including malware; and classifying the decrypted object to identify a suspected presence of malware based on results of the second scanning operation.
  • 32. The electronic device of claim 22, wherein the one or more software modules further comprises a reporting module that, upon execution by the one or more hardware processors, transmits an alert indicating a presence of malware within the encrypted object.
  • 33. The electronic device of claim 22, wherein prior to conducting the first scanning operation, the one or more hardware processors, upon execution of the one or more software modules, receive an object, determines that the object is embedded with a second object and (ii) extracting the second object as the encrypted object from the first object.
  • 34. The electronic device of claim 33, wherein the alert comprises reference information that identifies a particular message or messages within the encrypted object that contains malware.
  • 35. The electronic device of claim 34, wherein the reference information includes a pointer that points to a memory location associated with the particular message or messages that contain malware.
Parent Case Info

This is a Continuation application claiming the benefit of priority on U.S. patent application Ser. No. 14/086,842 filed Nov. 21, 2013, which is incorporated by reference in its entirety.

US Referenced Citations (405)
Number Name Date Kind
4292580 Ott et al. Sep 1981 A
5175732 Hendel et al. Dec 1992 A
5440723 Arnold et al. Aug 1995 A
5657473 Killean et al. Aug 1997 A
5842002 Schnurer et al. Nov 1998 A
5978917 Chi Nov 1999 A
6088803 Tso et al. Jul 2000 A
6094677 Capek et al. Jul 2000 A
6269330 Cidon et al. Jul 2001 B1
6279113 Vaidya Aug 2001 B1
6298445 Shostack et al. Oct 2001 B1
6357008 Nachenberg Mar 2002 B1
6424627 Sørhaug et al. Jul 2002 B1
6484315 Ziese Nov 2002 B1
6487666 Shanklin et al. Nov 2002 B1
6493756 O'Brien et al. Dec 2002 B1
6550012 Villa et al. Apr 2003 B1
6775657 Baker Aug 2004 B1
6832367 Choi et al. Dec 2004 B1
6895550 Kanchirayappa et al. May 2005 B2
6898632 Gordy et al. May 2005 B2
6907396 Muttik et al. Jun 2005 B1
6971097 Wallman Nov 2005 B1
6981279 Arnold et al. Dec 2005 B1
7007107 Ivchenko et al. Feb 2006 B1
7028179 Anderson et al. Apr 2006 B2
7043757 Hoefelmeyer et al. May 2006 B2
7069316 Gryaznov Jun 2006 B1
7080408 Pak et al. Jul 2006 B1
7093002 Wolff et al. Aug 2006 B2
7093239 van der Made Aug 2006 B1
7100201 Izatt Aug 2006 B2
7159149 Spiegel et al. Jan 2007 B2
7231667 Jordan Jun 2007 B2
7240364 Branscomb et al. Jul 2007 B1
7240368 Roesch et al. Jul 2007 B1
7287278 Liang Oct 2007 B2
7308716 Danford et al. Dec 2007 B2
7356736 Natvig Apr 2008 B2
7386888 Liang et al. Jun 2008 B2
7392542 Bucher Jun 2008 B2
7418729 Szor Aug 2008 B2
7428300 Drew et al. Sep 2008 B1
7441272 Durham et al. Oct 2008 B2
7448084 Apap et al. Nov 2008 B1
7458098 Judge et al. Nov 2008 B2
7464404 Carpenter et al. Dec 2008 B2
7464407 Nakae et al. Dec 2008 B2
7467408 O'Toole, Jr. Dec 2008 B1
7480773 Reed Jan 2009 B1
7487543 Arnold et al. Feb 2009 B2
7496960 Chen et al. Feb 2009 B1
7496961 Zimmer et al. Feb 2009 B2
7519990 Xie Apr 2009 B1
7523493 Liang et al. Apr 2009 B2
7530104 Thrower et al. May 2009 B1
7540025 Tzadikario May 2009 B2
7565550 Liang et al. Jul 2009 B2
7603715 Costa et al. Oct 2009 B2
7607171 Marsden et al. Oct 2009 B1
7639714 Stolfo et al. Dec 2009 B2
7644441 Schmid et al. Jan 2010 B2
7676841 Sobchuk et al. Mar 2010 B2
7698548 Shelest et al. Apr 2010 B2
7707633 Danford et al. Apr 2010 B2
7779463 Stolfo et al. Aug 2010 B2
7784097 Stolfo et al. Aug 2010 B1
7832008 Kraemer Nov 2010 B1
7849506 Dansey et al. Dec 2010 B1
7869073 Oshima Jan 2011 B2
7877803 Enstone et al. Jan 2011 B2
7904959 Sidiroglou et al. Mar 2011 B2
7908660 Bahl Mar 2011 B2
7930738 Petersen Apr 2011 B1
7937761 Bennett May 2011 B1
7996556 Raghavan et al. Aug 2011 B2
7996836 McCorkendale et al. Aug 2011 B1
7996905 Arnold et al. Aug 2011 B2
8006305 Aziz Aug 2011 B2
8010667 Zhang et al. Aug 2011 B2
8020206 Hubbard et al. Sep 2011 B2
8028338 Schneider et al. Sep 2011 B1
8045094 Teragawa Oct 2011 B2
8045458 Alperovitch et al. Oct 2011 B2
8069484 McMillan et al. Nov 2011 B2
8087086 Lai et al. Dec 2011 B1
8171553 Aziz et al. May 2012 B2
8201246 Wu et al. Jun 2012 B1
8204984 Aziz et al. Jun 2012 B1
8220055 Kennedy Jul 2012 B1
8225288 Miller et al. Jul 2012 B2
8225373 Kraemer Jul 2012 B2
8233882 Rogel Jul 2012 B2
8234709 Viljoen et al. Jul 2012 B2
8239944 Nachenberg et al. Aug 2012 B1
8286251 Eker et al. Oct 2012 B2
8291499 Aziz et al. Oct 2012 B2
8307435 Mann et al. Nov 2012 B1
8307443 Wang et al. Nov 2012 B2
8312545 Tuvell et al. Nov 2012 B2
8321936 Green et al. Nov 2012 B1
8321941 Tuvell et al. Nov 2012 B2
8365286 Poston Jan 2013 B2
8370938 Daswani et al. Feb 2013 B1
8370939 Zaitsev et al. Feb 2013 B2
8375444 Aziz et al. Feb 2013 B2
8381299 Stolfo et al. Feb 2013 B2
8402529 Green et al. Mar 2013 B1
8479291 Bodke Jul 2013 B1
8510827 Leake et al. Aug 2013 B1
8510842 Amit et al. Aug 2013 B2
8516593 Aziz Aug 2013 B2
8528086 Aziz Sep 2013 B1
8539582 Aziz et al. Sep 2013 B1
8549638 Aziz Oct 2013 B2
8561177 Aziz et al. Oct 2013 B1
8566946 Aziz et al. Oct 2013 B1
8584094 Dadhia et al. Nov 2013 B2
8584234 Sobel et al. Nov 2013 B1
8584239 Aziz et al. Nov 2013 B2
8595834 Xie et al. Nov 2013 B2
8627476 Satish et al. Jan 2014 B1
8635696 Aziz Jan 2014 B1
8689333 Aziz Apr 2014 B2
8713681 Silberman et al. Apr 2014 B2
8776229 Aziz Jul 2014 B1
8793787 Ismael et al. Jul 2014 B2
8832829 Manni et al. Sep 2014 B2
8850571 Staniford et al. Sep 2014 B2
8850871 Schaefer et al. Oct 2014 B2
8881282 Aziz et al. Nov 2014 B1
8898788 Aziz et al. Nov 2014 B1
8935779 Manni et al. Jan 2015 B2
8984638 Aziz et al. Mar 2015 B1
8990844 Oh et al. Mar 2015 B2
8990939 Staniford et al. Mar 2015 B2
8990944 Singh et al. Mar 2015 B1
8997219 Staniford et al. Mar 2015 B2
9009822 Ismael et al. Apr 2015 B1
9009823 Ismael et al. Apr 2015 B1
9027135 Aziz May 2015 B1
9071638 Aziz et al. Jun 2015 B1
9104867 Thioux et al. Aug 2015 B1
9106694 Aziz et al. Aug 2015 B2
9118715 Staniford et al. Aug 2015 B2
9159035 Ismael et al. Oct 2015 B1
9171160 Vincent et al. Oct 2015 B2
9176843 Ismael et al. Nov 2015 B1
9189627 Islam Nov 2015 B1
9195829 Goradia et al. Nov 2015 B1
9197664 Aziz et al. Nov 2015 B1
9223972 Vincent et al. Dec 2015 B1
9225740 Ismael et al. Dec 2015 B1
9241010 Bennett et al. Jan 2016 B1
9251343 Vincent et al. Feb 2016 B1
9262635 Paithane et al. Feb 2016 B2
9282109 Aziz et al. Mar 2016 B1
9294501 Mesdaq et al. Mar 2016 B2
9300686 Pidathala et al. Mar 2016 B2
9306960 Aziz Apr 2016 B1
9306974 Aziz et al. Apr 2016 B1
9311479 Manni et al. Apr 2016 B1
20010005889 Albrecht Jun 2001 A1
20010047326 Broadbent et al. Nov 2001 A1
20020018903 Kokubo et al. Feb 2002 A1
20020038430 Edwards et al. Mar 2002 A1
20020091819 Melchione et al. Jul 2002 A1
20020144156 Copeland Oct 2002 A1
20020162015 Tang Oct 2002 A1
20020166063 Lachman et al. Nov 2002 A1
20020184528 Shevenell et al. Dec 2002 A1
20020188887 Largman et al. Dec 2002 A1
20020194490 Halperin et al. Dec 2002 A1
20030074578 Ford et al. Apr 2003 A1
20030084318 Schertz May 2003 A1
20030115483 Liang Jun 2003 A1
20030188190 Aaron et al. Oct 2003 A1
20030200460 Morota et al. Oct 2003 A1
20030212902 van der Made Nov 2003 A1
20030237000 Denton et al. Dec 2003 A1
20040003323 Bennett et al. Jan 2004 A1
20040015712 Szor Jan 2004 A1
20040019832 Arnold et al. Jan 2004 A1
20040047356 Bauer Mar 2004 A1
20040083408 Spiegel et al. Apr 2004 A1
20040093513 Cantrell et al. May 2004 A1
20040111531 Staniford et al. Jun 2004 A1
20040165588 Pandya Aug 2004 A1
20040236963 Danford et al. Nov 2004 A1
20040243349 Greifeneder et al. Dec 2004 A1
20040249911 Alkhatib et al. Dec 2004 A1
20040255161 Cavanaugh Dec 2004 A1
20040268147 Wiederin et al. Dec 2004 A1
20050021740 Bar et al. Jan 2005 A1
20050033960 Vialen et al. Feb 2005 A1
20050033989 Poletto et al. Feb 2005 A1
20050050148 Mohammadioun et al. Mar 2005 A1
20050086523 Zimmer et al. Apr 2005 A1
20050091513 Mitomo et al. Apr 2005 A1
20050091533 Omote et al. Apr 2005 A1
20050114663 Cornell et al. May 2005 A1
20050125195 Brendel Jun 2005 A1
20050157662 Bingham et al. Jul 2005 A1
20050183143 Anderholm et al. Aug 2005 A1
20050201297 Peikari Sep 2005 A1
20050210533 Copeland et al. Sep 2005 A1
20050238005 Chen et al. Oct 2005 A1
20050265331 Stolfo Dec 2005 A1
20060010495 Cohen et al. Jan 2006 A1
20060015715 Anderson Jan 2006 A1
20060021054 Costa et al. Jan 2006 A1
20060031476 Mathes et al. Feb 2006 A1
20060047665 Neil Mar 2006 A1
20060070130 Costea et al. Mar 2006 A1
20060075496 Carpenter et al. Apr 2006 A1
20060095968 Portolani et al. May 2006 A1
20060101516 Sudaharan et al. May 2006 A1
20060101517 Banzhof et al. May 2006 A1
20060117385 Mester et al. Jun 2006 A1
20060123477 Raghavan et al. Jun 2006 A1
20060143709 Brooks et al. Jun 2006 A1
20060150249 Gassen et al. Jul 2006 A1
20060161983 Cothrell et al. Jul 2006 A1
20060161987 Levy-Yurista Jul 2006 A1
20060161989 Reshef et al. Jul 2006 A1
20060164199 Gilde et al. Jul 2006 A1
20060173992 Weber et al. Aug 2006 A1
20060179147 Tran et al. Aug 2006 A1
20060184632 Marino et al. Aug 2006 A1
20060191010 Benjamin Aug 2006 A1
20060221956 Narayan et al. Oct 2006 A1
20060236393 Kramer et al. Oct 2006 A1
20060242709 Seinfeld et al. Oct 2006 A1
20060251104 Koga Nov 2006 A1
20060288417 Bookbinder et al. Dec 2006 A1
20070006288 Mayfield et al. Jan 2007 A1
20070006313 Porras et al. Jan 2007 A1
20070011174 Takaragi et al. Jan 2007 A1
20070016951 Piccard et al. Jan 2007 A1
20070033645 Jones Feb 2007 A1
20070038943 FitzGerald et al. Feb 2007 A1
20070064689 Shin et al. Mar 2007 A1
20070094730 Bhikkaji et al. Apr 2007 A1
20070143827 Nicodemus et al. Jun 2007 A1
20070156895 Vuong Jul 2007 A1
20070157180 Tillmann et al. Jul 2007 A1
20070157306 Elrod et al. Jul 2007 A1
20070171824 Ruello et al. Jul 2007 A1
20070174915 Gribble et al. Jul 2007 A1
20070192500 Lum Aug 2007 A1
20070192858 Lum Aug 2007 A1
20070192863 Kapoor et al. Aug 2007 A1
20070198275 Malden et al. Aug 2007 A1
20070240218 Tuvell et al. Oct 2007 A1
20070240219 Tuvell et al. Oct 2007 A1
20070240220 Tuvell et al. Oct 2007 A1
20070240222 Tuvell et al. Oct 2007 A1
20070250930 Aziz et al. Oct 2007 A1
20070271446 Nakamura Nov 2007 A1
20080005782 Aziz Jan 2008 A1
20080072326 Danford et al. Mar 2008 A1
20080077793 Tan et al. Mar 2008 A1
20080080518 Hoeflin et al. Apr 2008 A1
20080098476 Syversen Apr 2008 A1
20080120722 Sima et al. May 2008 A1
20080134178 Fitzgerald et al. Jun 2008 A1
20080134334 Kim et al. Jun 2008 A1
20080141376 Clausen et al. Jun 2008 A1
20080184367 McMillan et al. Jul 2008 A1
20080184373 Traut et al. Jul 2008 A1
20080189787 Arnold et al. Aug 2008 A1
20080215742 Goldszmidt et al. Sep 2008 A1
20080222729 Chen et al. Sep 2008 A1
20080263665 Ma et al. Oct 2008 A1
20080295172 Bohacek Nov 2008 A1
20080301810 Lehane et al. Dec 2008 A1
20080307524 Singh et al. Dec 2008 A1
20080320594 Jiang Dec 2008 A1
20090007100 Field et al. Jan 2009 A1
20090013408 Schipka Jan 2009 A1
20090031423 Liu et al. Jan 2009 A1
20090036111 Danford et al. Feb 2009 A1
20090044024 Oberheide et al. Feb 2009 A1
20090044274 Budko et al. Feb 2009 A1
20090083369 Marmor Mar 2009 A1
20090083855 Apap et al. Mar 2009 A1
20090089879 Wang et al. Apr 2009 A1
20090094697 Provos et al. Apr 2009 A1
20090125976 Wassermann et al. May 2009 A1
20090126015 Monastyrsky et al. May 2009 A1
20090126016 Sobko et al. May 2009 A1
20090133125 Choi et al. May 2009 A1
20090158430 Borders Jun 2009 A1
20090187992 Poston Jul 2009 A1
20090193293 Stolfo et al. Jul 2009 A1
20090198651 Shiffer et al. Aug 2009 A1
20090198670 Shiffer et al. Aug 2009 A1
20090198689 Frazier et al. Aug 2009 A1
20090199274 Frazier et al. Aug 2009 A1
20090199296 Xie et al. Aug 2009 A1
20090228233 Anderson et al. Sep 2009 A1
20090241187 Troyansky Sep 2009 A1
20090241190 Todd et al. Sep 2009 A1
20090265692 Godefroid et al. Oct 2009 A1
20090271867 Zhang Oct 2009 A1
20090300761 Park et al. Dec 2009 A1
20090328185 Berg et al. Dec 2009 A1
20090328221 Blumfield et al. Dec 2009 A1
20100011205 McKenna Jan 2010 A1
20100017546 Poo et al. Jan 2010 A1
20100030996 Butler, II Feb 2010 A1
20100043073 Kuwamura Feb 2010 A1
20100054278 Stolfo et al. Mar 2010 A1
20100058474 Hicks Mar 2010 A1
20100064044 Nonoyama Mar 2010 A1
20100077481 Polyakov et al. Mar 2010 A1
20100083376 Pereira et al. Apr 2010 A1
20100115621 Staniford et al. May 2010 A1
20100132038 Zaitsev May 2010 A1
20100154056 Smith et al. Jun 2010 A1
20100192223 Ismael et al. Jul 2010 A1
20100220863 Dupaquis et al. Sep 2010 A1
20100251104 Massand Sep 2010 A1
20100281102 Chinta et al. Nov 2010 A1
20100281541 Stolfo et al. Nov 2010 A1
20100281542 Stolfo et al. Nov 2010 A1
20100287260 Peterson et al. Nov 2010 A1
20110025504 Lyon et al. Feb 2011 A1
20110041179 St Hlberg Feb 2011 A1
20110047594 Mahaffey et al. Feb 2011 A1
20110047620 Mahaffey et al. Feb 2011 A1
20110078794 Manni et al. Mar 2011 A1
20110093951 Aziz Apr 2011 A1
20110099633 Aziz Apr 2011 A1
20110099635 Silberman et al. Apr 2011 A1
20110113231 Kaminsky May 2011 A1
20110145920 Mahaffey et al. Jun 2011 A1
20110167494 Bowen et al. Jul 2011 A1
20110173213 Frazier et al. Jul 2011 A1
20110173460 Ito et al. Jul 2011 A1
20110219450 McDougal et al. Sep 2011 A1
20110247072 Staniford et al. Oct 2011 A1
20110265182 Peinado et al. Oct 2011 A1
20110307954 Melnik et al. Dec 2011 A1
20110307955 Kaplan et al. Dec 2011 A1
20110307956 Yermakov et al. Dec 2011 A1
20110314546 Aziz et al. Dec 2011 A1
20120079596 Thomas et al. Mar 2012 A1
20120084859 Radinsky et al. Apr 2012 A1
20120117652 Manni et al. May 2012 A1
20120174186 Aziz et al. Jul 2012 A1
20120174218 McCoy et al. Jul 2012 A1
20120198279 Schroeder Aug 2012 A1
20120210423 Friedrichs et al. Aug 2012 A1
20120222121 Staniford et al. Aug 2012 A1
20120278886 Luna Nov 2012 A1
20120297489 Dequevy Nov 2012 A1
20120330801 McDougal et al. Dec 2012 A1
20120331553 Aziz et al. Dec 2012 A1
20130036472 Aziz Feb 2013 A1
20130047257 Aziz Feb 2013 A1
20130097706 Titonis et al. Apr 2013 A1
20130111587 Goel et al. May 2013 A1
20130160125 Likhachev Jun 2013 A1
20130160130 Mendelev et al. Jun 2013 A1
20130160131 Madou et al. Jun 2013 A1
20130227691 Aziz et al. Aug 2013 A1
20130246370 Bartram et al. Sep 2013 A1
20130247186 LeMasters Sep 2013 A1
20130263260 Mahaffey et al. Oct 2013 A1
20130291109 Staniford et al. Oct 2013 A1
20130298243 Kumar et al. Nov 2013 A1
20130318038 Shiffer et al. Nov 2013 A1
20130318073 Shiffer et al. Nov 2013 A1
20130325791 Shiffer et al. Dec 2013 A1
20130325792 Shiffer et al. Dec 2013 A1
20130325871 Shiffer et al. Dec 2013 A1
20130325872 Shiffer et al. Dec 2013 A1
20140032875 Butler Jan 2014 A1
20140053260 Gupta et al. Feb 2014 A1
20140053261 Gupta et al. Feb 2014 A1
20140169762 Ryu Jun 2014 A1
20140181131 Ross Jun 2014 A1
20140189687 Jung et al. Jul 2014 A1
20140189866 Shiffer et al. Jul 2014 A1
20140189882 Jung et al. Jul 2014 A1
20140237600 Silberman et al. Aug 2014 A1
20140280245 Wilson Sep 2014 A1
20140283037 Sikorski et al. Sep 2014 A1
20140283063 Thompson et al. Sep 2014 A1
20140337836 Ismael Nov 2014 A1
20140344926 Cunningham et al. Nov 2014 A1
20140380473 Bu et al. Dec 2014 A1
20140380474 Paithane et al. Dec 2014 A1
20150007312 Pidathala et al. Jan 2015 A1
20150096022 Vincent et al. Apr 2015 A1
20150096023 Mesdaq et al. Apr 2015 A1
20150096024 Haq et al. Apr 2015 A1
20150096025 Ismael Apr 2015 A1
20150180886 Staniford et al. Jun 2015 A1
20150186645 Aziz et al. Jul 2015 A1
20150220735 Paithane et al. Aug 2015 A1
20150372980 Eyada Dec 2015 A1
20160044000 Cunningham Feb 2016 A1
20160127393 Aziz et al. May 2016 A1
Foreign Referenced Citations (7)
Number Date Country
2439806 Jan 2008 GB
0206928 Jan 2002 WO
0223805 Mar 2002 WO
2007117636 Oct 2007 WO
2008041950 Apr 2008 WO
2011084431 Jul 2011 WO
2012145066 Oct 2012 WO
Non-Patent Literature Citations (51)
Entry
Williamson, Matthew M., “Throttling Viruses: Restricting Propagation to Defeat Malicious Mobile Code”, ACSAC Conference, Las Vegas, NV, USA, (Dec. 2002), pp. 1-9.
“Network Security: NetDetector—Network Intrusion Forensic System (NIFS) Whitepaper”, (“NetDetector Whitepaper”), (2003).
“Packet”, Microsoft Computer Dictionary, Microsoft Press, (Mar. 2002), 1 page.
“When Virtual is Better Than Real”, IEEEXplore Digital Library, available at, http://ieeexplore.ieee.org/xpl/articleDetails.isp?reload=true&amumbe−r=990073, (Dec. 7, 2013).
Abdullah, et al., Visualizing Network Data for Intrusion Detection, 2005 IEEE Workshop on Information Assurance and Security, pp. 100-108.
Adetoye, Adedayo, et al., “Network Intrusion Detection & Response System”, (“Adetoye”), (Sep. 2003).
AltaVista Advanced Search Results. “attack vector identifier”. Http://www.altavista.com/web/results?Itag=ody&pg=aq&aqmode=aqa=Event+Orch−estrator . . . , (Accessed on Sep. 15, 2009).
AltaVista Advanced Search Results. “Event Orchestrator”. Http://www.altavista.com/web/results?Itag=ody&pg=aq&aqmode=aqa=Event+Orch−esrator . . . , (Accessed on Sep. 3, 2009).
Aura, Tuomas, “Scanning electronic documents for personally identifiable information”, Proceedings of the 5th ACM workshop on Privacy in electronic society. ACM, 2006.
Baecher, “The Nepenthes Platform: An Efficient Approach to collect Malware”, Springer-verlag Berlin Heidelberg, (2006), pp. 165-184.
Bayer, et al., “Dynamic Analysis of Malicious Code”, J Comput Virol, Springer-Verlag, France., (2006), pp. 67-77.
Boubalos, Chris , “extracting syslog data out of raw pcap dumps, seclists.org, Honeypots mailing list archives”, available at http://seclists.org/honeypots/2003/q2/319 (“Boubalos”), (Jun. 5, 2003).
Chaudet, C. , et al., “Optimal Positioning of Active and Passive Monitoring Devices”, International Conference on Emerging Networking Experiments and Technologies, Proceedings of the 2005 ACM Conference on Emerging Network Experiment and Technology, CoNEXT '05, Toulousse, France, (Oct. 2005), pp. 71-82.
Chen, P. M. and Noble, B. D., “When Virtual is Better Than Real, Department of Electrical Engineering and Computer Science”, University of Michigan (“Chen”) 2001.
Cisco, Configuring the Catalyst Switched Port Analyzer (SPAN) (“Cisco”), (1992).
Cohen, M.I. , “PyFlag—An advanced network forensic framework”, Digital investigation 5, Elsevier, (2008), pp. S112-S120.
Costa, M., et al., “Vigilante: End-to-End Containment of Internet Worms”, SOSP '05, Association for Computing Machinery, Inc., Brighton U.K., (Oct. 23-26, 2005).
Crandall, J.R. , et al., “Minos:Control Data Attack Prevention Orthogonal to Memory Model”, 37th International Symposium on Microarchitecture, Portland, Oregon, (Dec. 2004).
Deutsch, P., “Zlib compressed data format specification version 3.3” RFC 1950, (1996).
Distler, “Malware Analysis: An Introduction”, SANS Institute InfoSec Reading Room, SANS Institute, (2007).
Dunlap, George W., et al., “ReVirt: Enabling Intrusion Analysis through Virtual-Machine Logging and Replay”, Proceeding of the 5th Symposium on Operating Systems Design and Implementation, USENIX Association, (“Dunlap”), (Dec. 9, 2002).
Excerpt regarding First Printing Date for Merike Kaeo, Designing Network Security (“Kaeo”), (2005).
Filiol, Eric, et al., “Combinatorial Optimisation of Worm Propagation on an Unknown Network”, International Journal of Computer Science 2.2 (2007).
Goel, et al., Reconstructing System State for Intrusion Analysis, Apr. 2008 SIGOPS Operating Systems Review, vol. 42 Issue 3, pp. 21-28.
Hjelmvik, Erik, “Passive Network Security Analysis with NetworkMiner”, (IN)Secure, Issue 18, (Oct. 2008), pp. 1-100.
IEEE Xplore Digital Library Sear Results for “detection of unknown computer worms”. Http//ieeexplore.ieee.org/searchresult.jsp?SortField=Score&SortOrder=desc−&ResultC . . . , (Accessed on Aug. 28, 2009).
Kaeo, Merike, “Designing Network Security”, (“Kaeo”), (Nov. 2003).
Kim, H., et al., “Autograph: Toward Automated, Distributed Worm Signature Detection”, Proceedings of the 13th Usenix Security Symposium (Security 2004), San Diego, (Aug. 2004), pp. 271-286.
King, Samuel T., et al., “Operating System Support for Virtual Machines”, (“King”) (2003).
Krasnyansky, Max, et al., Universal TUN/TAP driver, available at https://www.kernel.org/doc/Documentation/networking/tuntap.txt (2002) (“Krasnyansky”).
Kreibich, C., et al., “Honeycomb-Creating Intrusion Detection Signatures Using Honeypots”, 2nd Workshop on Hot Topics in Networks (HotNets-11), Boston, USA, (2003).
Kristoff, J., “Botnets, Detection and Mitigation: DNS-Based Techniques”, NU Security Day, (2005), 23 pages.
Liljenstam, Michael, et al., “Simulating Realistic Network Traffic for Worm Warning System Design and Testing”, Institute for Security Technology studies, Dartmouth College (“Liljenstam”), (Oct. 27, 2003).
Marchette, David J., “Computer Intrusion Detection and Network Monitoring: A Statistical Viewpoint”, (“Marchette”), (2001).
Margolis, P.E., “Random House Webster's ‘Computer & Internet Dictionary 3rd Edition’”, ISBN 0375703519, (Dec. 1998).
Moore, D., et al., “Internet Quarantine: Requirements for Containing Self-Propagating Code”, INFOCOM, vol. 3, (Mar. 30-Apr. 3, 2003), pp. 1901-1910.
Morales, Jose A., et al., “Analyzing and exploiting network behaviors of malware.”, Security and Privacy in Communication Networks. Springer Berlin Heidelberg, 2010. 20-34.
Natvig, Kurt, “SANDBOXII: Internet”, Virus Bulletin Conference, (“Natvig”), (Sep. 2002).
NetBIOS Working Group. Protocol Standard for a NetBIOS Service on a TCP/UDP transport: Concepts and Methods. STD 19, RFC 1001, Mar. 1987.
Newsome, J., et al., “Dynamic Taint Analysis for Automatic Detection, Analysis, and Signature Generation of Exploits on Commodity Software”, In Proceedings of the 12th Annual Network and Distributed System Security, Symposium (NDSS '05), (Feb. 2005).
Newsome, J., et al., “Polygraph: Automatically Generating Signatures for Polymorphic Worms”, In Proceedings of the IEEE Symposium on Security and Privacy, (May 2005).
Nojiri, D., et al., “Cooperation Response Strategies for Large Scale Attack Mitigation”, DARPA Information Survivability Conference and Exposition, vol. 1, (Apr. 22-24, 2003), pp. 293-302.
Reiner Sailer, Enriquillo Valdez, Trent Jaeger, Roonald Perez, Leendert van Doorn, John Linwood Griffin, Stefan Berger., sHype: Secure Hypervisor Appraoch to Trusted Virtualized Systems (Feb. 2, 2005) (“Sailer”).
Silicon Defense, “Worm Containment in the Internal Network”, (Mar. 2003), pp. 1-25.
Singh, S., et al., “Automated Worm Fingerprinting”, Proceedings of the ACM/USENIX Symposium on Operating System Design and Implementation, San Francisco, California, (Dec. 2004).
Spitzner, Lance, “Honeypots: Tracking Hackers”, (“Spizner”), (Sep. 17, 2002).
The Sniffers's Guide to Raw Traffic available at: yuba.stanford.edu/.about.casado/pcap/section1.html, (Jan. 6, 2014).
Thomas H. Ptacek, and Timothy N. Newsham , “Insertion, Evasion, and Denial of Service: Eluding Network Intrusion Detection”, Secure Networks, (“Ptacek”), (Jan. 1998).
U.S. Appl. No. 14/086,842, filed Nov. 21, 2013 Non-Final Office Action dated Jan. 2, 2015.
Venezia, Paul, “NetDetector Captures Intrusions”, InfoWorld Issue 27, (“Venezia”), (Jul. 14, 2003).
Whyte, et al., “DNS-Based Detection of Scanning Works in an Enterprise Network”, Proceedings of the 12th Annual Network and Distributed System Security Symposium, (Feb. 2005), 15 pages.
Continuations (1)
Number Date Country
Parent 14086842 Nov 2013 US
Child 14942327 US